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Abstract
The blood serum lipid profile of women with Gestational DiabetesMellitus (GDM) is still

under study. There are no data on the serum lipid profile of GDM patients with more severe

(insulin treated) compared to milder forms (diet treated) GDM. The aim of our study was to

analyze the blood serum lipid profile of patients with milder versus more severe forms of

GDM and to compare these findings with those of healthy pregnant women. This cross-sec-

tional analytical study included 30 insulin-treated GDM, 30 diet-only GDM and 30 healthy

pregnant women. Serum lipid was extracted from the 90 participants and their lipid profiles

were analyzed by lipid fingerprinting using liquid-chromatography-mass spectrometry. A

total of 143 parent ions were differentially represented in each of the three groups, belong-

ing to the following classes: Glycerophospholipids, Sterol Lipids, Sphingolipids, Prenol Lip-

ids, Fatty Acyls and Glycerolipids. There were significant differences in the lipid profiles of

healthy pregnant women compared to GDM patients and also between milder versus more

severe forms of GDM. There are marked differences in lipid fingerprinting between healthy

pregnant women compared to those with GDM in the third trimester. Moreover, the lipid pro-

file of women with more severe forms of GDM differs considerably from that of women with

milder forms of GDM. These findings may be useful to help clarify the pathogenesis of

milder and more severe forms of GDM.

Introduction
Gestational DiabetesMellitus (GDM) is the most frequent metabolic disorder of pregnancy,
affecting between 1–14% of all women [1]. The prevalence of GDM is expected to increase sub-
stantially over the next years with the adoption of new diagnostic criteria recommended by the
International Association of Diabetes and Pregnancy Study Groups (IADPSG) and also due to
the increasing prevalence of obesity among reproductive age women [2, 3].
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The complications associated with GDM can be reduced with adequate glycemic control
[4]. While most women with GDM will achieve adequate glycemic control with diet and exer-
cise, a proportion of them will require antenatal insulin treatment (AIT) [5]. The need for insu-
lin characterizes patients with a more severe form of GDM, who will have an increased
probability of developing type 2 DiabetesMellitus (T2DM) and cardiovascular complications
in the future [6, 7]. These two forms of GDM seem to reflect different degrees of beta cell dys-
function or different pathophysiological mechanisms [8].

During pregnancy, insulin resistance (IR) and hyperlipidemia are important physiological
processes that are essential to ensure adequate fetal nutrition. In the third trimester of preg-
nancy, healthy women have major changes in their lipid metabolism that lead to increased
plasma triacylglycerol levels and, to a lesser extent, to higher phospholipid and cholesterol lev-
els [9].

Besides acting as a form of energy storage, lipids are an important component of mem-
branes and have many other key functions including their role in signaling pathways and the
regulation of other molecules. Imbalances in lipid signaling pathways are associated with
inflammation progression, autoimmunity and several systemic diseases, such as the metabolic
syndrome, atherosclerosis and hypertension [10].

High triglycerides plasma levels are associated with IR/T2DM but this increase is influenced
by glycemic levels. Patients with well-controlled T2DM have triglyceride levels similar to
healthy controls [11]. In contrast, patients with T2DM, even with adequate metabolic control,
have lower HDL cholesterol, free cholesterol levels and phospholipids on the HDL surface [12].

There are conflicting results regarding hyperlipidemia in GDM. While some investigators
report significantly higher lipid levels in all trimesters in GDM patients compared to healthy
pregnant women, others refute these findings [9, 13]. Herrera and Ortega-Senovilla (2010)
highlighted these controversies in their review of studies on the lipid profile of GDM patients
[9].

With the advent of new methods, it is now possible to perform more sensitive and specific
lipid analyses in extracts of cells and tissues. Lipid fingerprinting is useful because it allows the
identification of a lipid profile that could be associated with a specific disease. Liquid chroma-
tography (LC) coupled with electrospray ionization (ESI)-quadrapole time of flight hybrid
mass spectrometer (QTOF-MS) allows the identification of complex molecular species [14]. It
is well documented that ESI/MS is very useful and efficient for the study of lipids in many dis-
eases. Moreover, this technique allows a direct analysis of the lipid profile of chloroform
extracts [15]. Previous investigations in T2DM suggest that this technique is able to detect dys-
lipidemia associated with that condition [16, 17].

