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Prosthetic joint infection (PJI) is a devastating complication after a joint replacement.
PJI and its treatment have a high monetary cost, morbidity, and mortality. The lack of
success treating PJI with conventional antibiotics alone is related to the presence of
bacterial biofilm on medical implants. Consequently, surgical removal of the implant
and prolonged intravenous antibiotics to eradicate the infection are necessary prior
to re-implanting a new prosthetic joint. Growing clinical data shows that bacterial
predators, called bacteriophages (phages), could be an alternative treatment strategy
or prophylactic approach for PJI. Phages could further be exploited to degrade biofilms,
making bacteria more susceptible to antibiotics and enabling potential combinatorial
therapies. Emerging research suggests that phages may also directly interact with
the innate immune response. Phage therapy may play an important, and currently
understudied, role in the clearance of PJI, and has the potential to treat thousands
of patients who would either have to undergo revision surgery to attempt to clear an
infections, take antibiotics for a prolonged period to try and suppress the re-emerging
infection, or potentially risk losing a limb.

Keywords: periprosthetic joint infection, phage (bacteriophage), treatment, biofilm, immune system

INTRODUCTION

Joint replacement is a life-enhancing procedure for millions of people around the world. Successful
joint replacement improves quality of life by relieving pain as well as restoring function and
independence (Giori et al., 2018). It is projected that by 2030 there will be approximately 500,000
hip and 3.5 million knee replacements performed annually in the United States alone (Kurtz
et al., 2007). The vast majority of patients undergoing joint replacements experience near pain-
free function, but an unfortunate minority experience pain and ultimately require additional
surgery (Mortazavi et al., 2011). The etiologies of joint replacement failure include aseptic failures
from loosening at the bone-cement, cement-implant, or bone-implant interfaces, fracture of
the bone or implant, wear debris from the articulation, or poor implant position resulting in
joint instability (Mulhall et al., 2006). However, septic failure (i.e., periprosthetic joint infection,
PJI) is the most feared and often times the most common reason for joint replacement failure
(Tande and Patel, 2014).
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Periprosthetic joint infection is the leading cause of failure
for knee replacements and the third leading cause for failure
in hip replacements, accounting for between 15 and 25% of all
revision surgeries (Kamath et al., 2015). Nearly 11,000 patients
are affected by PJI yearly in the United States alone, costing over
$1.6 billion in 2020 (Kurtz et al., 2012; Kamath et al., 2015).
PJI can be categorized in three groups based on the timing of
onset. Early PJI is classified when the infection occurs within
3 months after surgery, where delayed PJI occurs between 3 and
24 months after surgery. Late PJI is categorized when the PJI
develops 24 months after the surgery occurred. Common signs
and symptoms include swelling, redness, and pain localized to
the joint, incisional erythema and/or drainage, as well as fever
(Berbari et al., 1998; Bongartz et al., 2008; Ravi et al., 2012; Taylor
et al., 2012).

During PJI, bacteria bound to an implant survive the
administration of antibiotics by forming an antibiotic-tolerant
biofilm, an extracellular polymeric substance of DNA, proteins,
and polysaccharides (Fauvart et al., 2011; Urish et al., 2016).
The subsequent treatment of PJI requires the removal of these
biofilm contaminated implants (i.e., one- or two-stage revision
surgery) in addition to the administration of antibiotics. The cost
associated with each of these revisions is more than $25,000 and
is associated with a significant morbidity as well as a one year
mortality greater than 10% (Zmistowski et al., 2013; Kamath et al.,
2015). Despite being the focus of research efforts for many years,
treatment failure of PJI can be high with failure rates up between
20 and 50% when the implant is retained (Peel et al., 2011; Namba
et al., 2013; Pourzal et al., 2016; Song et al., 2018).

