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The application study of robot control based brain-computer interface (BCI) not only
helps to promote the practicality of BCI but also helps to promote the advancement
of robot technology, which is of great significance. Among the many obstacles, the
importability of the stimulator brings much inconvenience to the robot control task. In
this study, augmented reality (AR) technology was employed as the visual stimulator of
steady-state visual evoked potential (SSVEP)-BCI and the robot walking experiment in
the maze was designed to testify the applicability of the AR-BCI system. The online
experiment was designed to complete the robot maze walking task and the robot
walking commands were sent out by BCI system, in which human intentions were
decoded by Filter Bank Canonical Correlation Analysis (FBCCA) algorithm. The results
showed that all the 12 subjects could complete the robot walking task in the maze,
which verified the feasibility of the AR-SSVEP-NAO system. This study provided an
application demonstration for the robot control base on brain–computer interface, and
further provided a new method for the future portable BCI system.

Keywords: steady-state visual evoked potential (SSVEP), based brain-computer interface (BCI), augmented
reality (AR), humanoid robot, maze

INTRODUCTION

Based brain-computer interface (BCI) provides rich and powerful command signals for auxiliary
devices by directly decoding user intentions from brain signals in real time. Due to the advantages
of the electroencephalography (EEG) method in time resolution, brain–computer interface
technology mostly adopted EEG to realize the real-time decoding of brain intentions. In the
past two decades, researchers have attempted to improve the performance of BCIs from the
improvements in experimental paradigms and decoding algorithms (Chen et al., 2015b; Coogan
and He, 2018; Zhang et al., 2018, 2021; Abiri et al., 2019; Rashid et al., 2020; Gao et al., 2021;
Stieger et al., 2021). At present, the experimental paradigms of BCIs mainly contained motor
imagination (MI), P300, and steady-state visual evoked potential (SSVEP). Among them, SSVEP-
BCI was favored due to its higher signal-to-noise ratio (SNR), larger number of targets, better
information transfer rate (ITR), and less training. In typical SSVEP-BCIs, decoding methods were
employed to identify the frequency of SSVEP to determine which target the subject was focusing
on (Li et al., 2015; Nakanishi et al., 2018; Perdikis and Millan, 2020).
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Robot controlling is one of the significant application fields
of BCI. Through the analysis of brain signals, human intentions
could be accurately converted into robot control instructions
in real-time, so as to achieve precise control of the robot
(Wolpaw et al., 2002; Li et al., 2015). With the maturity of
BCI technology, BCI-based robot control technology has made
certain progress in theory and practice, which has promoted
the practical application of BCI. Specifically, the application
prospects of BCI technologies in robot control have been proven
by studies on the control of wheelchairs, aircraft with four limbs,
manipulators, exoskeletons, and humanoid robots based on BCIs.
For example, Mahmood used convolutional neural networks to
classify the evoked SSVEPs and realized the control of electric
wheelchairs (Muller et al., 2013). Chen proposed a robotic arm
control system that combined computer vision and BCI to realize
the automatically grabs objects by robotic arm (Chen et al., 2018).

Among the many types of robots that may be improved by
BCI technology, the humanoid robot has its unique advantages.
Integrating a variety of sensors, humanoid robot was an
intelligent robot with a human-like appearance and capable of
simulating human behaviors. Due to their high intelligence, the
application researches of BCI-based humanoid robots were of
great significance and received increasing attention. For example,
a hybrid BCI system was designed in which the robot walking
instruments were controlled by SSVEP, and the robot grabbing
instruments was controlled by MI (Duan et al., 2017). Another
BCI system was used to control the robot to grab a glass of water
so as to help patients (Spataro et al., 2017). Unfortunately, most
of the previous studies were based on the traditional BCI systems
which depended on a fixed visual stimulus.

