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a b s t r a c t

Although multiple vaccines have been developed and widely administered, several severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) variants have been reported to evade immune responses and spread 
diffusely. Here, 108 RNA-seq files from coronavirus disease 2019 (COVID-19) patients and healthy donors 
(HD) were downloaded to extract their TCR immune repertoire by MiXCR. Those extracted TCR repertoire 
were compared and it was found that disease progression was related negatively with diversity and posi
tively with clonality. Specifically, greater proportions of high-abundance clonotypes were observed in active 
and severe COVID-19 samples, probably resulting from strong stimulation of SARS-CoV-2 epitopes and a 
continued immune response in host. To investigate the specific recognition between TCR CDR3 and SARS- 
CoV-2 epitopes, we constructed an accurate classifier CoV2-TCR with an AUC of 0.967 in an independent 
dataset, which outperformed several similar tools. Based on this model, we observed a huge range in the 
number of those TCR CDR3 recognizing those different peptides, including 28 MHC-I epitopes from SARS- 
CoV-2 and 22 immunogenic peptides from SARS-CoV-2 variants. Interestingly, their proportions of high- 
abundance, low-abundance and rare clonotypes were close for each peptide. To expand the potential ap
plication of this model, we established the webserver, CoV2-TCR, in which users can obtain those re
cognizing CDR3 sequences from the TCR repertoire of COVID-19 patients based on the 9-mer peptides 
containing mutation site(s) on the four main proteins of SARS-CoV-2 variants. Overall, this study provides 
preliminary screening for candidate antigen epitopes and the TCR CDR3 that recognizes them, and should 
be helpful for vaccine design on SARS-CoV-2 variants.

© 2023 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and 
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative

commons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Since late 2019, the emergence of severe acute respiratory syn
drome coronavirus 2 (SARS-CoV-2) rapidly evolved into a pandemic 
disease, officially named coronavirus disease 2019 (COVID-19) by the 
World Health Organization. To date, it has been broken out in more 
than 200 countries or regions worldwide, resulting in more than 
534.5 million confirmed cases and more than 6.3 million deaths 
(Accessed on 16 June 2022, https://covid19.who.int). Critically, al
though multiple vaccines have been developed and widely 
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administered, several SARS-CoV-2 variants derived from mutations 
in the major histocompatibility complex class I (MHC-I)-restricted 
epitopes have been reported to evade immune response [1]. Wang 
et al. investigated the susceptibility to immune evasion of the SARS- 
CoV-2-specific antibody in COVID-19 convalescents for the 2 years 
following discharge and showed that Omicron variants largely es
caped any preexisting immunity in recovered individuals [2]. In 
addition, developing new and effective vaccine was recommended as 
a strategy to limit transmission of Omicron and emerging var
iants [3].

As with any viral infection, pathogen-derived antigens peptides 
(8–11-mer) are presented together with MHC-I (HLA-I in human) 
molecules on the surface of infected cells [4]. Then, the exhibited 
peptide-MHC complex (pMHC) is specifically recognized by CD8 + T 
cells via T cell receptors (TCRs), leading to the eradication of infected 
cells, where naive T cells are induced for clonal expansion of various 
subsets with identical TCRs [5]. In addition, TCRs on circulating T 
cells are mostly heterodimers with alpha (α) and beta (β) subunits, 
and the hypervariable TCR repertoire mainly results from the highly 
diverse complementary determining regions (CDRs) shaped by VDJ 
genes recombination localized in the TCR α and β chains [6]. Notably, 
the third CDR (CDR3) in the TCR β chain is responsible for the re
cognition of the antigen peptide in pMHC. Thus, those diverse CDR3 
in the TCRβ repertoire of COVID-19 patients play a key role in the 
clearance of SARS-CoV-2.

Reportedly, SARS-CoV-2 infection activates the host’s adaptive 
immune system against virus, including both antibody immunity 
produced by B cells and T cell immunity delivered by CD4+ T cells as 
the helper T cells with CD8+ T cells as the cytotoxic cells [7–10]. 
Therein, neutralizing antibodies can prevent the binding and entry of 
virus. As a supplement to antibodies, CD8+ T cells prevent effectively 
the establishment of infection by clearing the infected cells after 
exposure [11], especially tissue-resident memory T cells [12]. Grau- 
Expósito et al [13]. showed the response of peripheral and lung re
sident memory T cell against SARS-CoV-2 during acute infection. 
Moreover, the clinical data from severe COVID-19 patients showed 
that the CD8+ T cells were significantly higher in those surviving 
patients [14]. A higher proportion of SARS-CoV-2 specific CD8+ T 
cells were observed in mild cases and these CD8+ T cells have ex
tensive and strong memory after the recovery period of COVID-19 
[15]. Terminally differentiated CD8+ GZMB+ effector cells were 
clonally expanded both during and after the infection, whereas CD8+ 

GZMK+ lymphocytes were further expanded after infection and re
presented bona fide memory precursor effector cells [16]. Thus, the 
anti-SARS-CoV-2 T-cell-mediated immune response could be crucial 
for immune memory against SARS-CoV-2 infection.