There is evidence indicating that glycemic control affects lipid concentrations. Giuffrida
et al. (2012) reported an association between HbA1c levels and changes in lipid profile in
patients with type 1 DiabetesMellitus (T1DM) [18]. In contrast, Karkkainen et al. (2013) did
not detect significant differences in cholesterol, LDL, HDL and triglyceride levels in samples
from third trimester patients with GDM treated with diet or insulin when compared with
healthy pregnant women. However, there were significant differences between the groups after
delivery [19].

The search for markers that could predict which women will develop the more severe form
of GDM has been the focus of several studies [20–22]. This quest is based on the premise that it
would be useful to predict which women will develop more severe forms of the disease in order
to improve efficiency of health care delivery in GDM and thus optimize maternal and perinatal
outcomes in these cases. However, until now, there are no tools that can help to predict this
risk and this may in part be due to the lack of studies on possible differences in the physiopa-
thology of milder versus more severe forms of GDM. The aim of our study was to use a lipid
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fingerprinting approach to analyze the blood serum lipid profile of patients with GDM treated
with diet or with insulin, in comparison with healthy pregnant women. To the best of our
knowledge, up to the moment, this approach has not been used for lipid analyses in patients
with GDM. We hope that our findings will contribute to the understanding of GDM physiopa-
thology and to the future development of new tools for the early prediction of which women
will develop more severe forms of the disease.

Materials and Methods
This cross-sectional analytical study recruited women in the antenatal clinics of two public ter-
tiary teaching facilities in Sao Paulo, Brazil (Dr. Mario de Moraes Altenfelder Silva maternity
and Sao Paulo hospital). The study was approved by Ethics in Research Committee of Univer-
sidade Federal de São Paulo/Hospital São Paulo (#0704/11) and Ethics in Research Committee
of Dr. Mario de Moraes Altenfelder Silva Maternity (#02/12) and written informed consent
was obtained from all participants.

The inclusion criteria were singleton pregnancy with a live fetus and gestational age between
30 to 36 6/7 weeks, based on obstetric sonogram performed before the 20th week of pregnancy.
Women with any of the following were excluded: pre-existing DiabetesMellitus (type 1 or type
2); chronic systemic autoimmune pre-existing diseases; acute or chronic active infections; solid
organ transplant recipients and women using steroids, antibiotics, immunosuppressants, anti-
histamines or anti-inflammatory medication. Women with obstetric disorders (including but
not limited to pre-eclampsia, premature rupture of membranes, preterm labor or placenta pre-
via) were also excluded.

Participants were divided into three groups: healthy pregnant women (controls, n = 30),
women diagnosed with GDM adequately controlled with diet (diet-treated GDM, n = 30) and
women with GDM that required antenatal insulin treatment (AIT) to control glycemic levels
(AIT-GDM, n = 30). All participants had been tested for GDM at 24–28 weeks through a
2-hours, 75g oral glucose tolerance test, as part of their routine antenatal care in the two set-
tings. Women were diagnosed with GDM according to the IADPSG recommendations, i.e.
fasting glucose between 92 and< 126 mg/dL and/or 1-hr post 75 g load� 180 mg/dL and/or
2-hr post 75 g load between 153–199 mg/dL [2]. Pre-pregnancy body mass index (BMI) was
calculated based on measured height and self-reported pre-pregnancy weight. Race was self-
reported.

Upon enrolment, 8 mL of peripheral blood was collected from each participant, regardless
of diet, in tubes containing spray-coated silica and a polymer gel (SST) for serum separation
(BD Diagnostics). After clot retraction, the sample was centrifuged at 2,205 xg for 10 minutes
at room temperature to obtain serum sample, which was immediately frozen at -80°C.