Although notable progresses have been made in the study of
BCI-based robot control, there are still many obstacles restricting
its practical applications, one of which was the importability
of the visual stimulators. The typical BCI system traditionally
employed a liquid crystal display (LCD) screen to display visual
stimuli, which required the subjects to switch their focus between
the visual stimuli and the environment. The importability of the
visual stimulation devices led to the inconvenience for the robot
controlling, which required the improvement of a stimulator in
portability and intelligence. Fortunately, augmented reality (AR)
technology provided a new visual stimuli mode in the virtual
scenes, which could be used to improve the convenience and
practicability of the BCI system for robot controlling (Appaia
et al., 2021; Hsu et al., 2021). At present, the studies of BCIs based
on AR stimulators are in its infancy, and the feasibility of this
scheme has been verified by some experiments. For example, an
AR-BCI system was designed and realized the controlling of desk
lamp (Kansaku et al., 2010). By combining augmented reality
and SSVEP-BCI technologies, the complex navigation task of the
robot was completed with more intuitive and effective interaction
(Faller et al., 2017). However, the researches on BCI based on
AR stimulator are in the ascendant, and further research are
urgently needed.

In view of the shortcomings of previous studies, we built an
AR-BCI system to explore the portability of BCI stimulus. In
the AR-BCI system, SSVEP visual stimulus was projected into
the virtual visual interface. We drew lessons from the previous

studies of BCIs based on AR stimulus and further optimized our
study. For example, scholars achieved the control of desk lamps
or television by an AR-BCI system, in which BCI commands were
converted into visual stimulation control panels and presented
in AR (Takano et al., 2011). In another study, the realistic
environment captured by the camera and visual stimulation of
SSVEP were mapped to the head mounted displayer of AR for
the peripheral equipment controlling (Horii et al., 2015). The
combination of SSVEP visual stimulation and AR technology
realized the control of robot complex navigation tasks, which
achieved the more intuitive and efficient interaction between
humans and computers (Faller et al., 2017). These studies verified
the feasibility of AR for presenting BCI stimulation, while the
more complex application studies such as the combination of AR,
BCI, and robot controlling need to be further explored.

In this study, an AR-SSVEP-NAO system was designed to
explore the application potentials of BCIs. The AR-SSVEP
system was used to improve the importability problem of a
stimulator in BCIs, in which AR provided visual stimulation of
SSVEP and presented a virtual visual stimulation interface to the
subjects, and the EEG signals were collected and converted into
instructions to control external devices. The reliability of the AR-
BCI system was verified by the performance of the introduced
intelligent humanoid robot. Subjects were required to control
the external equipment (Nao robot) to the complete complex
walking task in the maze by using the designed AR-SSVEP-
NAO system, and the system performance was verified by the
online experiments.

Another feature of this study was the construction of a brain–
computer interface control robot system based on a shared
control strategy. In the brain-controlled robot system, according
to the degree of interaction between humans and machines, there
were two main typical interaction modes for brain-computer
interface control systems: direct control and shared control. The
system structure of direct control was relatively simple, and the
EEG signal obtained by the brain-computer interface was used to
directly control the robot. In face of complex control tasks, direct
control required frequent control operations, which brought
great mental pressure to users. While shared control integrated
human and computer intelligence to better control robots. In
this study, a robot system was constructed based on the shared
control strategy, in which the brain-computer interface decoded
the SSVEP signal to obtain control instructions, and combined
the control instructions owned by the robot intelligence (with the
help of MARKs) to perform control fusion, so as to achieve robot
control by using fewer instruments.

MATERIALS AND METHODS

Subjects
Twelve healthy subjects (4 females; aged 21–27 years) with
normal or corrected-to-normal vision were recruited as
participants in this study. Each of them attended both the
random prompt and autonomous selection experiments. Before
the experiment, each subject was required to understand the
experimental contents and sign an informed consent form and
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received a monetary compensation for his or her participation.
This study was approved by the Research Ethics Committee of
Tsinghua University (Jan 3, 2019).

Visual Stimuli in Augmented Reality
During the experiments, the visual stimuli were presented by the
AR device of HoloLens. HoloLens was a glass of Microsoft with
the function of wireless head-mounted augmented reality. With
the customized dedicated chip of holographic processing unit
(HPU), the AR glass could realize the combination of the real and
virtual environment, thus helping the users to enter a peculiar
world environment.

