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Biomass feedstocks are promising candidates of renewable clean energy. The
development and utilization of biological energy is in line with the concept of
sustainable development and circular economy. As an important platform chemical, γ-
valerolactone (GVL) is often used as green solvent and biofuel additive. Regarding this, the
efficient synthesis of GVL from biomass derivative furfural (FF) has attracted wide attention
recently, However, suitable catalyst with appropriate acid-base sites is required due to the
complex reaction progress. In this Mini Review, the research progress of catalytic
synthesis of GVL from furfural by Zr/Hf-based catalysts was reviewed. The different
effects of Lewis acid-base and Brønsted acid sites in the catalysts on each steps in
the reaction process were discussed firstly. Then the effects of regulation of acid-base
sites in the catalysts was also studied. Finally, the advantages and challenges of Zr/Hf-
based catalysts in FF converted to GVL system were proposed.
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INTRODUCTION

Although the exploration and utilization of fossil energy promote the development of human society,
it also causes nonnegligible harm to the environment, which makes people focus on available energy
to reduce dependence on fossil energy (Roman-Leshkov et al., 2007; Luterbacher et al., 2014; Zhang
et al., 2019). Biomass, as the only renewable organic carbon source, has received extensive attention
due to its abundance, cheapness, and availability (Li et al., 2014; Zhao et al., 2019; Li H. et al., 2020). A
variety of valuable compounds (e.g., xylose, furfural, furfuryl alcohol, levulinic acid and its esters, and
γ-valerolactone) can be obtained from biomass (Liu et al., 2015; Li F. et al., 2017; Li H. et al., 2017;
Lingaiah, 2018; Li et al., 2019a; Luo et al., 2019). Among them, γ-valerolactone (GVL) has excellent
physical and chemical properties such as high boiling point (207°C), low melting point (31°C), and
low toxicity (LD50 = 8,800 mg/kg). It can be used as a green organic solvent in a variety of reactions,
and has broad application prospects in the organic synthesis, biorefinery, and food industry (Yan
et al., 2015; Ye et al., 2020b). In addition, GVL can be further converted into various valerate esters
(these have been identified as new generation biofuels), which can be used to synthesize various
biomass-based liquid fuels (Yu et al., 2019).

In recent years, the related research on the synthesis of GVL mainly focuses on the direct
hydrogenation or catalytic transfer hydrogenation (CTH)with levulinic acid and its esters as
substrates. Both noble metal (Ru, Rh, Pt, Pd, Au) catalysts and non-precious metal (Ni, Cu, Co.)
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catalystshave been used for the hydrogenation of LA to GVL
(Yuan et al., 2013; Luo et al., 2014; Molleti et al., 2018). Obregon
et al. studied the liquid phase hydrogenation of LA on Ni/Al2O3,
after reacting at 250°C and 6.5 MPa H2 pressure for 2 h, The yiled
of GVL reached 92%I. (Obregon et al., 2014). Although high yield
was achieved by hydrogenation, however, the use of pressur-ized-
hydrogen gas is often associated with potential explosion hazard,
so the transfer hydrogenation strategy for the synthesis of GVL
from LA has been developed. Numerous sup-ported Ru, Pd, Ni,
and Cu catalysts were investigated to this reaction (Dutta et al.,
2019; Ye et al., 2020b). Fu et al. firstly reported an non-precious
skeletal Ni catalyst which could effective catalyze the reaction
with i-PrOH as H-donor at room temperature over 9 h (Yang,
et al., 2013). In addition, different hydrogen donors such as
formic acid, hydrosilicon and alcohol have been exploited for
this transformation, compare to other H-donors, the secure, safe
and easily operated alcohol not only can act as H-donor, but also
can serve as a solvent, furthermore, it can enhance the selec-tivity
in the hydrogenation process, too(He et al., 2020a).Compared
with levulinic acid, furfural (FF) is more available from biomass
feedstocks, so the researchers considered FF directly as a
feedstock for GVL production (Bui et al., 2013).

The conversion of FF to GVL requires a series of cascade
reactions (Figure 1) such as CTH, etherification, ring-opening,
partial hydrogenation, and cyclization reaction (Zhu et al., 2016).
Such complex reaction processes require higher performance
catalysts. Therefore, it is necessary to fully consider both the
structure and acid-base properties of the catalyst to improve the
catalyst activity. Since Zr/Hf-based catalysts show excellent
catalytic performance in CTH reactions and are more
economical than precious metals, more and more researchers
applied them to the reaction of converting GVL from FF (Li et al.,
2016; Wu et al., 2018; Zhou et al., 2019a; Wang et al., 2019).