In addition, there is evidence that the SARS-CoV-2 specific T cells 
were found in both COVID-19 patients and unexposed healthy do
nors [7,17,18]. This suggests that memory T cells recognizing the 
SARS-CoV-2 variants may have already existed in human beings. 
These existing memory T cells may result from previous cross-re
activity of T cells primed by seasonal coronaviruses, such as SARS or 
influenza [17]. Therefore, we hypothesized, in TCR repertoire of 
COVID-19 patients, there existed TCR CDR3 sequences that can re
cognize specific epitopes from any SARS-CoV-2 variants.

Previously, we have constructed a prediction tool of im
munogenic neoantigens, namely DeepCNN-Ineo, aimed at screening 
those tumor neoantigens bound by HLA molecular and recognized 
by TCR sequences [19]. In this study, we obtained 108 RNA-seq files 
of peripheral blood, including 69 samples from COVID-19 patients 
and 39 samples from HD, to extract their TCRβ immune repertoire, 
which was found to correlate with the disease progression of COVID- 
19 samples. Furthermore, an accurate model configured in an easy- 
to-use web server, called CoV2-TCR, was constructed and im
plemented to investigate those TCR CDR3 recognizing epitopes from 
SARS-CoV-2 or its variants. As a result, those epitopes recognized by 

most TCR CDR3 sequences may be selected as candidate antigen 
peptides for vaccine design, while the number of these recognizing 
CDR3 sequences may reflect, to some extent, the protective coverage 
of the vaccine.

2. Materials and methods

2.1. Samples and data collection

In this study, 108 RNA-seq files of peripheral blood samples were 
downloaded from European Nucleotide Archive database with the 
search ID PRJEB38339, including 69 COVID-19 samples from 37 
SARS-CoV-2 infected patients and 39 samples from 19 healthy do
nors (HD). Referring to a previous study on PRJEB38339 [20], the 69 
COVID-19 samples can be divided into active and recovered groups 
according to the disease progression and further assigned into 
asymptomatic, mild, moderate, severe, and fatal groups according to 
the severity observed in patients. Of note, as described in the data 
source publication [20], the severity categories 'asymptomatic' and 
'mild' are almost entirely included within the disease progression 
category 'recovered', while the 'moderate', 'severe' and 'fatal' are 
almost entirely included within the 'active' disease group.

2.2. Extraction and analysis of TCR immune repertoire

Based on the RNA-seq files (fastq) obtained from all samples, 
MiXCR software (copyright 2018, MiLaboratory, LLC Revision 
225a025b) was used to extract TCR immune repertoire of each 
sample [21], in which those columns include cloneID, cloneCount, 
cloneFraction, allVHitsWithScore, allDHitsWithScorec, allJHits
WithScorec, nSeqCDR3, aaSeqCDR3 and etc. Since the CDR3 in the 
TCRβ chain is responsible for the recognition of the antigen peptide 
in pMHC, only TCRβ CDR3 (TRB) was utilized. That is, the unique 
TCRβ CDR3 sequences were treated as clonotypes in this study. On 
the R (version 4.1.2) platform, R package immunarch (version 0.6.7) 
were applied for analysis of TCR immune repertoire, including di
versity, clonotype distribution and tracking.

2.3. Construction of deep learning convolution neural network model

We constructed a deep learning convolution neural network 
model to explore the specific recognition pairs between TCR CDR3 
sequences and SARS-CoV-2 epitopes (Fig. S1). The pairs between 
SARS-CoV-2 antigen epitopes and TCR CDR3 amino-acid sequences 
were first encoded into a feature matrix by using one-hot encoding. 
Here, we focused on those HLA-I antigens epitopes and TCR CDR3 
sequences with the length of (8−11)-mer and (∼25)-mer, respec
tively. Thus, the paired epitope-CDR3 sequences were encoded and 
zero-padded as a matrix with dimension of 36×20.

The epitope-CDR3 pairs were encoded to obtain the feature 
matrix, and two 1D convolutional layers were applied. Specifically, 
one layer with 32 filters and another with 64, was followed by a 
batch normalization layer with momentum of 0.99. Next, a max 
pooling layer with pooling kernel size of 2 was applied, aiming to 
reduce the feature dimension and avoid overfitting. There were 
three fully connected layers with 128, 64 and 32 variables following 
the flattened layer. Each of the fully connected layers had the rec
tified linear unit (ReLU) activation function. Subsequently, before the 
last output layer, a dropout layer with probabilities of 0.3 was added 
for randomly discarding variables in the hidden layer. Eventually, an 
output layer with two variables and the Softmax activation function 
was adopted to represent the final statistical classification score, 
which was used to judge the specific recognition of peptides by TCR 
CDR3. Here, we regarded the predictive score of more than 0.95 to be 
valid recognition.
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An adagrad optimizer with a learning rate of 0.005 was used to 
automatically decay learning rate by using the number of iterations 
and accumulated gradients. MSE was chosen as the objective func
tion. The neural network was trained for 100 epochs and the batch 
size was set to 20.