Lipid extraction
Lipid extraction was performed according to the Bligh and Dyer protocol [23] with some mod-
ifications. Briefly, 50 μL of distilled water (HPLC grade- Sigma-Aldrich, St. Louis, MO, USA)
was added to 50 μL of serum. Then, 127 μL of chloroform (HPLC grade- Merck, Darmstadt,
Germany) and 252 μL of methanol (HPLC grade- Sigma-Aldrich) were added. After homoge-
nization by vortexing, 100 μL of water and 127 μl of chloroform were added for polar and apo-
lar phases separation. The mixture was centrifuged at 800 xg for 5 minutes at room
temperature and 200 μL of the lower layer containing lipids were transferred to another
LC-MS glass tube (Waters, Milford, MA, USA). After drying the entire liquid content, the sam-
ples were stored at -80°C until analysis.
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ESI-(+)-MS analyses
Each sample was analyzed in triplicate. For analysis, the samples were suspended in 100 μL of a
1:1 methanol:water solution and then filtered using a 0.22 μm filter (Merck Millipore Corpora-
tion, Billerica, MA, USA). Analyses were performed on a hybrid high-resolution mass spec-
trometer Q-TOF Ultima Waters (Manchester, England) with Electrospray as the ionization
source, in positive mode. The analysis conditions were: source temperature of 150°C, desolva-
tion temperature of 450°C, capillary voltage of 3 kV and cone voltage equal to 35 V. The nitro-
gen flow in the cone was 50 L.h-1 and of desolvation was 550 L.h-1. The m/z range acquired was
between 500–1200. The equipment was calibrated with a 5 mM sodium formate solution.
Chromatography was performed with an Acquity chromatograph (Waters, Manchester,
England) with a reverse phase column (Acquity HSS UPLC 1.8 μm, 2.1 x 100 mm) conditioned
to 35°C. The flow rate was 0.5 mL.min-1. The elution buffers were A: acetonitrile doped with
0.1% formic acid and B: water with 0.1% formic acid.

Data analysis
MassLynx 4.1 software (Waters, Manchester, UK) was used for the preprocessing of mass spec-
tra obtained by ESI-MS. Each sample spectrum was processed for background removal and
smoothing and for peaks centroiding.

The intensity values were normalized by cubic Pareto scaling and scaling transformation.
Statistical analysis was performed using MetaboAnalyst 2.0 software (http://www.
metaboanalyst.ca). Univariate (One-way ANOVA) and multivariate (principal component
analysis [PCA] and discriminant analysis by partial least squares [PLS-DA]) analyses work-
flows were applied to the data set. An alpha error of 5% was adopted.

The PLS-DAmodels were built and the variable importance in the projection (VIP) was used
to identify the ions that had greater discriminatory effect between the groups in the component
with higher power projection. Considering the masses of the differentially expressed ions, the lip-
ids were identified with the aid of SimLipid 3.0 software (PREMIER Biosoft, Palo Alto, CA,
USA), with a maximum acceptable error of 50ppm, positive polarity (M+H, M+Na andM+K)
and selecting only the following categories: Glycerophospholipids (GP), Sphingolipids (SP), Fatty
Acyls (FA), Glycerolipids (GL), Sterol Lipids (ST) and Prenol Lipids (PR). Moreover, the criteria
for the selection of the best lipid category of each ion were: between H+ and Na+ polarity, we
chose the one with the lowest mass error; the K+ polarity was chosen only in cases where there
were no H+ or Na+ polarity ions, and in these cases, the one with the lowest mass error.

The chi-square test was used to compare categorical variables. The Kolmogorov–Smirnov
or Shapiro–Wilk tests and Skewness and Kurtosis values were used to assess the distribution of
continuous numerical variables. For analysis of variance between groups, the one-way
ANOVA test was used, followed by a Tukey post-hoc test. All tests were considered significant
at p<0.05. Statistical analyses were performed with standard software (GraphPad Prism 5 for
Windows).

Results
Table 1 presents the main characteristics of the 90 participants. Healthy controls were signifi-
cantly younger than diet-treated GDM patients (p<0.01) and patients with AIT-GDM
(p<0.0001). Controls were also significantly leaner than GDM patients (p<0.0001).