Although PJI can occur in any patient, certain risk
factors increase the risk of PJI. Obesity (body mass index,
BMI > 35 kg/m2) was generally brought forth as a risk
factor but in recent years this has been brought into question
(Giori et al., 2018). Additional known factors are rheumatoid
arthritis, immunosuppression, and malignancy (Berbari et al.,
1998; Bongartz et al., 2008; Jämsen et al., 2009; Peel et al.,
2011; Ravi et al., 2012; Taylor et al., 2012; Pourzal et al., 2016).
Several studies associate PJI with poor glucose control at surgery,
whereby diabetes mellitus is used as a surrogate (Malinzak et al.,
2009; Cazanave et al., 2013; Namba et al., 2013; Pourzal et al.,
2016). Besides disease-associated risk factors, peri-operative risk
factors play an important role as well. One study has shown
that hinged-knee prostheses are more frequently infected than
standard replacements (Poss et al., 1984; Amanatullah et al.,
2015). Additionally, postoperative complications associated with
an increased risk of PJI include hematoma, superficial surgical
site infection, wound drainage, and wound dehiscence (Berbari
et al., 1998; Pulido et al., 2008; Aslam et al., 2010; Peel et al.,
2011). Wound closure is critical, as open wounds or poorly
apposed skin will more rapidly lead to bacterial colonization and
subsequent infection.

Despite the existing treatment strategies for PJI such as
surgical debridement and use of local and systemic antibiotics
or the use of antimicrobial coatings and texturing, the presence
of biofilm and the rise of antibiotic resistance limits the
effectiveness of current treatment modalities. The use of
bacteriophages (a.k.a., phages), viruses that specifically target

bacteria, represents an alternative to therapeutic and preventative
models. Understanding phage therapy begins with understanding
the bacterial pathogens involved in PJI and how phage therapy
can augment current treatment or prophylactic protocols.

BACTERIAL PATHOGENESIS OF PJI

Southwood et al. (1985) showed that most PJIs occurring within
the first year are initiated by microorganisms introduced at
the time of surgery (Popa and Dagan, 2011). This is often
correlated with longer operation times (Peersman et al., 2006).
Bacterial contamination occurs through either direct contact or
aerosolized contamination of the prosthesis or periprosthetic
tissues. Subsequently microorganisms begin colonizing the
surface of the implant.

Staphylococcus is the predominant bacteria associated with
PJIs and it likely seeds the joint as the implant crosses the skin
(Table 1; Barberán, 2006; Laffer et al., 2006; Montanaro et al.,
2011). Gram-positive bacteria, including Staphylococcus aureus
and coagulase-negative Staphylococcus (CNS) infect between 50
and 60% of the implants (Tsukayama et al., 1996; Murdoch et al.,
2001; Sendi et al., 2011). Other pathogens play an important role
in PJI, including Streptococcus species, Enterococcus, and aerobic
Gram-negative bacilli (Table 1; Chodos and Johnson, 2009; Lee
et al., 2010; Rodríguez et al., 2010). Only a few contaminating
microorganisms are needed to establish an infection and even
fewer to establish a PJI. In a rabbit model, 104 colony forming
units (CFU) of S. aureus will create an infection, but when
an implant is present less than 102 CFU will create a PJI
(Southwood et al., 1985). CNS are ubiquitous members of the
human microbiome found on the skin with the most frequently
identified member being S. epidermidis (Tripathi et al., 2020).
Although less common, Enterococcal species account for 12–
15% of early-onset PJI often as part of a polymicrobial infection
(Bengtson and Knutson, 1991; Berbari et al., 1998; Cobo et al.,
2011; Peel et al., 2012b; Tande and Patel, 2014).

At times a causative bacterial pathogen cannot be isolated
during PJI. The inability to grow a pathogen in laboratory culture
can be attributed to prior antimicrobial treatment, inadequate
use of available microbiological methods, or an inability to detect
and recognized the pathogen using currently available diagnostic
methods (Tande and Patel, 2014). Clearly, identifying a bacterial
pathogen is critical when employing phage therapy to treat or
prevent PJI. In some cases, isolation of a bacterial pathogen
from the intraoperative swab may enable to prepare an active
individualized phage formulation.