At present, some excellent reviews are related to the synthesis
of GVL, but most of these reviews focus on the synthesis of GVL
with levulinic acid and its esters as the substrate (Dutta et al.,
2019; Ye et al., 2020b). In this mini-review, the latest progress in
the design of high-performance Zr/Hf-based catalysts for GVL
production from FF. Some variables affecting the design of Zr/Hf-
based catalysts such as the regulation of active sites of catalysts

and the physical and chemical properties of catalysts were
summarized. In addition, the reaction parameters in regulating
conversion efficiency was discussed, providing insights for the
development of efficient, economic, and sustainable catalytic
systems that would be important for future research.

EFFECTS OF CATALYST PROPERTIES ON
THE SYNTHESIS OF GVL FROM FF

In the system of FF for the synthesis of GVL, Zr/Hf-based
catalysts showed good performance, as shown in Table 1. Zhu
et al. first used Au/ZrO2 (providing Lewis acid-base sites) with
ZSM-5 (providing Brønsted acid sites) to catalyze the conversion
of FF to GVL (Zhu et al., 2016). The experimental results showed
that when Au/ZrO2 was used as the catalyst, FF was almost
completely converted to furfuryl alcohol (FA) (99.0% yield)
rather than GVL. Similarly, no GVL was detected when only
ZSM-5 was used as the catalyst. These results showed that the
presence of both Lewis acid-base and Brønsted acid sites in the
catalyst was necessary to successfully catalyze the conversion of
FF to GVL. Rojas-Buzo et al. found that the prepared Hf-MOF-
808 catalyst could successfully catalyze the CTH reaction of FF to
FA and levulinic acid to obtain GVL, but could not directly
catalyze the synthesis of GVL from FF(Rojas-Buzo et al., 2018).
However, when the Hf-MOF-808/Al-β zeolite (containing
Brønsted acid sites) combined catalyst was applied to this
reaction, a good 75% yield of GVL was obtained at 120°C for
48 h. This result strongly shows that Brønsted acid is crucial to the
ring-opening process involved in the conversion of FA to
levulinate in this reaction process. Although combined catalyst
system could improve the reaction yield, the catalyst preparation
process becomes complicated and the production cost increases.
To simplify the preparation process of the catalyst and increase
reaction yield of GVL, the exploration of bifunctional catalysts
containing both Lewis and Brønsted acid sites has attracted more
andmore attention. Bui et al. first used the physical mixture of Zr-
Beta and mesoporous Al-MFI zeolite as Lewis acid and Brønsted
acid catalysts to convert FF into GVL in one-pot (Bui et al., 2013).
Later, Iglesias et al. synthesized a bifunctional catalyst containing

FIGURE 1 | Possible reaction mechanism for the cascade conversion of biomass-derived furfural (FF) to γ-valerolactone (GVL).
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both Lewis acid and Brønsted acid by loading ZrO2 on SBA-15
zeolite (Iglesias et al., 2018). The catalyst can control the strength
of Lewis acid and Brønsted acid by changing the number of ZrO2

layers. Kinetic studies showed that the strength of Lewis acid in
the catalyst had an important influence on the distribution of
products. Strong Lewis acid sites promote etherification and
isomerization of FA rather than MPV reduction. Srinivasa Rao
et al. used the impregnation method to load different proportions
of ZrO2 and phosphotungstic acid (TPA) on β-zeolite to further
study the effect of Lewis/Brønsted acid content in the catalyst on
the yield of GVL (Srinivasa Rao et al., 2021). The experimental
results show that more Brønsted acid sites and fewer Lewis acid
sites in the catalyst are more conducive to the production of
levulinic acid ester rather than GVL. Therefore, the key to obtain
high yield GVL is to control the Lewis acid-base and Brønsted
acid sites with appropriate strength and number of bifunctional
catalysts. Very recently, Tan et al. synthesised a variety of novel
coordination organophosphate–Hf polymers from
vinylphosphonic acid (VPA), p-toluenesulfonic acid (p-TSA),
and HfCl. Specifically, VPA–Hf(1 : 1.5)-0.5 with an appropriate
L/B acid ratio of 5.3 and was found to exhibit superior
performance in the one-step conversion of furfural (FF) to γ-
valerolactone (GVL) in a high yield of 81.0%, with a turnover
frequency of 5.0 h−1. (Tan et al., 2022).