The representative spectra of each group are shown in Fig 1A. One-way ANOVA analysis
revealed 143 statistical significant ions, of which 93 were identified (Table 2). Of these, 4 were
Fatty Acyls (FA), 1 Glycerolipid (GL), 63 Glycerophopholipids (GP), 5 Prenol Lipids (PR),
5 Sphingolipids (SL) and 15 Sterol Lipids (ST). Tukey’s HSD post-hoc test detected differences
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among the groups, but it was not possible to identify in which group the representation of each
ion was higher or lower. A total of 14 ions (1 FA, 1 GL, 11 GP and 1 ST) characterized the diet-
treated GDM group (diet-treated GDM x control). A total of 18 ions (10 GP, 2 PR, 2 SP and 4
SL) were differentially represented in the AIT-GDM group. There were 7 ions (5 GP and 2 ST)
differentially represented in the two forms of GDM (diet-treated GDM versus AIT-GDM).

Twenty-three ions (1 FA, 17 GP, 1 PR, 2 SP and 2 ST) were characteristic of GDM, indepen-
dent of treatment mode (diet-treated GDM x control and AIT-GDM x control). There were 7
ions (1 FA, 4 GP, 1 PR and 1 ST) specific to the diet-treated GDM group (diet-treated GDM x
control and diet-treated GDM x AIT-GDM). On the other hand, 18 ions (1 FA, 11 GP, 1 SP
and 5 ST) were differentially represented in the AIT-GDM group (AIT-GDM x control and
AIT-GDM x diet-treated GDM). Finally, three ions classified as GP were differentially repre-
sented between the three groups. The ANOVA test detected a significant difference in three
ions (2 GP and 1 PR) that was not confirmed by the post-hoc test (Table 2).

PCA analysis identified that the five first principal components (PC’s) explained 90.4% of
the data model variance. Separation between the three groups was achieved by PLS-DA (Fig
1B). The sixteen most important ions for the discrimination of the groups were selected using
the first 3 components (Fig 1C).

Only 11 ions of identified VIPs were classified: 9 GP and 2 ST (Table 3).

Discussion
We detected clear differences in the serum lipid profile of healthy pregnant women compared
to GDM patients and between milder (diet-treated) compared to more severe (AIT) forms of
GDM.

Table 1. Main characteristics of 90 pregnant women.

Variable Controls N = 30 Diet-treated GDM N = 30 Insulin-treated GDM N = 30 p

Race

White 10 (33%) 13 (43%) 12 (40%)

Mixed 16 (53%) 14 (47%) 12 (40%) 0.73a

Black 4 (14%) 3 (10%) 6 (20%)

Age (years)

Mean 27.2 32.9c 33.0d <0.0001b

SD 5.2 6.1 5.2

Pre-pregnancy BMI (Kg/m2)

Mean 23.9 28.2d 30.9d <0.0001b

SD 5.6 4.9 5.7

Parity

nulliparous 9 (30%) 9 (30%) 6 (20%) 0.60a

multiparous 21 (70%) 21 (70%) 24 (80%)

GA at collection (weeks)

Mean 32.9 33.2 32.9 0.76b

SD 1.9 1.9 1.9

GDM: Gestational Diabetes Mellitus, SD: Standard deviation, BMI: Body Mass Index, GA: Gestational age
aChi-square test
bOne-way ANOVA test
cp<0.01 versus Control
dp<0.0001 versus Control

doi:10.1371/journal.pone.0144027.t001
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The physiological dyslipidemia that occurs in normal pregnancy is apparently more intense
in women with GDM, despite some controversies. Increased hyperlipidemia could be caused
by a combination of IR associated with hormonal changes, such as decreased progesterone,
prolactin and estradiol [9, 13].

To the best of our knowledge, this is the first study to evaluate the lipid fingerprint of GDM
patients. A few studies have used this tool to assess the mechanisms involved in normal preg-
nancy and its complications. Durn et al. (2010) analyzed the myometrial prostanoid profile of
women in labor and not in labor at term [24]. Other investigators reported significant differ-
ences in the lipid profile of syncytiotrophoblasts from placentas of women with preeclampsia
and with recurrent abortion compared with healthy controls [25]. de Oliveira et al. (2012) iden-
tified lipid compounds in blood plasma from women with preeclampsia that could be associ-
ated with the disease [26]. This approach has also been used to investigate the role of lipids in
DiabetesMellitus. Recent studies with T2DM suggest that this approach is useful to character-
ize lipid changes in peripheral blood associated with the disease [16, 17].