Another mechanism of establishing a PJI is the contiguous
spread of infection from an adjacent site, called hematogenous
seeding (Tande and Patel, 2014). Several studies showed that
peri-operative infections at a distant site, including urinary
and respiratory tract, are associated with an increased risk of
PJI (Berbari et al., 1998; Peersman et al., 2001; Pulido et al.,
2008). This may be the result of transient bacteremia from the
distant infection site during a high-risk time period. Ultimately,
however, PJI originating from remote sites of infection are rare
(Popa and Dagan, 2011).
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TABLE 1 | Overview of the most common bacterial pathogens isolated form prosthetic joint infections and their available phages for therapeutic purposes.

Infectious bacteria Occurrence Number of phages
available (according

to NCBI)

Reference of bacterial infections

Staphylococcus aureus ++++ 145 (Berbari et al., 1998, Berbari et al., 2010; Marculescu et al., 2006; Schäfer
et al., 2008; Biring et al., 2009; Lee et al., 2010; Shukla et al., 2010; Kim
et al., 2011; Kusuma et al., 2011; Mahmud et al., 2012; Peel et al., 2012a)

Coagulase negative Staphylococcus ++++ (Berbari et al., 1998, Berbari et al., 2010; Marculescu et al., 2006; Schäfer
et al., 2008; Biring et al., 2009; Lee et al., 2010; Shukla et al., 2010; Kim
et al., 2011)

Streptococcus species +++ 55 (Berbari et al., 1998, Berbari et al., 2010; Marculescu et al., 2006; Schäfer
et al., 2008; Biring et al., 2009; Lee et al., 2010; Shukla et al., 2010; Kim
et al., 2011; Kusuma et al., 2011; Mahmud et al., 2012; Peel et al., 2012a)

Enterococcus species ++ 40 (Schäfer et al., 2008; Lee et al., 2010; Shukla et al., 2010; Kim et al., 2011;
Peel et al., 2012a)

Pseudomonas aeruginosa +++ 212 (Berbari et al., 2010; Lee et al., 2010; Shukla et al., 2010; Kusuma et al.,
2011; Mahmud et al., 2012; Peel et al., 2012a)

Escherichia coli ++ 247 (Biring et al., 2009; Lee et al., 2010; Kusuma et al., 2011; Mahmud et al.,
2012)

Acinetobacter baumannii + 59 (Kim et al., 2011)

Klebsiella pneumoniae + 94 (Cano et al., 2020)

BACTERIAL BIOFILM

Biofilm is part of the bacterial lifecycle in PJI (Figure 1).
Biofilms are composed of an extracellular matrix made
from exopolysaccharides, proteins, teichoic acids, lipids, and
extracellular DNA (Arciola et al., 2012). Complex communities
of bacteria are engulfed in this extracellular matrix. These
communities can be mono- or polymicrobial. One of the
consequences of biofilm formation during PJI is the formation

FIGURE 1 | Phage induced immune responses. A variety of immune cells can
recognize and interact with phages. (1) Phages are recognized by a currently
unknown cell receptor. (2) This leads to the internalization of the phage where
it will end up in the endosome. (3) Once present in the endosome, the phage
gets degraded and its genetic content can either be recognized by TLR9
(dsDNA) or by TLR3 (dsRNA). (4) The activation of these immune receptors
will lead to a signaling cascade and the expression of type I interferon (IFN).

of a bacterial reservoir that often leads to symptomatic but
non-culturable infection, recurrent or persistent infection, or
infectious spread via emboli (i.e., part of the biofilm migrates
through the blood) (Azeredo and Sutherland, 2008).