Developed by Unity3D and Visual Studio 2017, the visual
stimuli in AR were fixed in the central visual field of subjects
so as to facilitate the simultaneous observation of stimulation
and experimental scene. Six targets were presented in the visual
stimuli interface with the stimuli frequencies of 8 Hz (“L1”),
9.5 Hz (“S2”), 11 Hz (“R3”), 8.5 Hz (“Le4”), 10 Hz (“St5”) and
11.5 Hz (“Ri6”), respectively. The refresh rate of the HoloLens
used for stimulus representation was 60Hz. This study used the
sampled sinusoidal stimulation method (Manyakov et al., 2013;
Chen et al., 2015b) to present visual flickers in the AR glasses. In
the autonomous selection experiment, each target in the visual
stimuli referred to a pre-defined robot operation instruction.
Specifically, “L1,” “S2,” and “R3” represented the recognition
and tracking of mark1 and then turn left, the recognition and
tracking of mark2 and then stop, the recognition and tracking
of mark3 and then turn right, respectively. While “Le4,” “Ri6,”
and “St5” represented a 45◦ left turn, a 45◦ right turn, and stop
2 s, respectively. When one of the three marks was within the
camera view, the robot would automatically recognize the mark
and move toward the mark. When approaching the mark, the
robot would turn or stop according to the recognized mark.
When there was no mark in front of the robot, the command “L1,”
“S2,” or “R3” would rotate the robot”s head camera to help find
the corresponding mark. Additionally, subjects could also adjust
the robot position by the command “Le4” or “Ri6.”

The spatial distributions of the six stimuli blocks on the
visual stimuli interface are shown in Figure 1. The six stimuli
targets were arranged into two rows, and each row contained 3
stimuli blocks. Each stimulus was 240 × 160 pixels, the horizontal
interval of the stimulus interface was 290 pixels, and the vertical
interval was 200 pixels. In this study, the visual stimulus interface
was presented in the front of the robot environment, so as to
provide convenience for online controlling of the robot.

Data Acquisition
EEG data were acquired by the Neuracle EEG Recorder
(Neuracle, Inc.), and the sampling rate was 1,000 Hz. The nine
electrodes (Pz, PO5, PO3, POz, PO4, PO6, O1, Oz, and O2) in the
occipital region were selected for the EEG data recording, with
the reference electrode located at the vertex. All electrodes were
placed in accordance with the international 10–20 system. All the
electrode impedances were lower than 10 k�. The recorded EEG
data were sent to the PC by the WIFI of a wireless amplifier. The
Neuracle EEG amplifier adopted a multi-parameter synchronizer
(Neuracle, China) to synchronize EEG data to the experimental

FIGURE 1 | The spatial distributions of augmented reality stimulus.

tasks. The multi-parameter synchronizer had a built-in-light port
to receive triggers. Event triggers generated by the stimulus
program were sent from the multi-parameter synchronizer to the
EEG amplifier and recorded on an event channel synchronized
to the EEG data. To ensure the frequency stability of the flicker
stimulus in AR, the flicker stimulus was presented continuously
throughout the process in this study. The stimulus program
informed subjects to fixate on the flickering stimulus target
via auditory cues while simultaneously sending event triggers.
According to the event trigger, we could mark the stimulus
onsets, making it easy to synchronize the EEG data with the
visual stimuli. After 2-s stimulus time, a reminder of “Di”
sound informed subjects to rest. The HoloLens was only used to
present visual stimuli.

NAO Robot System
The humanoid robot NAO was adopted as the equipment for
the BCI controlling. The body of the NAO had 25 freedoms of
movement, three touch sensors, and two cameras on the head
and mouth. The two cameras could not be called at the same time
for the monocular vision of NAO. In this study, an autonomous
selection task was designed for the robot controlling, in which the
robot should track the target mark selected by the BCI system.

Figure 2 shows the three NAOMarks of “turn left” (a), “turn
right” (b) and “stop” (c), which were used for robot walking in
this study. NAOMarks were the specific landmarks with specific
patterns, which could be recognized by the robot using the
vision module of ALLandMarkDetection. The landmarks could
be placed at different locations in the field of robot action.
The specific location of the different triangle fans was used to
distinguish one Naomark from the others. Depending on which
landmark was detected, the information of the robot location
could be obtained.