We constructed and trained this model using TensorFlow 1.14.0 
and Python (3.7.6) packages Numpy (version 1.19.5), Pandas (version 
0.25.3), Biopython (version 1.76), scikit-learn (version 0.24.2), and 
scipy (version 1.4.1).

2.4. The datasets for model construction and validation

We first searched those recognized pairs between SARS-CoV-2 
epitopes and TCR CDR3 sequences in IEDB [22] and VDJdb [23]. And, 
11,388 and 381 recognized pairs were downloaded from IEDB and 
VDJdb, respectively. These recognized pairs have been verified ex
perimentally, and were therefore regarded as positive pairs for 
model construction and validation.

In addition, in IEDB and TCRdb [24], we also obtained 22,805 TCR 
CDR3 sequences derived from seven types of tumors, i.e. breast 
cancer, colorectal cancer, gastric cancer, glioblastoma, lung cancer, 
melanoma, ovarian cancer. In IEDB, we also downloaded 50,639 re
cognized pairs between EBV epitopes and TCR CDR3 sequences, and 
408 recognized pairs between HIV epitopes and TCR CDR3 se
quences. Additionally, 1313 TCR CDR3 sequences derived from 
healthy people were obtained as well. We hypothesized that these 
TCR CDR3 sequences completely unrelated to SARS-CoV-2 epitopes 
should not specifically recognize SARS-CoV-2 epitopes. In order to 
construct negative pairs, these TCR CDR3 non-induced from SARS- 
CoV-2 epitopes were randomly paired with those SARS-CoV-2 epi
topes from the positive set above.

We first merged the positive pairs downloaded from IEDB and 
negative pairs derived from tumors and EBV, and then removed 
duplicated pairs and those pairs containing unusual amino acids (e.g. 
B, J, O, U, X, Z). Further, we only retained those pairs involving 
(8−11)-mer epitopes and (∼25)-mer CDR3. In total, 50,949 pairs 
were obtained for model construction, including 11,056 positive 
pairs and 39,893 negative pairs. Subsequently, with the ratio of 8:2, 
these pairs were randomly divided into training dataset (40,759 
pairs) and test dataset (10,190 pairs).

Similarly, we also merged an independent validation dataset for 
model validation, including those positive pairs downloaded from 
TCRdb and those negative pairs derived from HIV and healthy 
people. After carrying out the same filtration and selection as above, 
our validation dataset totally contained 880 pairs, including 334 
positive pairs and 546 negative pairs.

2.5. Screening of immunogenic peptides in SARS-CoV-2 variants

In 2019nCoVR (https://ngdc.cncb.ac.cn/ncov/knowledge/com
pare) [25–28], we obtained those amino-acid mutations exhibiting a 
frequency of greater than 0.7 in the four main proteins of the seven 
SARS-CoV-2 variants, i.e. alpha, beta, delta, gamma, lambda, mu, 
omicron, respectively. Then, based on those mutation sites and the 
reference amino-acid sequences of the four main proteins in SARS- 
CoV-2, the (8−11)-mer peptides containing mutation site(s) were 
extracted for subsequent immunogenicity prediction. Meanwhile, 
netMHCpan 4.1 EL [29] and IEDB Analysis Resource (Class I Im
munogenicity) [22] were respectively applied, in which the 12 HLA 
types with high proportion in the world were used, namely HLA- 
A* 01:01, HLA-A* 02:01, HLA-A* 03:01, HLA-A* 11:01, HLA-A* 23:01, 
HLA-A* 24:02, HLA-B* 07:02, HLA-B* 08:01, HLA-B* 35:01, HLA- 
B* 40:01, HLA-B* 44:02, HLA-B* 44:03. Those peptides with %rank of 
less than 0.5 and IEDB immunogenicity score of greater than 0.15 
were considered as strong immunogenicity. And, we screened 22 
predicted immunogenic peptides (Table 2).

2.6. Establishment of online web tool

Based on the model CoV2-TCR constructed above, we established 
a user-friendly web server. This tool required users to select a spe
cific protein from SARS-CoV-2, i.e. spike glycoprotein (S), membrane 
protein (M), envelop protein (E), or nucleocapsid protein (N), and its 
specified mutation amino-acid site. After submitting, users would be 
provided with those TCR CDR3 sequences that can recognize the 
related mutant peptides.

To implement an interaction interface and improve user experi
ence, the front-end web framework was built by Vue.js and Element- 
UI, and the back-end was realized by Flask.