The growth of a biofilm is not static but occurs through
multiple stages. Starting with the attachment of the bacterial
cell to a surface, followed by the initial growth on the surface,
maturation of the biofilm, and finally embolization. In the
end, the mature biofilm has a multicellular non-homogeneous
structure wherein bacteria communicate with each other through
quorum sensing. Quorum sensing make use of chemical signals to
help bacteria communicate, coordinate, and cooperate. Quorum
is the critical density needed to establish a biofilm colony and
express virulence (Miller and Bassler, 2001; Ng and Bassler,
2009). Quorum sensing is a positive feed-forward loop which
stimulates population-based gene expression (Seed et al., 1995;
Rutherford and Bassler, 2012). Both Gram-negative and Gram-
positive bacteria utilize these quorum sensing strategies to
facilitate intraspecies communication. Additionally, due to the
conserved nature of the quorum signal mechanism, inter-species
communication also occurs providing a plausible explanation for
cooperative polymicrobial biofilms (Mooney et al., 2018).

Bacterial sub-populations have different functions that
ultimately support the whole biofilm. In this biofilm state,
bacteria are protected from antimicrobials and the immune
system (Donlan and Costerton, 2002). This is partially due to
the physical separation of the bacteria from the antimicrobials
or the immune cells, but also because bacteria are in a metabolic
inactive state, called persistence (del Pozo and Patel, 2007;
Molina-Manso et al., 2013). This makes the treatment of
PJI with conventional antimicrobials very difficult, mandating
surgical intervention, including the removal of the prothesis, to
achieve a cure. Some antimicrobial agents have an effect against
biofilm-resident bacteria such as rifampicin, but ultimately
resistance frequently still occurs (Maudsdotter et al., 2019).
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Alternatively, bacteriophages, or their derived proteins can be
exploited to treat biofilms.

BACTERIOPHAGE – A BACTERIAL
PREDATOR

Phages, viruses that specifically target and infect bacterial cells,
can be exploited to treat biofilms in PJI. Phages consist either
of DNA or RNA which is encapsulated in a protein coat called
a capsid (van Regenmortel, 1992). Bacteriophages are the most
abundant biological entity on the world and occur everywhere in
the biosphere. They have colonized even such forbidding habitats
as volcanic hot springs. Their main habitats are the oceans and
terrestrial topsoil (Ackermann, 2011). Phage particles can be
tailed, polyhedral, filamentous, or pleiomorphic (Calendar, 2006;
Ackermann, 2009). Tailed phages, representing over 96% of all
known phage species, constitute the order Caudovirales with
three families, characterized by contractile (Myoviridae), long
and non-contractile (Siphoviridae), or short and non-contractile
(Podoviridae) tails (Ackermann, 2011).

The most common phage life cycles are the lytic and lysogenic
life cycle. In the lytic life cycle, the phage genome exists
within the host but outside the host genome. Lytic or virulent
phages repeat a cycle in which self-proliferation is synchronous
with the destruction of bacteria (i.e., the lytic cycle or the
virulent infection) (Matsuzaki et al., 2005). In this stage, gene
expression, genome replication, and morphogenesis occurs (i.e.,
the formation of the genomes and capsids and the packing of
the genomes in the capsids) (Ackermann, 1998). Lysogenic or
temperate phages, can remain dormant in the host through
integration of its genome in the bacterial genome, called a
prophage, replicating along with the host until they are triggered
into a lytic lifecycle. For most lysogens this trigger entails DNA
damage, which can be triggered by a multitude of stimuli such
as antibiotics, reactive oxygen species or UV (Ackermann, 1998;
Weinbauer, 2004).

The biological characteristics of phages make them ideal for
treating bacterial infections. Their lytic activity, auto-dosing,
low inherent toxicity, minimal disruption of normal flora,
narrow potential for inducing resistance, lack of cross-resistance
with antibiotics, rapid discovery, formulation and application
versatility, and biofilm clearance are characteristics looked for
in antimicrobials (Loc-Carrillo and Abedon, 2011). Auto-dosing
refers to the fact that phages themselves contribute to establishing
the bacterial lethal dose by increasing their number during the
bacterial-killing process (Carlton, 1999; Skurnik and Strauch,
2006; Chan and Abedon, 2012). A narrow host range limits
the number of bacterial types with which selection for specific
phage-resistance mechanisms can occur (Hyman and Abedon,
2010). Some phage derived proteins, such as endolysins or
depolymerases, are able to degrade the biofilm allowing the
phage to destroy the reservoir of bacteria that reside within
exopolysaccharide matrix (Hanlon et al., 2001; Tait et al., 2002).