Figure 3 shows the experimental scene in the autonomous
selection experiment, including the spatial distribution (a) and
the experimental environment of the maze (b). The experimental
environment was a maze region surrounded by polyvinyl chloride
boards (PCB), and the ground was flat and free of debris. The
robot was controlled to walk in the maze, and the execution
commands were prompted by the SSVEP-BCI system. The NAO
robot was initially placed at the entrance of the maze and was
controlled to walk and approach the end of the maze. NAOMarks

Frontiers in Human Neuroscience | www.frontiersin.org 3 July 2022 | Volume 16 | Article 908050

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-16-908050 July 12, 2022 Time: 8:10 # 4

Zhang et al. AR-SSVEP-BCI Controlled Humanoid-Robot Maze Walking

FIGURE 2 | NAOMarks. (A) Turn left. (B) Turn right. (C) Stop.

Stop

Turn left

Turn right
Turn right

A B

FIGURE 3 | The experimental scene. (A) Spatial distribution of the maze. (B) Experimental environment.

were affixed at the corners of the maze. Three marks with
the instructions of “Turn left,” “Turn right,” and “Stop” were
employed in the robot walking experiment, as shown in Figure 2.
Marks were recognized by the tool of “LandmarkTest” which
is integrated into the internal API of NAO. In the process of
mark recognition, the parameters of the mark (e.g., the size
and deflection angle) were also obtained by “LandmarkTest.”
The angle and distance between the robot and marks were
calculated according to the deflection angle and mark size. The
robot rotated its angle until it was directly in front of the mark,
adjusted the walking pace to approach the marks, and executed
the robot commands related to the MarkID. With NAOMarks
that encapsulate the exact meaning of a robot”s actions, it has
the potential to allow robots to perform complex tasks by using
fewer control commands, eliminating the need to control specific
movements through step-by-step fine-tuning as in traditional
control methods.

System Communications
A local area network (LAN) was established to realize the
communication between the wireless amplifier, PC, NAO, and
synchronizer. The data acquisition system was developed with
MATLAB and the NAO system was developed with python, and
they both worked on the same computer. Firstly, EEGs were

processed by MATLAB, and then the processing results were sent
to Python and further transmitted to the robot instruments. In
the implementation of the robot walking task, parameters such as
the running time, transmitted data, and were recorded by Python.

Data Analysis
EEG data were firstly down-sampled 4 times (250Hz), and
then band-pass filtering was performed in the range of [1 100]
Hz. Filter Bank Canonical Correlation Analysis (FBCCA) was
adapted to realize the identification of different targets. In the
algorithm of FBCCA, filter banks were used to decompose
SSVEP into sub-band components. For each component, the
conventional CCA analysis was performed (Chen et al., 2015a).
In the implementation of FBCCA, the delay of 140ms was
considered according to the latency delay in the visual system
(Chen et al., 2015a,b).

Experimental Settings
The online experiment included the systems of AR, BCI, and
NAO. The equipment used included: AR glasses, 64-lead EEG
cap, Neuracle wireless amplifier, wireless router, synchronizer,
and Window10 laptop. All the equipment worked on the same
LAN. The AR glasses were used as a visual stimulator to evoke
EEG. The EEG cap was used to collect EEG data. The wireless
amplifier amplified and transmitted EEG data to the PC.
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FIGURE 4 | Subjects wired augmented reality equipment for the controlling of a humanoid robot.

FIGURE 5 | Augmented reality controlling perspective.

Subjects should arm the AR equipment to complete the online
experiment (Figure 4), in which the stimuli interfaces contained
6 targets, as shown in Figure 1. The brightness of the stimulation
interface was adjusted to the maximum to reduce the influence of
light in the environment.

The online experiment was divided into two parts: the
random prompt experiment and the autonomous selection
experiment, in which the robot was not involved and
involved, respectively. The time length of visual stimuli was
set to 2 s.
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The aim of the random prompt experiment was to evaluate
the performance of the proposed BCI. In the random prompt
experiment, subjects should focus on the visual stimuli interface
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FIGURE 7 | The averaged accuracies in a random prompt experiment.

in Figure 1 that presented in augmented reality, meanwhile, PC
gave the prompt sounds (“1,” “2,” “3,” “4,” “5,” “6”) randomly to
remind subjects which target to gaze. After the voice prompt,
there was a response time and last 0.5 s. At the end of the SSVEP
stimuli, there will be a reminder of “Di” sound. If the subject
made the right choice, there would be a feedback sound of “Da.”
While if the wrong choice were made, there would be no feedback
sound, and the subjects had been told the exact meaning of the
feedback sound before the experiments. Each block contained 6
trials, and each target appeared once randomly in a block. Each
trial lasted 5 s, including rest time (3 s), and stimulation time (2 s).
The random prompt experiment contained 6 blocks, thus a total
of 36 trials were involved.