3. Results

3.1. Comparison of diversity, richness and clonality of the TCR immune 
repertoire

In this study, 108 RNA-seq files of peripheral blood, including 69 
COVID-19 samples and 39 HD samples, were individually used to 
extract TCR immune repertoire. Subsequently, for each sample, the 
Chao1 index and Shannon index were separately evaluated to 
measure the richness and diversity of TCR immune repertoire. Here, 
the general richness and diversity in COVID-19 samples were ob
served with no significant difference compared to that in HC (Fig. 1a, 
d). However, when dividing those COVID-19 samples into active and 
recovered groups according to the disease progression, the richness 
and diversity of those active samples were significantly lower, while 
those recovered patients were significantly higher values (Fig. 1b, e). 
Further, according to the disease severity observed in the COVID-19 
patients, a significant decrease in richness and diversity was ob
served in mild, moderate, and severe groups respectively (Fig. 1c, f). 
Meanwhile, we observed that those mild samples presented higher 
richness and diversity than those of HD, and no significant difference 
between those of severe and fatal samples. Thus, we considered that 
the richness and diversity of TCR immune repertoire in COVID-19 
patients could be used to negatively indicate the disease progression 
and severity degree. Noteworthy, as described in the Method, the 
severity categories 'asymptomatic' and 'mild' are almost entirely 
included within the disease progression category 'recovered', while 
the 'moderate', 'severe' and 'fatal' are almost entirely included 
within the 'active' disease group.

In addition, the clonality from each sample was separately esti
mated as well. As expected, there was a significant increase in 
clonality in COVID-19 samples due to the SARS-CoV-2 infection 
(Fig. 1g). In particular, those active patients showed a remarkably 
higher clonality compared to that in HC, while those recovered pa
tients presented a significantly lower clonality (Fig. 1h). Consistently, 
we observed that a significantly increased clonality was detected in 
those patients with mild, moderate, and severe COVID-19 samples 
respectively (Fig. 1i), suggesting that the clonality of TCR immune 
repertoire could be used to positively indicate the disease progres
sion and severity degree. Taken together, SARS-CoV-2 infection re
sulted in clonal expansion in TCR immune repertoire of COVID-19 
patients, which is positively correlated with the disease severity of 
the patients.

3.2. Investigation of clonotypes in patients with COVID-19 infection

The immune system is central to maintaining the body in a 
healthy state by detecting and evicting those constantly exposed 
threats, including various pathogens and cancer cells. In general, the 
recognition of antigens by T cells activates their proliferation and/or 
phenotypic changes, leading to alteration of TCR repertoire [30,31]. 
Here, a total of 209,428 and 398,033 unique clonotypes was re
spectively detected in HD and COVID-19 samples, of which 17,728 
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clonotypes were shared (Fig. 2a). Comparatively, those unshared 
clonotypes from COVID-19 samples (380,305) were hypothesized to 
be driven and produced by SARS-CoV-2 epitopes. Therefore, when 
assigning those COVID-19 samples into active and recovered groups 
according to disease progression, we found that fewer unshared 
clonotypes were obtained from those active samples than those 
from recovered samples (Fig. 2b). Similarly, fewer unshared clono
types were obtained from those fatal/severe samples than from 
those mild/moderate samples (Fig. 2c). These observations were 
consistent with the low diversity in active samples and in severe/ 

fatal samples described above, resulting from the strong stimulus of 
SARS-CoV-2 epitopes.

Next, to investigate those biased clonotypes derived from SARS- 
CoV-2 infection in COVID-19 samples, the distribution between the 
number of clonotypes and the number of cells per clonotype was 
further analyzed. As shown in Fig. 2d, the number of clonotypes 
decreased gradually with the increase of the number of cells char
acterized by a certain clonotype in the immune repertoire. That is to 
say, as a result of continued stimulation by SARS-CoV-2 antigens, 
more characteristic clonotypes were observed to appear in COVID-19 

Fig. 1. Comparison of TCR immune repertoire. a, d, g) Comparison of Chao1 (a), Shannon (d), and Clonality (g) between HD and COVID-19 samples. b, e, h) Comparison of Chao1 
(b), Shannon (e), and Clonality (h) between HD, active COVID-19 samples, and recovered COVID-19 samples. c, f, i) Comparison of Chao1 (c), Shannon (f), and Clonality (i) between 
HD and COVID-19 samples in different severity degree.
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Fig. 2. Investigation of TCR immune repertoire. a, d, e) Venn (a), clonotypes distribution (d), and clone degree (e) of TCR repertoire between HD and COVID-19 samples. b, f, g) 
Venn (b), clonotypes distribution (f), and clone degree (g) of TCR repertoire between HD, active COVID-19 samples, and recovered COVID-19 samples. c, h, i) Venn (c), clonotypes 
distribution (h), and clone degree (i) of TCR repertoire between HD and COVID-19 samples in different severity degree. (j) Clone tracking of top 20 high-abundance clonotypes in 
COVID-19 patients with the different disease progression. (k) Clone tracking of top 20 high-abundance clonotypes in COVID-19 patients with the different severity degree.
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samples. To compare them, we characterized those clonotypes with 
the number of T cells (i.e. abundance) less than 21, less than 25, and 
greater than 25 as rare, low-abundance, and high-abundance, re
spectively. Those high-abundance clonotypes were considered to 
result from the strong stimulus from SARS-CoV-2 antigens. Therein, 
high-abundance clonotypes accounted for 4.42% of the total in HD 
samples, while a higher proportion (8.75%) was detected in COVID- 
19 samples (Fig. 2e). Consistently, the higher proportion of high- 
abundance clonotypes was found in active patients than that in re
covered patients (Fig. 2f, g), and the higher proportion of high- 
abundance T cells was found in fatal/severe samples than that in 
mild/moderate samples (Fig. 2h, i). These observations echoed the 
fewer clonotypes in active samples and in severe/fatal samples, also 
resulting from host’s immune response to SARS-CoV-2 epitopes.