Phages are versatile in terms of formulation and can be
combined with antibiotics or incorporated into scaffolds such
as hydrogels or wound dressings (Alisky et al., 1998; Kutter

et al., 2010; Wroe et al., 2020). They can be applied as liquids,
creams, impregnated into solids, in addition to being suitable
for most routes of administration (Carlton, 1999; Kutateladze
and Adamia, 2010; Kutter et al., 2010). Different phages can be
mixed as cocktails to broaden their properties, typically resulting
in a collectively greater antibacterial spectrum of activity and
lowering the chance of acquiring phage resistant bacterial strains
(Merabishvili et al., 2009; Goodridge, 2010).

Phages as pharmaceuticals are protein-based, live-biological
agents that can potentially interact with the body’s immune
system, can actively replicate, and can even evolve during
manufacture or use (Loc-Carrillo and Abedon, 2011). Phages
possess unique pharmacokinetics and pharmacodynamics
that remain poorly understood (Cooper et al., 2016). The
pharmacokinetics of phages are complicated due to their
self-replicating nature. Critical parameters that affect phage
therapy are the phage adsorption rate, burst size (the number
of phages released by one infected bacteria), latent period (the
time between phage infection and bacterial lysis, i.e., the time
needed to assemble new phage progenies), initial phage dose, and
density-dependent thresholds (Payne and Jansen, 2001). Another
important parameter is the clearance rate of the phage particles
from the body fluids by the reticuloendothelial system. Although
phages are considered generally well penetrating different tissues
and body organs they may significantly differ in bioavailability
after oral application (Miȩdzybrodzki et al., 2017b; Da̧browska,
2019). Their stability in environment is one of the limiting factors
for production of standard phage medicinal products which
require longer storage (Jault et al., 2018; Jończyk-Matysiak et al.,
2019).

PHAGES AND THE IMMUNE SYSTEM

Historically, phages were regarded as immunologically inert.
However, phages do cause a humoral immune response (Ochs
et al., 1971; Łusiak-Szelachowska et al., 2014; Hodyra-Stefaniak
et al., 2015; Majewska et al., 2015; Zaczek et al., 2016). The
production of anti-phage antibodies can affect the outcome
of phage therapeutic interventions (Łusiak-Szelachowska et al.,
2014). Furthermore, the route of administration plays a big
role on the level of antibody production (Zelasko et al.,
2016; Łusiak-Szelachowska et al., 2017). For instance, oral
administration seems to lead to the lowest level of anti-phage
antibodies compared to intraperitoneal injection in mouse
models (Da̧browska, 2019). Moreover, low levels of anti-phage
antibodies have also been detected in human subjects after
oral administration of phage (Miȩdzybrodzki et al., 2017b).
Although an antibody response might be present during or
after a phage therapeutic intervention, this does not necessarily
lead to a reduction of the therapeutic potential (Łusiak-
Szelachowska et al., 2014, 2017; Zelasko et al., 2016; Da̧browska,
2018Da̧browska, 2019).

However, recent research has demonstrated a phage-induced
innate immune response (Figure 1). Moreover, mathematical
models have predicted their importance in the outcome of
a therapeutic intervention (Van Belleghem et al., 2018). As
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expected, this phage induced response appears to mimic an
antiviral response (Van Belleghem et al., 2017; Gogokhia et al.,
2019; Sweere et al., 2019). The antiviral immune response is
driven by a Toll-like receptor (TLR) 9 response to Caudovirales
DNA (Gogokhia et al., 2019) whereas it is driven by a TLR3
response to Inoviridae RNA (Sweere et al., 2019). The antiviral
immune response may help the phage escape clearance or enable
the bacterial host to thrive.