The autonomous selection experiment was used to evaluate
the total system performance. In the autonomous selection
experiment, subjects controlled the NAO robot to walk in the
maze until reaching the destination, as shown in Figure 5. The
virtual interface was combined with the real environment, and
subjects did not need to constantly adjust the head to observe the
environment and interface. Subjects were required to control the
robot walking in the maze and reach the end of the maze as soon
as possible. The sound “1” was used to prompt the subjects to look
at the flashing interface. After a 2-s stimulus time, a “Di” sound
was provided to inform subjects to rest. The robot immediately
executed corresponding commands according to the recognition
result of the EEG data. After the robot completed the command,
the robot would send a command to the PC. Subsequently,
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the auditory cue for the next trial appeared. Different from the
random prompt experiment, there was no auditory feedback in
the autonomous selection experiment since the subjects were able
to directly observe the robot”s movements. In addition, they were
allowed to decide the next command independently according to
the situation of the robot walking. Therefore, by using the tools
of NAOMarks that encapsulate the exact meaning of a robot”s
actions, the robot was allowed to perform complex tasks by using
fewer control commands, eliminating the need to control specific
movements through step-by-step fine-tuning as in traditional
control methods. Each subject was required to complete a total
of 6 blocks of the experiment, and the system running time and
the detailed instructions were recorded by PC terminal.

RESULTS

Figure 6 displays the spectra diagram from a subject in the
random prompt experiment. EEG data of PO3 were firstly
averaged in the different stimuli conditions, respectively. Then,
the averaged EEG data were processed by FFT. The results
showed that in each of the conditions with different stimuli
frequencies, the spectra diagrams showed obvious amplitudes in
fundamental, first/second harmonic frequencies. For example,
for the target of “L1” with the stimuli frequency of 8Hz
(Figure 6A), the amplitudes were 0.86, 0.56, 0.39 µV for the
frequencies of 8, 16, and 24 Hz, respectively. Similar conclusions
could also be inferred from other conditions. The result of
Figure 6 shows the reliability of stimulation and indicated that
the tool of AR could be used as an effective stimulus for the
application of brain–computer interface.

Figure 7 shows the results of the random prompt experiment
for all the 12 subjects. Excellent performance has been achieved,

and the average accuracy of the 12 subjects was 98.15 ± 2.07%.
Specifically, six subjects achieved an accuracy of 100% among the
12 subjects, and no subject achieved an accuracy lower than 90%.

Figure 8 shows the results of the autonomous selection
experiment. The system execution time contained the time of
the BCI system and the execution time of the robot in the maze
walking task. The time of the BCI system included the visual
stimuli time (2 s) and rest time (3 s). The average execution
time was 158.6 ± 5.9 s and the average number of instructions
was 6.0 ± 0.79. The execution time in some blocks was larger
than that of others. The time of some blocks was longer in some
blocks. If the target selection was wrong, subjects need to re-select
the flashing target to complete the remaining tasks, resulting
in the average controlling time was longer and the number of
instructions being larger than in the favorable situation. The
feasibility of the system was verified by the online experiment,
which indicated that all the 12 subjects could control the robot to
complete the maze walking task with an average of 6 instructions.