In addition, we further focused on those 380,305 unique clono
types unshared with 39 HD samples, in which the number of high- 
abundance, low-abundance, and rare clonotypes was 37,562, 
236,182, and 106,561, respectively. Then, the top 20 high-abundance 
clonotypes were singled out for subsequent clonotype tracking. As 
shown in Fig. 2j, k, we tracked their proportions at each group, il
lustrating their changes in immune repertoire of the COVID-19 
samples at different infected periods. Consistent with the observa
tion above, the sum proportion of recovered samples and mild/ 
moderate samples were both lower. Notably, some sequences pre
sented a high proportion in active samples and fatal/severe samples, 
while showed little proportion in recovered samples and mild/ 
moderate samples, e.g CASSIEGQLSTDTQYF, CASSFGVAGGIYSPLHF, 
CASRLGLAGGNEQFF, and CASQGLVDENEQFF. In addition, we also 
found that the proportion of CSVESTALAAYNEQFF and CSVRAGTG
GTEAFF presented little in active samples and fatal/severe samples 
but presented a high proportion in recovered samples and mild/ 
moderate samples. That indicated that the high-abundance clono
types may be associated with the severity degree and outcomes in 
different patients.

3.3. Construction of a classifier to identify TCR CDR3 with their 
recognizing SARS-CoV-2 epitopes

Those experimentally-verified recognition pairs between SARS- 
CoV-2 epitopes and TCR CDR3 sequences were downloaded from 
IEDB as positive pairs [22]. To obtain negative pairs, those TCR CDR3 
sequences derived from seven tumors and EVB were collected from 
IEDB and TCRdb [24], and randomly paired with those SARS-CoV-2 
epitopes of the positive pairs. Subsequently, the positive pairs and 
the negative pairs were merged and filtered, a total of 50,949 pairs 
were obtained, and then randomly sampled them as training dataset 
and test dataset according to the ratio of 8:2 for model construction.

Based on the training dataset and test dataset above, a deep 
learning convolution neural network model, named CoV2-TCR, was 
constructed (Fig. S1). Those epitope-CDR3 pairs were first encoded 
by using one-hot and zero-padded into a feature matrix, and then 
two 1D convolutional layers were applied for batch normalization. 
Next, a max pooling layer with pooling kernel size of 2 was followed 
to reduce the feature dimension and avoid overfitting. Three fully 
connected layers with an ReLU activation function followed the 
flattened layer, and then a dropout layer with probabilities of 0.3 was 
added for randomly discarding variables. Eventually, an output layer 
with two variables and the Softmax activation function was adopted 
to represent the final statistical classification score. Here, the pre
dictive score of greater than 0.95 was treated as threshold of valid 
recognition between TCR CDR3 and SARS-CoV-2 epitopes. Conse
quently, we observed that the stable accuracy both converged in 
training dataset and test dataset, and the AUC reached 0.963 in the 
test dataset (Fig. 3a).

Furthermore, to verify the performance of the model CoV2-TCR, 
an independent validation dataset was prepared and applied. We 

downloaded those TCRβ CDR3 and their recognizing SARS-CoV-2 
epitopes from VDJdb [23]. After excluding those pairs duplicated 
with positive pairs downloaded from IEDB, we treated the rest as 
positive pairs of the validation dataset. To produce negative pairs of 
the validation dataset, those TCR CDR3 derived from healthy people 
or induced by HIV were randomly paired with SARS-CoV-2 epitopes. 
Then, the positive pairs and negative pairs were merged and con
sidered as an independent validation dataset. Here, the AUC of our 
model CoV2-TCR achieved at 0.967 in this independent validation 
dataset (Fig. 3b), indicating that model CoV2-TCR was an excellent 
classifier to probe the specific recognition between TCR CDR3 and 
SARS-CoV-2 epitopes.

Further, we compared the CoV2-TCR with other similar models, 
i.e. imRex [32] and ERGO [33]. By contrast, the imRex represents the 
interaction between epitopes and TCR CDR3 by combining amino- 
acid physicochemical properties and BLOSUM matrices, which are 
then used as inputs to construct convolutional neural network 
model. The ERGO was trained with two models, i.e. ERGO-AE and 
ERGO-LSTM, by using autoencoder (AE) and long short-term 
memory (LSTM), respectively. Based on the independent validation 
dataset, we found that the CoV2-TCR outperformed imRex, ERGO- 
LSTM, and ERGO-AE with a higher AUC (Fig. 3c), indicating that our 
model had better performance on predicting TCR CDR3 and their 
recognizing epitopes from SARS-CoV-2.