Interestingly, some phages or their preparations may exert
anti-inflammatory activity (Van Belleghem et al., 2017, 2018).
A significant decrease in C reactive proteins (CRP) was
observed in some patients treated with phages, even in the
absence of clearing the bacterial infection (Gorski et al., 2016).
Moreover, it has been shown that Escherichia coli phage T4
presents a strong anti-inflammatory effect in mouse models
reflecting the autoimmune reaction corresponding to rheumatoid
arthritis (Miȩdzybrodzki et al., 2017a). These observations are in
accordance with observations in humans, suggesting that phage
therapy may modify the immune responses.

PHAGES AIDING SUPPRESSIVE
THERAPY

The minimal inhibitory concentration (MIC) of an antibiotic
is determined on cultured bacteria and does not reflect the
susceptibility of the bacteria within a biofilm. Killing the bacteria
within a biofilm requires a many-fold higher concentration
of antibiotic to achieve the minimum biofilm eradication
concentration (MBEC) (Ricciardi et al., 2020). Thus, the use
of suboptimal antibiotic concentrations could lead to antibiotic
resistance in the setting of PJI. Phages are an ideal alternative or
adjunct to antibiotics for treating or suppressing PJI (Table 1).
Phages have a proven track record for combating, and in some
cases eradicating biofilms (Tkhilaishvili et al., 2020). Even though
bacteria in a biofilm, such as small colony variants, have a
decreased cellular metabolic activity that often makes them
resistant to antibiotics. Furthermore, studies have shown synergy
between the use of systemic antibiotics and phages to treat
biofilm-associated infections, although the precise mechanism
is currently not known (Yilmaz et al., 2013; Kamal and
Dennis, 2015; Torres-Barceló et al., 2016). On the downside,
antagonistic effects between phages and antibiotics have been
observed as well. In vitro antagonism between a mixture of two
P. aeruginosa phages and high doses of tobramycin (Kamal and
Dennis, 2015) was observed in which MBEC tobramycin was
effective against P. aeruginosa biofilms, but its effect diminished
when phage was added. This is in line with an observation
that phage may sequester antibiotics, thus lowering the active
concentration (Tarafder et al., 2020). Hence, when combining
antibiotics and phages, strategies may have to be considered for
sequential administration.

Furthermore, the occurrence of phage resistance provides an
additional hurdle for the use of phage as a therapeutic (Smith
and Huggins, 1983; Levin and Bull, 2004). In the therapeutic
setting, these phage resistant strains can occur in 17–86% of
treated patients, depending on the pathogen (Miȩdzybrodzki

et al., 2012). However, phage resistance often comes at the cost
of reduced bacterial virulence and can even be accompanied by
re-sensitization to antibiotics (Capparelli et al., 2010; Gu et al.,
2012; León and Bastías, 2015; Chan et al., 2016; Oechslin, 2018).

Only a limited amount of pre-clinical studies have evaluated
the potential use of phages to treat PJI (Yilmaz et al., 2013;
Kaur et al., 2016; Kishor et al., 2016; Ferry et al., 2018a,b;
Cano et al., 2020), although attempts to treat PJI-like diseases,
such as osteomyelitis, with phage date back to the early 1930s
(Albee, 1933). Different administration routes can be deployed,
as recently reviewed by Da̧browska (2019), of which oral
administration or injection (intraperitoneal, intramuscular, or
subcutaneous) are the most common (Da̧browska, 2019). The
actual dose needed to obtain a therapeutic effect is still debated
within the field with reports showing as low as 103 pfu/ml being
sufficient to eradicate a bacterial infection (Soothill, 1994; Marza,
2006), with general consensus saying a minimum of 106 pfu/ml is
needed (Morozova et al., 2018).