Zeolite with a complex microporous structure has an open
framework with regular pore size and appropriate size, which is
conducive to mass transfer and is easy to adjust acidity (Wang
et al., 2017; Wang et al., 2020; Peng et al., 2020; Chai et al., 2021).
Since zeolite has these unique advantages, the existing catalysts
for FF conversion to GVL are mostly prepared with various

zeolites as supporter. These catalysts mainly change the content
of Lewis acid sites in the catalysts by changing the metal loading,
and different kinds and concentrations of acids are used to
control the content of Brønsted acid in the catalysts (Srinivasa
Rao et al., 2019; Winoto et al., 2019; He et al., 2020a; Ye et al.,
2020a). He et al. adjusted the content of Lewis/Brønsted acid in
the catalyst by adding different amounts of ZrOCl2·8H2O(He
et al., 2020b). The more Zr is loaded in the catalyst, the higher the
molar ratio of Lewis acid to Brønsted acid is. NH3-TPD results
showed that with the increase of Zr loading in the catalyst, the
total number of acid sites in the catalyst increased gradually. But
excessive Zr loading will produce zirconia clusters, which will
reduce the activity of the catalyst. Li et al. treated the catalyst by
soaking DUT-67 (Hf) in different concentrations of sulfuric acid
solution to change the content of Brønsted acid (Li W. et al.,
2019). The results showed that with the increase of sulfuric acid
concentration, the total content of acid sites in the catalyst
increased continuously, but excessive Brønsted acid in the
catalyst would lead to side reactions, which decreased the yield
of GVL. SrinivasaRao et al. loaded phosphotungstic acid (TPA)
and ZrO2 with different contents inside and outside the pores of
SBA-15, respectively (Srinivasa Rao et al., 2021). Under the
premise of keeping the total Lewis acid content in the catalyst
unchanged, the molar ratio of Lewis acid to Brønsted acid in the
catalyst was adjusted by controlling the amount of ZrO2 and TPA.
The catalyst showed excellent catalytic activity, and the yield of
GVL reached 90% at 170°C for 10 h.

In addition to using zeolite as a carrier, bifunctional materials
prepared with ligands base on biomass derivatives are also
applied to the conversion of FF to GVL. Using alizarin red S

TABLE 1 | Catalytic production of γ-valerolactone (GVL) from furfural (FF)over Zr/Hf-based catalysts.

Entry Catalysts Acidity
(mmol/

g)

L/B H-donor Adjustment
of active
sites

Reaction
conditions

GVL
yield
(%)

Ref

1 Zr-Beta + Al-
MFI-ns

-- -- 2-butanol Lewis acid site and Brønsted acid site are independent of
each other, which can adjust the content and strength of
Lewis acid and Brønsted acid in the catalyst respectively

120°C, 48 h 78 Bui et al. (2013)

2 Au/ZrO2+ZSM-5 -- -- 2-
propanol

120°C, 30 h 80.4 Zhu et al. (2016)

3 Hf-MOF 808+Al-
β zeolite

-- -- 2-
propanol

120°C, 48 h 75 Rojas-Buzo et al.
(2018)

4 ZrO2-SBA-15(2) 0.32 0.08 2-
propanol

With the increase of the number of ZrO2 film layers supported
on the surface of SBA-15, the strength of Lewis acid in the
catalyst increases, while the strength of Brønsted acid
decreases

170°C, 7 h 37 Iglesias et al.
(2018)

5 Zr-KIT-5 1.86 6.5 2-
propanol

Change the loading of Zr in the catalyst 180°C, 6 h 40.1 He et al. (2020b)

6 HZ-ZrP 1-5 0.87 4.1 2-
propanol

Change the ratio of zeolite and NH4H2PO4 in the catalyst 185°C, 18 h 64.2 Ye et al. (2020a)

7 HPW/Zr-Beta 0.78 3.2 2-
propanol

Use different acid treatment catalysts 160°C, 24 h 68 Winoto et al.
(2019)

8 20%Zr-5%T-
zeolite

1.67 1.53 2-
propanol

Adjust the ratio of TPA and Zr in the catalyst 170°C, 10 h 90 Srinivasa Rao et al.
(2019)

9 DUT-67(Hf)-0.06 1.28 -- 2-
propanol

Treatment of DUT-67-(Hf) with different concentrations of
sulfuric acid

180°C, 8 h 70.7 Li et al. (2019b)

10 FM-Zr-ARS 0.55 0.23 2-
propanol

Modification of the catalyst with formic acid 160°C, 8 h 72.4 Peng et al. (2021)