3.4. Identification of TCR CDR3 binding to SARS-CoV-2 antigen epitopes 
based on model CoV2-TCR

To classify those TCR CDR3 induced by SARS-CoV-2 epitopes from 
those clonotypes from COVID-19 samples, the model CoV2-TCR was 
applied for subsequent analysis. In a prior study [34], according to 
the amino-acid sequences of the four main proteins from SARS-COV- 
2, i.e. spike glycoprotein (S), membrane protein (M), envelop protein 
(E), and nucleocapsid protein (N), we screened 28 predicted MHC-I 
antigen peptides with the length of (8−11)-mer by performing a 
series of bioinformatics tools. Subsequently, based on those 380,305 
unique clonotypes from COVID-19 patients but not from HD, in
cluding 37,562 High-abundance, 236,182 Low-abundance, 106,561 
Rare clonotypes, the model CoV2-TCR was used to identify those TCR 
CDR3 that can specifically recognize these 28 predicted epitopes 
(Table S1). As shown in Table 1, we individually enumerated the 28 
antigens and the number of TCR CDR3 sequences recognized, from 
11 to 244,792, indicating a huge difference in T cell immune re
cognition to epitopes. Further, based on the clonal degree as de
scribed above, those TCR CDR3 sequences recognized to each epitope 
were separately divided into three groups (i.e. High-abundance, 
Low-abundance, Rare clonotypes). In those TCR CDR3 recognizing 
each epitope, we counted respectively their proportions in the total 
High-abundance, Low-abundance, and Rare clonotypes, and found 
that more TCR CDR3 did belong to Low-abundance clonotypes, but 
the proportions of High-abundance, Low-abundance, Rare clono
types were close.

Besides, based on the four main proteins in SARS-CoV-2 and 
those amino-acid mutation site(s) of the seven SARS-CoV-2 variants 
(i.e. alpha, beta, delta, gamma, lambda, mu, omicron), we screened 
22 predicted immunogenic peptides with %rank of less than 0.5 and 
IEDB immunogenicity score of greater than 0.15 (Table 2). Similarly, 
the CoV2-TCR model was applied to identify those TCR CDR3 that 
can recognize specifically these selected peptides (Table S2). Con
sistently, indeed, these peptides all can bind to some TCR CDR3 in 
those unshared clonotypes from COVID-19 patients, although the 
number of TCR CDR3 still presented a huge difference, ranging from 
1 to 80,772. Also, for those TCR CDR3 recognizing each peptide, the 
proportions of High-abundance, Low-abundance, Rare clonotypes 
were still close (Table 2). That denoted some immunogenic peptides 
induced adaptive immune response, leading to uniform T-cell 

X. Jian, Y. Zhang, J. Zhao et al. Computational and Structural Biotechnology Journal 21 (2023) 1362–1371

1367



expansion of High-abundance, Low-abundance, Rare clonotypes. In 
addition, those recognizing TCR CDR3 were compared with those 
downloaded from IEDB and VDJdb. We found that 16 peptides, of 
which TCR CDR3 recognizing sequences did overlap with those from 
the two databases (i.e. IEDB, VDJdb), although the peptides from 
SARS-CoV-2 variants may be completely different from those from 
positive pairs (Table S3).

3.5. A web-based tool to identify TCR CDR3 recognizing SARS-CoV-2 
peptides

Given the results of the investigation above, the model CoV2-TCR 
was implemented in a user-friendly web server (http://www.bios
tatistics.online/CoV2-TCR/#/). In addition, the four main proteins in 
SARS-CoV-2, i.e. spike protein (S), membrane protein (M), envelope 
protein (E), and nucleocapsid protein (N), have been integrated as 
well. As we have known, based on the amino-acid sequences of 
these proteins, there were four probable mutation types, including 

single amino acid variation (SAAV), insertion and deletion of amino 
acids (InDelAA), insertion of amino acids (InAA), deletion of amino 
acids (DelAA) [35].

In the process of operating the webserver, before submitting a 
task, users need to select a mutated protein and its mutation type, 
and input mutation site(s) and amino acid change. Then, nine pep
tides containing mutation site(s) (9-mer) will be respectively ex
tracted for subsequent prediction by CoV2-TCR. Those pairs between 
peptide and TCR CDR3 with predictive score of greater than 0.95 will 
be recorded in an Excel file and sent to the user as an email. The 
output file will consisted of five columns, including SARS-CoV-2 
Epitope, TCR CDR3, CDR3 clone degree, Predictive score, and 
Interaction.

During the infection process of SARS-CoV-2, the spike protein 
plays a crucial role in interacting with the human angiotensin-con
verting enzyme 2 (hACE2) receptor [36]. Singh et al [37]. identified 
the highly flexible region in the receptor binding domain of SARS- 
CoV-2, starting from residue 475–485 of spike protein. Particularly, 

Fig. 3. Performance of model CoV2-TCR specifically recognized to SARS-CoV2 epitopes. (a, b) The ROC curve of model CoV2-TCR in test dataset (a) and in independent validation 
dataset (b), respectively. (c) The ROC curves of model CoV2-TCR, imRex, ERGO-LSTM, and ERGO-AE in independent validation dataset.