Phages have been used to treat PJI in the context of antibiotics
(Ferry et al., 2018b). For example, in 2018, a patient with relapsing
PJI of the right hip was treated by injecting a cocktail of phages
into the joint in addition to systemic antibiotics. Eighteen months
after phage therapy, the clinical signs of PJI were absent. This case
shows the efficacy of phages in a PJI setting, although surgical
intervention was still necessary for this treatment and it is unclear
whether this represents suppression prior to phage resistance or
eradication. Another recent case with a patient with a right total
knee arthroplasty 11 years prior, suffering multiple episodes of PJI
despite numerous surgeries and prolonged courses of antibiotics,
showed progressive clinical worsening and development of severe
allergies to antibiotics, had been offered limb amputation for
his persistent right prosthetic knee infection due to Klebsiella
pneumoniae complex. As a last resort he was offered intravenous
phage therapy (Cano et al., 2020). The patient received 40
doses of a single phage spread over 8 weeks, in combination
with minocycline and was able to circumvent further surgery.
Furthermore, the authors were not able to identify any phage
resistant strains over this eight-week course of phage treatment.
This might be due to the lower metabolic activity of the bacteria in
the biofilm leading to a lower chance of phage resistance to occur.

PHAGES PREVENTING PJI

Prophylactic strategies require anticipating a certain bacterial
infection in order to provide the necessary agents to combat a not
yet existing infection. Nevertheless, additional research is needed
to further extend the lifetime of these phages after they undergo
the coating or impregnation strategies to provide long lasting
protection (Figure 2). It is currently not well described what
amount of phage inactivation could be expected or is accepted
when mixing phages with bone cement or coating them on
prosthetic surfaces. Also getting a clear view of the commensal
flora of a patient will become valuable in order to make educated
guesses as to which phages to prevent PJI. The main difficulty
with using phages in this manner is that they will lose their
activity after one round of infection. This enables the removal of
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FIGURE 2 | Alternative strategies for treating or preventing Prosthetic joint infections (PJI). Although that joint replacement is a life-enhancing procedure, an
unfortunate minority experiences pain and will ultimately require additional surgery. Septic failure, i.e., periprosthetic joint infections, are the most common reason for
joint replacement failure. During PJI, bacteria bound to the prosthetic will form biofilm structure that become resistant to antibiotic treatments. Hence the treatment of
PJI requires the removal of these biofilm contaminated implants in addition to the administration of antibiotics. The use of phage can form a valid alternative (or
additive to classic antibiotic treatments) to treat these PJIs without the need of a surgical intervention. These phages can be administered orally as a liquid or in a
powdered formulation or injected intravenously or as a hydrogel directly in the joint. Alternatively, phages can be used to prevent the occurrence of PJI by either
mixing phages in the bone cement or coating the implant with phages. In case of coating implants with phage, one could opt for a single phage or a cocktail of
phages. A gradual release system could be applied, using hydroxypropyl methylcellulose (HPMC) to gradually release and deliver the therapeutic agents at the
potential sites of infections. This might prevent the establishment of biofilms and the occurrence of PJIs.

an initial infection but would not enable the clearance of a future
recurrent infection. To tackle this problem the bioavailability of
the phage can be altered by embedding them in a matrix enabling
the slow release from the prosthetic bone cement over time and
in different waves.

After the selective identification, patients could be decolonized
of offending organisms prior to surgery, reducing surgical site
infection and PJI after joint arthroplasty. The downside of the
use of antibiotics for decolonization, especially in PJI, is the
occurrence of antibiotic resistant strains. However, this problem
would not arise when phages are used to disinfect the site of
surgery. The use of phage would remove the targeted bacteria
without disturbing the commensal flora or inducing dysbiosis in
the patients gut or skin.