Fig 1. Serum lipid profile of healthy pregnant women and women with milder andmore severe forms of GDM. (A) ESI-MS characteristic spectra of
healthy controls, diet-treated GDM and insulin- treated groups. (B) 3D score plot between the selected principal components. (C) Important features identified
by PLS-DA. The colored boxes on the right indicate the relative concentrations of the corresponding metabolite in each group under study. Group 0 = Control;
Group 1 = Diet-treated GDM; Group 2 = Insulin-treated GDM.

doi:10.1371/journal.pone.0144027.g001

Lipid Fingerprinting in Gestational DiabetesMellitus

PLOSONE | DOI:10.1371/journal.pone.0144027 December 3, 2015 6 / 13



Table 2. Identified ions revealed by One-way ANOVA, sorting by Tukey’s HSD post-hoc test.

Mass (m/z) Category Formula p value Tukey's HSD

599.5127 Fatty Acyls C38H72O2 0.023161 1–0

603.5169 Glycerolipids C37H72O4 0.048001 1–0

533.2781 Glycerophospholipids C24H47O9P 0.028454 1–0

662.3447 Glycerophospholipids C30H58NO10P 0.0024812 1–0

689.5498 Glycerophospholipids C39H77O7P 0.031083 1–0

718.5735 Glycerophospholipids C40H80NO7P 0.042917 1–0

721.3664 Glycerophospholipids C33H63O13P 0.044215 1–0

749.5307 Glycerophospholipids C40H77O10P 0.015158 1–0

756.6054 Glycerophospholipids C43H82NO7P 0.023612 1–0

794.6333 Glycerophospholipids C46H84NO7P 0.035427 1–0

850.6029 Glycerophospholipids C48H84NO9P 0.019524 1–0

981.4979 Glycerophospholipids C53H83O13P 0.036555 1–0

1003.5222 Glycerophospholipids C53H89O13P 0.031282 1–0

713.3889 Sterol Lipids C36H56O14 0.033264 1–0

506.2777 Glycerophospholipids C22H46NO8P 0.0017259 2–0

544.3917 Glycerophospholipids C27H56NO6P 0.0094764 2–0

586.3184 Glycerophospholipids C28H54NO7P 0.0018382 2–0

606.3403 Glycerophospholipids C27H54NO9P 0.023815 2–0

632.4543 Glycerophospholipids C33H62NO8P 0.0043383 2–0

660.386 Glycerophospholipids C31H60NO10P 0.00017847 2–0

675.53 Glycerophospholipids C38H75O7P 0.00064645 2–0

812.6175 Glycerophospholipids C46H86NO8P 0.04182 2–0

844.5894 Glycerophospholipids C49H82NO8P 0.003992 2–0

884.5675 Glycerophospholipids C50H78NO10P 0.02529 2–0

531.3707 Prenol Lipids C32H50O6 0.0038973 2–0

943.478 Prenol Lipids C52H72O14 0.02148 2–0

824.5521 Sphingolipids C42H81NO12S 0.028795 2–0

991.6659 Sphingolipids C51H94N2O16 0.0063787 2–0

507.3635 Sterol Lipids C31H48O4 0.0094738 2–0

558.3406 Sterol Lipids C29H51NO7S 0.0073947 2–0

933.4854 Sterol Lipids C46H76O19 0.0040151 2–0

1047.6096 Sterol Lipids C52H86O21 0.0015661 2–0

585.3006 Glycerophospholipids C26H49O12P 0.0036497 2–1

619.3145 Glycerophospholipids C29H47O12P 0.015053 2–1

661.4505 Glycerophospholipids C36H69O8P 0.034327 2–1

842.4538 Glycerophospholipids C45H74NO10P 0.027476 2–1

961.5004 Glycerophospholipids C50H83O13P 0.018855 2–1

595.3661 Sterol Lipids C34H52O7 0.0014459 2–1

763.3888 Sterol Lipids C39H64O13 0.037829 2–1

527.2826 Fatty Acyls C23H42O13 2.24E-05 1–0; 2–0

518.3728 Glycerophospholipids C25H54NO6P 0.0012904 1–0; 2–0

528.2808 Glycerophospholipids C25H48NO7P 0.011041 1–0; 2–0

532.2779 Glycerophospholipids C23H44NO9P 0.0015486 1–0; 2–0

685.474 Glycerophospholipids C36H71O8P 0.00066563 1–0; 2–0

701.5422 Glycerophospholipids C40H77O7P 2.70E-05 1–0; 2–0

703.5581 Glycerophospholipids C40H79O7P 0.0022506 1–0; 2–0

708.5282 Glycerophospholipids C37H74NO9P 0.0047033 1–0; 2–0

(Continued)
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Table 2. (Continued)