Table 1 
Those TCR CDR3 recognizing the 28 predicted MHC-I peptides from SARS-CoV-2. 

Protein Position Peptide Length TCR CDR3 
[score >  0.95]

High-abundance 
(%)

Low-abundance 
(%)

Rare 
(%)

TCR CDR3 [top 1]

1 Envelop E19–26 LFLAFVVF 8 11 0 (0) 6 (0.003) 5 (0.005) CASTNQTSMYLCASSLASGNYEQYF
2 Envelop E20–27 FLAFVVFL 8 222 18 (0.05) 129 (0.06) 75 (0.07) CASSSQTVIPRARANYGYTF
3 Envelop E29–37 VTLAILTAL 9 265 75 (0.20) 102 (0.04) 88 (0.08) CASSIEAWLNIQYFGAGTRLGELFF
4 Envelop E29–38 VTLAILTALR 10 7021 1239 (3.30) 3629 (1.54) 2153 (2.02) CSVLSSNTGELFF
5 Envelop E30–37 TLAILTAL 8 276 49 (0.13) 145 (0.06) 82 (0.08) CASSIEAWLNIQYFGAGTRLGELFF
6 Membrane M134–143 LESELVIGAV 10 1590 130 (0.35) 968 (0.41) 492 (0.46) CASSQEPPELAGWAGELFF
7 Membrane M134–144 LESELVIGAVI 11 3932 356 (0.95) 2314 (0.98) 1262 (1.19) CASSQEPPELAGWAGELFF
8 Membrane M135–144 ESELVIGAVI 10 20,387 2113 (5.63) 12,561 (5.32) 5713 (5.36) CASSIEAWLNIQYFGAGTRLGELFF
9 Membrane M136–146 SELVIGAVILR 11 64,488 5696 (15.17) 40,879 (17.31) 17,913 (16.82) CASSPQPNYRVWDTDTQYF
10 Membrane M19–28 QWNLVIGFLF 10 25,960 2608 (6.94) 16,204 (6.86) 7148 (6.71) CASTNQTSMYLCASSLASGNYEQYF
11 Membrane M4–14 SNGTITVEELK 11 975 114 (0.30) 573 (0.24) 288 (0.27) CSVEFRPPYGYTFGSGTSSYNEQFF
12 Membrane M73–82 INWITGGIAI 10 51,034 5201 (13.85) 31,568 (13.37) 14,265 (13.39) CSVEVRWEGALYEQYF
13 Membrane M76–84 ITGGIAIAM 9 1877 144 (0.38) 1224 (0.52) 509 (0.48) CASSSQTVIPRARANYGYTF
14 Nucleocapsid N10–17 RNAPRITF 8 994 65 (0.17) 611 (0.26) 318 (0.30) CASSSQTVIPRARANYGYTF
15 Nucleocapsid N111–121 YYLGTGPEAGL 11 204,512 19,865 (52.89) 131,190 (55.55) 53,457 (50.19) CSLMRGALYNEQFF
16 Nucleocapsid N360–369 YKTFPPTEPK 10 40,796 4066 (10.83) 24,637 (10.43) 12,093 (11.35) CSLMRGALYNEQFF
17 Nucleocapsid N9–17 QRNAPRITF 9 467 39 (0.10) 265 (0.11) 163 (0.15) CASSSQTVIPRARANYGYTF
18 Spike S1215–1224 YIWLGFIAGL 10 17,270 1817 (4.84) 10,795 (4.57) 4658 (4.37) CASSSQTVIPRARANYGYTF
19 Spike S1220–1230 FIAGLIAIVMV 11 244,792 24,980 (66.51) 154,075 (65.24) 65,737 (61.71) CSVVPSSPYNEQFF
20 Spike S232–241 GINITRFQTL 10 2078 277 (0.74) 1179 (0.50) 622 (0.58) CASSSQTVIPRARANYGYTF
21 Spike S55–65 FLPFFSNVTWF 11 740 46 (0.12) 460 (0.20) 234 (0.22) CASSSQTVIPRARANYGYTF
22 Spike S62–70 VTWFHAIHV 9 261 36 (0.10) 133 (0.06) 92 (0.09) CSVEFRPPYGYTFGSGTSSYNEQFF
23 Spike S627–636 DQLTPTWRVY 10 9771 1023 (2.72) 5780 (2.45) 2968 (2.79) CAWSPSWGDSRRNTEAFF
24 Spike S628–636 QLTPTWRVY 9 382 56 (0.15) 197 (0.08) 129 (0.12) CSLMRGALYNEQFF
25 Spike S825–835 KVTLADAGFIK 11 10,070 1114 (2.97) 5900 (2.50) 3056 (2.87) CSVEDLGQGLEINTEAFF
26 Spike S826–835 VTLADAGFIK 10 3344 407 (1.08) 2060 (0.87) 877 (0.82) CASTNQTSMYLCASSLASGNYEQYF
27 Spike S827–835 TLADAGFIK 9 1449 270 (0.72) 778 (0.33) 401 (0.38) CASTNQTSMYLCASSLASGNYEQYF
28 Spike S876–884 ALLAGTITS 9 2893 442 (1.18) 1507 (0.64) 944 (0.89) CSVSLLNNWELTEAFF
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the two amino-acid exchanges, i.e. S477G and S477N, were reported 
to strengthen the binding of the SARS-COV-2 spike with the hACE2 
receptor [37]. Subsequently, here as a case, the two mutations were 
separately inputted into the CoV2-TCR, and those TCR CDR3 re
cognizing those peptides containing mutation site was identified 
(Tables S4 and S5). The peptides TEIYQAG(G)T and TEIYQAG(N)T 
were recognized respectively by the most TCR CDR3, suggesting 
their potential as candidate vaccine peptides.