DISCUSSION

This study combined brain–computer interface with robot
intelligence, and verified the feasibility of BCI-based robot
control in performing complex tasks. BCI has been shown to
enable excellent control of robotic devices by using non-SSVEP
methods (Meng et al., 2016; Edelman et al., 2019; Pulferer et al.,
2022), while SSVEP-BCI method is considered to have a better
potential for controlling robotics due to its high information
transfer rate, good signal-to-noise ratio, easy quantification, and
less user training (Ng and Goh, 2020; Li and Kesavadas, 2021).
In this study, we designed an online experiment in which the
SSVEP-BCI system and humanoid robot were combined for the
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robot walking task in the maze. We attempted to apply the
technology of brain–computer interface to robot control, and
the results verified the feasibility of BCI for auxiliary equipment
control. In fact, as done in this article, it is of great significance
to carry out the application research of robot control based
on brain–computer interface, which may help disabled patients
use assistive equipment, and further promote the practicality of
brain–computer interfaces and the advancement of robotics.

This study further improved the visual stimulator of the brain–
computer interface and verified the feasibility of AR stimulation
in robot control tasks. Of the many factors that restricted the
progresses of brain–computer interfaces, the non-portability of
the stimulator was one typical factor that limited the practical
applications of BCI. To deal with the above restrictions and
further promote the application of brain–computer interfaces,
this study introduced the AR technology to optimize the visual
stimuli mode, which provided convenience for the control of
robot walking tasks. The results indicated that all subjects were
able to use the AR-SSVEP-NAO stem to complete the complex
robot walking task in the maze and verified the feasibility of the
combination of AR technology and BCI.

In this study, a brain–computer interface control robot
system was constructed based on human–machine shared
control technology. Combining the characteristics of human
and machine intelligence, it had obvious advantages compared
to the direct control of the brain–computer interface control
technology. On the one hand, the human–machine shared
control system constructed in this study combined the advantages
of human-level planning and machine-level fine control, and
achieved good control effects. On the other hand, in the shared
control constructed in this study, machine intelligence could
perceive the surrounding environment, reducing the workload
of the user continuously sending instructions to drive the
machine equipment.

The contribution of this research was not only reflected in
the improvement of the portability of BCI but more importantly,
this research realized the robot control based on shared-control
mode, that was to complete the more complex robot motion
control based on less control instructions. Besides the portability
of augmented reality-based visual stimuli, another feature of this
study was the use of only a small number of stimulus targets
to achieve complex robotic motion control. With the landmark
tracking method of robot vision, the robot could be controlled
to detect and track specific landmarks by using only one BCI
command, instead of using specific robot motion commands
(such as forward, backward, and rotation) to operate the robot
step by step. This study enabled robots to perform complex
tasks with fewer control commands by using NAOMarks that
encapsulated the exact meaning of robot actions, without the
need for detailed control of all tedious actions to accomplish
specific complex tasks as in traditional control methods. The
results of this study were expected to provide new ideas for
improving the efficiency of peripheral control based on brain–
computer interface.

Although good results have been achieved, the study could
further be improved in the following points: First, the advantage
of a robot could be further improved. In this study, the monocular

vision was adopted for marks recognition, and it could be further
improved as a binocular vision in which the three-dimensional
coordinates of the object could be obtained so as to achieve
better results of recognition. Second, the capability of AR could
be improved. AR equipment could be improved not only in the
anti-interference capability but also in the perspective. Third, the
portability of the equipment could be optimized so as to further
improve the users’ experiences. Fourth, the maze designed in this
study was a relatively simple one, and we would further increase
the complexity of robot tasks in future studies so as to further
highlight the superiority of the NAOMarks-based tool. Fifth, the
comparative analysis of AR and traditional stimulation methods
could be involved in the future studies to better highlight and
explain the advantages of AR-based robotic control, and the
spatial distribution of the stimulus targets might also be further
optimized (Kian et al., 2011). Last, supervised methods could be
adopted to further improve the decoding performance.

CONCLUSION

This study attempted to explore the applications of brain–
computer interface in the field of robot control. To eliminate the
inconvenience of traditional visual stimulators in which subjects
received visual stimuli from a fixed stimulator such as an LCD
screen, this study employed augmented reality technology to
display the visual stimuli of SSVEP-BCI. The robot walking task
in the maze was designed to verify the applicability of the AR-
BCI system. Human intentions were decoded by the BCI system
and were converted into robot control commands. Results of
the online experiment showed that all the 12 subjects could
control the robot to complete the robot walking task. This study
verified the reliability of the SSVEP-NAO system and indicated
the feasibility of the AR-SSVEP-NAO system in the robot walking
tasks in the maze.
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