Mass (m/z) Category Formula p value Tukey's HSD

720.4177 Glycerophospholipids C35H69O8PS 0.021746 1–0; 2–0

746.4401 Glycerophospholipids C40H70NO8P 0.0081335 1–0; 2–0

758.6159 Glycerophospholipids C43H84NO7P 0.00053932 1–0; 2–0

765.5005 Glycerophospholipids C39H73O12P 3.41E-14 1–0; 2–0

772.4843 Glycerophospholipids C42H72NO8P 2.96E-08 1–0; 2–0

806.6279 Glycerophospholipids C44H88NO9P 7.35E-05 1–0; 2–0

828.6145 Glycerophospholipids C46H86NO9P 0.00010221 1–0; 2–0

900.5578 Glycerophospholipids C52H80NO8P 1.52E-05 1–0; 2–0

975.5241 Glycerophospholipids C46H82O16P2 1.97E-19 1–0; 2–0

976.5331 Glycerophospholipids C44H81N3O15P2 1.40E-12 1–0; 2–0

601.5148 Prenol Lipids C42H64O2 0.00023122 1–0; 2–0

944.5478 Sphingolipids C48H91NO12S 0.0010416 1–0; 2–0

1112.6483 Sphingolipids C55H101NO21 0.00011821 1–0; 2–0

555.2986 Sterol Lipids C27H48O8S 1.77E-06 1–0; 2–0

573.3884 Sterol Lipids C34H52O7 0.0036142 1–0; 2–0

588.3636 Glycerophospholipids C28H56NO8P 1.13E-07 1–0; 2–0; 2–1

614.3744 Glycerophospholipids C30H58NO8P 2.81E-08 1–0; 2–0; 2–1

898.5402 Glycerophospholipids C50H86NO8P 6.10E-08 1–0; 2–0; 2–1

575.5295 Fatty Acyls C36H72O3 0.0056344 1–0; 2–1

608.4196 Glycerophospholipids C31H62NO8P 0.0035127 1–0; 2–1

639.3997 Glycerophospholipids C33H61O8P 0.00010065 1–0; 2–1

694.4318 Glycerophospholipids C36H66NO8P 0.00036177 1–0; 2–1

744.6102 Glycerophospholipids C42H82NO7P 8.67E-05 1–0; 2–1

653.3326 Prenol Lipids C39H50O7 0.0065297 1–0; 2–1

529.312 Sterol Lipids C29H46O7 7.95E-05 1–0; 2–1

515.2811 Fatty Acyl C25H42N2O7S 0.001328 2–0; 2–1

530.3062 Glycerophospholipids C25H50NO7P 0.00032057 2–0; 2–1

568.3717 Glycerophospholipids C27H54NO9P 2.06E-06 2–0; 2–1

578.2951 Glycerophospholipids C25H50NO9P 0.0012762 2–0; 2–1

672.4383 Glycerophospholipids C34H68NO8P 0.00032939 2–0; 2–1

739.4805 Glycerophospholipids C37H71O12P 0.00036796 2–0; 2–1

820.4806 Glycerophospholipids C43H76NO10P 0.0011045 2–0; 2–1

872.5091 Glycerophospholipids C47H80NO10P 7.66E-05 2–0; 2–1

896.4743 Glycerophospholipids C48H76NO10P 0.002795 2–0; 2–1

899.4582 Glycerophospholipids C47H73O13P 0.000357 2–0; 2–1

1006.5383 Glycerophospholipids C48H85N3O15P2 0.00010404 2–0; 2–1

1028.5152 Glycerophospholipids C48H85N3O15P2 0.014492 2–0; 2–1

508.449 Sphingolipids C32H61NO3 0.0088719 2–0; 2–1

514.2695 Sterol Lipids C26H42NO7S 1.02E-06 2–0; 2–1

516.2946 Sterol Lipids C26H45NO7S 9.04E-07 2–0; 2–1

541.2933 Sterol Lipids C27H38F6O4 0.00017966 2–0; 2–1

741.4259 Sterol Lipids C39H64O13 0.0030906 2–0; 2–1

819.4219 Sterol Lipids C41H64O15 0.0070071 2–0; 2–1

580.302 Glycerophospholipids C28H48NO8P 0.037836

673.4076 Glycerophospholipids C33H63O10P 0.047301

623.5099 Prenol Lipids C42H64O2 0.040101