4. Discussion

In this study, on the basis of trancriptomic files from peripheral 
blood of COVID-19 patients and HD subjects, the TCR immune re
pertoires were investigated and analyzed. Meanwhile, we found the 
severity degree of the COVID-19 patients was negatively correlated 
with the diversity of TCR repertoires, and was positively correlated 
to their clonality. Furthermore, when we assigned those clonotypes 
into High-abundance, Low-abundance, Rare groups, the proportion 
of high-abundance clonotypes was found to be associated with the 
severity degree of COVID-19 patients. Indeed, the more cells infected 
with SARS-CoV-2 in host, the more severe the disease became [38]. 
Sustained stimulation by antigen epitopes from SARS-CoV-2 would 
cause biased cloning expansion, leading to a bias T cell immune 
repertoire with low diversity.

Furthermore, a clear difference was discovered when the pro
portions of the top 20 TCR CDR3 were explored in COVID-19 pa
tients. Interestingly, we observed that two sequences, i.e. 
CSVESTALAAYNEQFF and CSVRAGTGGTEAFF presented little in active 
samples and fatal/severe samples, but high proportion in recovered 
samples and mild/moderate samples. That indicated the severity 
degree of disease may be related to the amplified TCR CDR3 se
quences. In addition, previous reports showed that those un
exposed-unvaccinated individuals carried a significant fraction of 
circulating CD8 + T cells reactive to epitopes from SARS-CoV-2. These 
CD8 + T cells may belong to memory and naive T cells derived from 
other coronavirus infections [17,18,39]. The public shared T cells 
repertoire in COVID-19 patients may contain an unexpected fraction 
of TCR clonotypes that can react to different epitopes from SARS- 
CoV-2 variants. Thus, we believed that, among the TCR CDR3 in 
COVID-19 patients, there existed some TCR CDR3 that can recognize 
those mutated epitopes from any SARS-CoV-2 variants.

To investigate the TCR repertoire of COVID-19 patients and their 
recognized epitopes from SARS-CoV-2 or its variants, a precise 
model CoV2-TCR was constructed and outperformed the similar 
models, i.e. imRex [32], ERGO-LSTM [33], and ERGO-AE [33]. In ad
dition, by comparison with the TCRmatch [40] and TCRdist [41]
constructed by the similarity-based or distance-based approaches, 
the CoV2-TCR was established by convolution neural network, 
whose advantage lies in its capacity of feature extraction. NetTCR-2.0 
was trained to predict interactions between TCRs and their cognate 
HLA-A* 02:01-restricted peptides [42]. Due to the small number of 
training peptides, the tool can only be applied to the limited pep
tides included in the training data. The CoV2-TCR we proposed in 
this study provided a generic strategy that can specifically recognize 
MHC-I epitopes from SARS-CoV-2 or its variants. We believe that our 
method could be extended to some similar protein-binding situa
tions, helping to guide the selection of candidate vaccine polypep
tides and immunotherapeutic TCR-T.

When the CoV2-TCR was used to explore those TCR CDR3 re
cognizing those predicted epitopes from SARS-CoV-2 or its variants, 
the number of TCR CDR3 was found to exhibit a huge variability. This 
is why immunogenic epitopes need to be screened for use as peptide 
vaccines. Indeed, the CoV2-TCR could provide preliminary screening, 
in which those epitopes from SARS-CoV-2 variants recognized by 
most TCR CDR3 may be selected as candidate antigen peptides for 
vaccine design. In addition, in those TCR CDR3 recognizing each Ta
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epitope, we observed the close proportions of High-abundance, Low- 
abundance, Rare clonotypes in the total population, suggesting that 
those immunogenic peptides may cause uniform immune response 
in host.

In conclusion, this study investigated the TCR repertoire of SARS- 
CoV-2 infected patients, and those TCR CDR3 existed in COVID-19 
patients were found to recognize epitopes from mutation(s) of SARS- 
CoV-2 variants. Notably, we established an easy-to-use web server 
for screening TCR CDR3 sequences that can recognize a specific 
SARS-CoV-2 mutated peptide, which would be helpful to identify 
candidate antigen peptides responding to SARS-CoV-2 variants.
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