11 ZPS-1.0 -- 3.25 2-
propanol

Change the amount of Zr in the catalyst 150°C, 18 h 80.4 Li et al. (2021c)
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(ARS) as the ligand, Peng et al. synthesized FM-Zr-ARS catalyst
by a simple hydrothermal method (Peng et al., 2021). The
sulfonic acid group contained in ARS can acted as Brønsted
acid for the ring-opening reaction, however, it cannot effectively
regulate the relative content of different active sites in the catalyst.
As a key step in the conversion of FF to GVL, CTH reaction is
generally completed through a six-membered ring transition
state. Lewis acid sites are usually used to activate H on the
aldehyde group and C connected with the alcohol hydroxyl
group. Lewis base sites are mainly used to activate the alcohol
hydroxyl group, making H easier to remove. Finally, the transfer
hydrogenation process is completed through the six-membered
ring transition state (Li et al., 2018; Zhou et al., 2019b; Li et al.,
2019c). Jarinya et al. found that Hf-UiO-66 has lower activation
energy (13.5 kcal/molvs 14.9 kcal/mol) than Zr-UiO-66 based on
density functional theory (DFT)(Sittiwong et al., 2021). It is due
toHf having stronger Lewis acidity, Hf has better performance
than Zr in CTH reaction under the same preparation conditions
(Luo et al., 2014; Xie et al., 2016; Injongkol et al., 2017; Li X. et al.,
2020). Tan et al. prepared a new coordination organic phosphate-
Hf polymer VPA-Hf(1:1.5)-0.5, which showed good activity for
one-pot cascade conversion of FF to GVL. By controlling the ratio
of vinyl phosphoric acid, p-toluenesulfonic acid and HfCl4, the
content of Lewis acid sites and B acid sites can be accurately
adjusted, and the E factor value (0.19) shows that the conversion
process mediated by the catalyst is ecologically friendly.

EFFECT OF REACTION PARAMETERS

The reaction can be carried out under mild conditions (120°C)
when combined catalysts were used (Table 1). For bifunctional
catalysts containing both Lewis acid and Brønsted acid, although the
preparation of the catalyst is simpler and the cost is reduced, a higher
reaction temperature (150–180°C) is often required to ensure the
sufficient progress of the reaction. This may due to the independent
active sites can also effectively reduce the adverse effects of steric
hindrance in the reaction process, so the reaction can be carried out
under mild conditions. However, the disadvantages such as
excessively long reaction time and more tedious catalyst
preparation process cannot be ignored. The key CTH reactions
in the reaction process are completed by MPV reduction reaction,
and more green and safe alcohols are usually used as H-donors to
avoid the use of dangerous high-pressure H2and corrosive formic
acid. In general, the β-H of secondary alcohols is easier to be
removed from the transition state, so the hydrogen supply
capacity of secondary alcohols is stronger than that of primary
alcohols (Elsayed et al., 2020; Li J. et al., 2021). However, the steric
hindrance of secondary alcohols will gradually increase with the
extension of the carbon chain, and excessive steric hindrance is not
conducive to the formation of stable transition states, thereby
reducing the hydrogen supply capacity (Li M. et al., 2021; Li W.
et al., 2021). Therefore, due to the small steric hindrance, 2-propanol
was used as the H-donor to prepare GVL in most cases. In addition,
the reusability of the catalyst is also an important aspect to evaluate
the catalytic system. However, humus is usually formed during the
reaction, which not only affects the carbon balance of the reaction

system but also reduces the activity of the catalyst during recycling.
Usually, calcination can remove the humus attached to the catalyst
and restore the activity of the catalyst (Iglesias et al., 2018; Ye et al.,
2020a; Tang et al., 2021). In addition, the catalyst may also have
active site leaching during recycling, and it needs to be treated with
acid before being put into the next recycling (Li W. et al., 2019).

CONCLUSION AND OUTLOOK

GVL is an important biomass derivative, which can be used as green
solvents and biofuels. Highly efficient cascade conversion of FF to
GVL presents great challenges due to complex reaction processes
and high requirements for catalyst performance. In this mini-review,
the influence of the catalyst preparation process on catalyst activity
was reviewed, and the reaction parameters such as temperature and
H- donor were also discussed. The acid-base properties of the
catalyst have a great influence on its catalytic performance. The
Lewis acid-base sites in the catalyst are mainly used to catalyze the
CTH reaction, and the crucial ring-opening reaction needs to be
carried out in the presence of Brønsted acid sites. There is no doubt
that higher acid content in the catalyst can provide more active sites,
but the imbalance of Lewis acid and Brønsted acid ratio can easily
lead to undesirable side reactions. It may lead to carbon imbalance
and GVL yield reduction, while the formation of humus attached to
the catalyst will reduce the reusability of the catalyst.

Renewable biomass-based carbonaceous support catalysts have
great potential for the green synthesis of GVL. Organic hybrid
materials have proved to have good activity for CTH reaction, but
the Brønsted acid sites are usually not sufficient to catalyze the ring-
opening reaction. Therefore, how to improve the strength of
Brønsted acid while ensuring the stability of the catalyst structure
is the challenge that must be overcome for its application for FF
synthesis to GVL. In addition, the accurate control of the strength
and content of each active site in the catalyst can better control the
reaction process, which is crucial to improving the yield of GVL. Due
to the strong Lewis acidity of Zr/Hf materials, Zr/Hf-Based Catalysts
showed high performance in the reaction of convert FF to GVL.
However, most of the exiting catylic system still suffered from high
temperature as well as not so excellent yield, so it is still a challegen to
design novel and effecient catalyst for this reaction.
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