Group 0 = Control; Group 1 = Diet-treated GDM; Group 2 = Insulin-treated GDM.

doi:10.1371/journal.pone.0144027.t002
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Kaur et al. (2013) evaluated both the lipid and metabolic profiles of 69 patients with T2DM
compared with 41 healthy individuals and reported hyper and hypo-represented lipids in the
plasma of the diabetics, mostly glycerophospholipids (phosphatidylcholine, phosphatidylgly-
cerol and phosphatidylethanolamine) and sphingolipids. The authors also reported that T2DM
affects molecules involved in carbohydrate, amino acids and lipid metabolism [16].

Lipid profiling seems to bring more relevant information than gene expression analysis per
se. Zhao et al. (2013) analyzed lipid profiles and gene expression in 84 T2DM and 60 healthy
controls. While gene expression evaluations alone revealed no significant differences between
patients, lipid profile analyses detected different characteristic features in each group. Lipid
profiling can also contribute to the interpretation of gene expression results allowing the identi-
fication of biological pathways and suspected genes involved in insulin resistance [17].

Merzouk et al. (2000) reported altered lipid profiles in poorly controlled pregnant T1DM
patients [27]. Changes in lipids in early pregnancy may be related with higher risks of IR and
hyperglycemia later in gestation. On the other hand, GDM patients that require insulin therapy
to achieve glycemic control have more severe clinical manifestations of the disease and higher
risks for metabolic disorders after pregnancy [5, 6, 28].

Based on the lipid extraction protocol and ESI-(+)-MS method used in this study, we
expected to find a considerable number of ions classified as Glycerophospholipids. Saccharoli-
pids, Polyketides and Carnitine classes in SimLipid search were not included due the character-
istics of the protocol. It was possible to identify ions in several lipid classes. Our approach did
not allow the identification of the specific lipid that corresponds to each ion, but we were able
to identify the lipid classes.

Most of the ions (63) belonged to the GP class. The most common GP in mammalian cell
membrane are glycerophosphatidic acids, glycerophosphocholines, glycerophosphoethanola-
mines, glycerophosphoinositols, glycerophosphoglycerols, glycerophosphoserines, and cardio-
lipins [29]. GPs, key components of the cell membrane, are involved in several mechanisms
including anti-inflammatory and immunomodulatory activities [30]. GPs also seem to have
beneficial effects in the treatment of dyslipidemias, but it is still unclear which specific mecha-
nisms and subclasses are involved in this process [31, 32].

Table 3. Identified VIPs ions.