Other approaches that could be used is to directly interfere
with the biofilm formation. Research has focused on disrupting
biofilm formation by interfering with the quorum sensing (Sully
et al., 2014; Atwood et al., 2016; Grandclément et al., 2016).
These compounds target a variety of steps in the quorum sensing
pathway, including the inhibition of quorum sensing signal
production through degradation or substitution of SAM or acyl-
ACP (precursors to acyl-homoserine lactone). Sequestration of
quorum sensing signals using antibodies have also been evaluated
as a potential strategy (Park et al., 2007). Alternative strategies

have looked to impair the quorum signal transduction through
the disruption kinase domain involved in the quorum sensing
transduction (Atwood et al., 2016; Grandclément et al., 2016).
Again phages could play a potential role in preventing the
formation of biofilms, not due to their direct lytic activity but
due to the potential effects of depolymerases present on certain
phage tails (Azeredo and Sutherland, 2008; Knecht et al., 2020).
These depolymerases could help degrade the biofilm matrix
enabling the immune system to more effectively clear a starting
bacterial infection.

The optimal form of delivery of phages to the joint implant
site is unclear. Phages can be impregnated into bone cement,
polymethyl methacrylate (Samokhin et al., 2018). However, once
phages are impregnated into polymethyl methacrylate they lose
their effective titer between over 1–2 weeks.

Recent research points into the potential of using phages to
coat prosthetic materials. Different strategies could be applied,
one could coat with a single phage or a phage cocktail either
to one specific pathogen or a diverse set of pathogens. Kaur
et al. (2016), showed the potential of using phage and antibody
coated Kirshner wire to prevent S. aureus infection when used
at the site of the prosthetic (Kaur et al., 2016). The authors used
a hydroxypropyl methylcellulose (HPMC) gel, for the gradual
release and delivery of two therapeutic agents at the implant
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site. These coatings of the Kirshner wires remained stable over
20 days, although a 3-log reduction could be observed after initial
coating. Moreover, the authors observed that the elution from
this gel remained steady for 48 h. A combinatorial approach of
the S. aureus phage and linezolid led to a reduction of bacterial
adhesion by 4-log, as well as reducing the occurrence of phage
resistant strains when phage alone was used (Kaur et al., 2016).

CONCLUSION

Orthopedic devices are prevalent and durable making them one
of the most common surgical implant types to become infected
(Inzana et al., 2016). All of the materials used for implantable
orthopedic devices are easily colonized by bacteria (Gbejuade
et al., 2015). Nevertheless, several preventative and therapeutic
strategies exist, some more invasive then others. Bacteriophage
is a valuable addition as the field looks to control antimicrobial
infection in a more effective manner – moving beyond the
morbidity of the scalpel and delivering higher doses of resistance-
generating antibiotics. A very promising path is the use of phage
coated prosthetics. Although the pitfall here lies in the fact that
the immobilized phage will lose its activity after one round of
infection. This would still allow to combat an initial infection but
not a recurrent one. To tackle this problem the bioavailability of
the phage can be altered by embedding them in a matrix enabling
the slow release from the prosthetic bone cement over time and
in different waves. Alternatively, phage embedded in hydrogels
and injected directly at the site of infection could be performed
on patients that already have an implant to remove the infection.
This would enable to physicians to treat PJIs without the need

of surgical intervention or removal of the implant, providing
layover between the development of phage coated prosthetics and
the use of phage in PJI. The use of phages could also enable to
combat current unculturable bacteria, on the condition that they
can easily be identified through genomic approach. It has been
suggested that machine learning approaches can be utilized to
either identify, or generate through synthetic genomics, based on
the genomic information provided on the bacterial target (Leite
et al., 2018; Martorell-Marugán et al., 2019; Baláž et al., 2020;
Pirnay, 2020).

Nevertheless, to use phages under these circumstances the
field needs to further invest in understanding the bioavailability
and biodistribution of phages as well as their immunogenicity in
order to generate the best outcome for the patients. Although
rigorous clinical trials are currently lacking progress has begun
to treat PJI with phage.
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