Mass (m/z) Category Formula

772.4843 Glycerophospholipids C42H72NO8P

670.3127 Not identified

970.5638 Not identified

975.5241 Glycerophospholipids C46H82O16P2

765.5005 Glycerophospholipids C39H73O12P

976.5331 Glycerophospholipids C44H81N3O15P2

614.3744 Glycerophospholipids C30H58NO8P

1020.6047 Not identified

898.5402 Glycerophospholipids C50H86NO8P

555.2986 Sterol Lipids C27H48O8S

962.5483 Not identified

516.2946 Sterol Lipids C26H45NO7S

872.5091 Glycerophospholipids C47H80NO10P

660.386 Glycerophospholipids C31H60NO10P

1098.6425 Not identified

820.4806 Glycerophospholipids C43H76NO10P

doi:10.1371/journal.pone.0144027.t003
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Sterol Lipids were the second class most frequently observed in this study (15 ions). They
are important constituents of the cell membrane, involved in cell growth and proliferation and
are precursors of bile acids and steroid hormones [33]. Cholesterol is considered the major ele-
ment of this class.

We also identified five ions in the Sphingolipids and Prenol Lipids. Sphingolipids are
involved in the cascade of intracellular signaling and in cell recognition. Derivatives of glycosy-
lated sphingolipid, called glycosphingolipids, are the class of more complex and structurally
diverse SP, but there are other subclasses, such as sphingoid bases, ceramides and others [29,
34]. Some lipids of this class have currently been associated with glucose metabolism and insu-
lin resistance [35, 36]. Prenol Lipids are vital for cell survival and are precursors of many vita-
mins, such as vitamin A and E [29].

Our analysis also detected Fatty Acyl (4 ions) and Glycerolipid (1 íon). Fatty Acyls are
responsible for body energy and the formation of complex lipids [29]. This class of lipids is
influenced by diet and insulin can block the release of these lipids. Moreover, obesity seems to
increase free FA. Finally, Glycerolipids are involved in a large number of biochemical func-
tions, from energy reserve to serving as precursors of intracellular signaling after activation of
membrane receptors. This class of lipids is divided in subgroups, such as triacylglycerols
(TAG) and diacylglycerols (DAG) [37]. TAGs are the major source of cellular energy, serving
as a source of essential and non-essential fatty acids, as well as serving as precursors in the bio-
synthesis of phospholipids [38]. On the other hand, DAGs are intracellular messengers that
have been identified as mediators of IR [39].

Due to technical limitations, it was not possible to classify all statistically significant ions.
However, we were able to categorize most of the ions identified into a lipid classification. Nev-
ertheless, the next step should be identify and quantify the specific ions that were differently
presented in each group. We intend to perform MS/MS analysis of all VIP ions. After these
tests we should be able to identify the most important ions to screen in order to characterize
and understand the role of lipids in the physiopathology of GDM. This specific analysis is chal-
lenging because it requires a larger volume of serum, additional testing using other technical
approaches and is very expensive.

Another point to be considered is that we did not collect fasting blood samples. This, in the-
ory, could have affected our results. However, all samples were collected in the afternoon,
within the first 2 hours after lunch thus reducing the possible heterogeneity related to this
aspect. Moreover, all the patients with GDM were following exactly the same type of diet and
therefore the caloric intake and composition of that meal was probably very similar.

Despite these limitations, this study was the first to use the lipid fingerprinting approach in
women with GDM, supporting the relevant role of lipid profile in the pathogenesis of this
disease.

There are marked differences in lipid fingerprinting between healthy pregnant women com-
pared to those with GDM in the third trimester. Moreover, the lipid profile of women with
more severe forms of GDM differs considerably from that of women with milder forms of
GDM.

Historically, to optimize maternal and perinatal outcomes, obese and high risk pregnant
women are counselled to follow healthy diets with controlled caloric intake and to exercise.
However, the effects of these recommendations on metabolic (glycemic and lipid) parameters
are still controversial. While some investigators reported significant changes in the lipid profile
of women on low carbohydrate diets [40–42] and receiving insulin therapy [43, 44], other stud-
ies, including a systematic review, did not find a significant effect of these interventions on
lipid metabolism [19, 45–47]. Thus, although it is possible that part of the differences in the
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lipid profiles of our groups could be due to the treatment itself, this hypothesis is not currently
supported by evidence.

This study identified some lipids that should be further investigated to clarify the pathogen-
esis of GDM. Our results indicate that a lipid fingerprinting approach could be further devel-
oped and tested in the future as a potential new tool to help predict the risk of developing more
severe forms of GDM.
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