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Abstract: Unlike the mammalian brain, Drosophila melanogaster can tolerate several hours of hypoxia
without any tissue injury by entering a protective coma known as spreading depression. However,
when oxygen is reintroduced, there is an increased production of reactive oxygen species (ROS)
that causes oxidative damage. Methionine sulfoxide reductase (MSR) acts to restore functionality to
oxidized methionine residues. In the present study, we have characterized in vivo effects of MSR
deficiency on hypoxia tolerance throughout the lifespan of Drosophila. Flies subjected to sudden
hypoxia that lacked MSR activity exhibited a longer recovery time and a reduced ability to survive
hypoxic/re-oxygenation stress as they approached senescence. However, when hypoxia was induced
slowly, MSR deficient flies recovered significantly quicker throughout their entire adult lifespan.
In addition, the wildtype and MSR deficient flies had nearly 100% survival rates throughout their
lifespan. Neuroprotective signaling mediated by decreased apoptotic pathway activation, as well as
gene reprogramming and metabolic downregulation are possible reasons for why MSR deficient flies
have faster recovery time and a higher survival rate upon slow induction of spreading depression.
Our data are the first to suggest important roles of MSR and longevity pathways in hypoxia tolerance
exhibited by Drosophila.

Keywords: aging; repair; methionine sulfoxide reductase; Drosophila; hypoxia; oxidoreductases;
oxidative stress; physiological function

1. Introduction

Tolerance to a diminished level of oxygen (hypoxia) is a complex process that leads
to a variety of responses by different organisms. The mammalian brain only tolerates a
few minutes of severe hypoxia before it causes irreversible cell damage [1]. In contrast,
Drosophila melanogaster has evolved a mechanism through which it can tolerate several
hours of hypoxia without significant tissue injury. It does this by entering a protective
coma known as spreading depression. Currently, there is limited knowledge of how the
conserved cellular signaling pathways may modulate the susceptibility and vulnerability
of the brain to spreading depolarization (SD) [2]. However, when oxygen is reintroduced
by reperfusion, there is an increased production of reactive oxygen species (ROS).

ROS are a group of highly reactive molecules that contain oxygen including radicals,
molecules with unpaired valence electrons. Examples of ROS are superoxide (O2

−), hydro-
gen peroxide (H2O2), and the hydroxyl radical (OH) [3]. The accumulation of ROS is an
unavoidable byproduct of cellular respiration, primarily within the mitochondrial electron
transport chain. Superoxide is formed from the partial reduction of oxygen due to electron
leakage at complex I and III of the electron transport chain [4]. ROS can also be produced
through external sources such as UV light and radiation. Some ROS molecules lead to
oxidative stress by oxidizing macromolecules and other cellular components, causing
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functionality loss [4]. For example, ROS oxidizes the sulfur atom of methionine residues,
oxidizing it to methionine sulfoxide (met-(o)) and often leading to the loss of protein func-
tion [5,6]. However, at low levels, certain ROS molecules, such as hydrogen peroxide, can
also have a positive function since they regulate core metabolic pathways and play a role
in signaling [4,7]. To prevent oxidative damage, cells can destroy the ROS molecules before
they harm cellular components with the help of specific enzymes. Superoxide dismutase
(SOD) is a well-studied example. SOD, which is present in the mitochondria and cytoplasm,
converts the superoxide ion into hydrogen peroxide. Glutathione peroxidase (GPX) then
reduces the hydrogen peroxide to water [4].

Oxidative damage can be reversed. The sulfur-containing amino acid, methionine,
present in peptides and proteins play a role in antioxidant defense, catalysis, protein
structure, and redox sensing and regulation [8]. The interconversion of methionine and
methionine sulfoxide (met-(o)), in vivo, involves enzyme-catalyzed redox reactions where
methionine forms met-(o) by adding oxygen to its sulfur atom. The chiral center at the
sulfur atom brings in two epimers of met-(o), met-R-(o) and met-S-(o). The reaction
can be catalyzed by methionine sulfoxide reductase [9]. Methionine sulfoxide reductase
(MSR) represents a family of enzymes that have the role of reversing oxidative damage
by reducing met-(o) back to its original form. Evidence for MSR activity was described
by Weissbach, Brot and colleagues when they observed that oxidation of methionine
residues that inactivated ribosomal protein L12 in Escherichia coli [10] could be restored
by MSRA [11]. There are two forms of MSR designated MSRA and MSRB, which are
responsible for the stereospecific reduction of met-(o). MSRA reduces the S enantiomer
(met-S-(o)) while MSRB reduces the R enantiomer (met-R-(o)). The thioredoxin (Trx)
and glutathione (GSH) systems are thiol-dependent antioxidant mechanisms in cells that
are part of DNA synthesis and repair by acting as an electron donor for ribonucleotide
reductase (RNR) and methionine sulfoxide reduction by giving electrons to MSR [12–14].
Mammals including humans have one MSRA gene and three distinct MSRB genes (MSRB1,
MSRB2, MSRB3). Drosophila also has a single MSRA gene, but it only has one MSRB gene.

According to the free radical theory of aging, the accumulation of ROS and other
free radicals play a significant role in aging by causing oxidative damage [15]. Previous
studies have detected increased ROS production in aged tissues, emphasizing the link
between oxidative damage and aging [16]. In addition, met-(o) levels in proteins have been
shown to increase with age in several aging models, such as replicative senescence and
erythrocyte aging. Decreased levels of MSRA have been found in aged mouse tissues, and
MSRA and MSRB were found to be downregulated during replicative senescence of human
WI-38 fibroblasts [17]. Therefore, it is evident that there is a relationship between oxidative
stress, the level of MSR activity, and aging. However, further studies are necessary to fully
understand the role of MSR in aging and the onset of neurodegenerative diseases.

This study examines the effects of MSR in aging for Drosophila melanogaster. More
specifically, it investigates the effect of MSR-deficiency on hypoxia tolerance throughout
the lifespan of the adult Drosophila.

2. Materials and Methods
2.1. Fly Stocks

Drosophila stocks were maintained on standard cornmeal agar medium (Genesee
Scientific, El Cajon, CA, USA) at 25 ◦C with a 12-h light/dark cycle. The WT60 strain is
homozygous wild-type for both the MSRA and MSRB loci (MSRA+/+MSRB+/+). The AB46
strain is fully deficient for any MSR activity due to homozygous null alleles for both the
MSRA and MSRB genes (MSRA∆/∆MSRB∆/∆). The generation and characterization of
these genetic lines has been described [18].

2.2. Hypoxia Treatment

Male flies were maintained with 50 animals per vial. All experiments were done
between 12:00–5:00 p.m. to minimize changes in behavior affected by circadian rhythms.
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Chronic hypoxia was induced and maintained by continuous displacement of air in the
hypoxia chamber (63.5 cm long × 33.7 cm wide × 43.8 cm high) with nitrogen gas (100%)
at the calculated flow rate using Weymouth’s formula [19]. The rapid nitrogen flow rate
was calculated as 2.0 L/s., the moderate flow rate was 1.4 L/s and the slow flow rate was
25 mL/s. An outlet in the chamber prevented any pressure changes within the chamber. A
Pasco PASPort oxygen sensor (Pasco; Roseville, CA, USA) was used to confirm that the
concentration of oxygen inside the chamber was between 0–5% regardless of the nitrogen
flow rate. The hypoxic conditions were maintained for the indicated time and nitrogen
flow rate. Flies were then returned to standard atmosphere and monitored for recovery
from the spreading depression coma.

2.3. Monitoring Fly Movement

Animal movement was monitored using a Drosophila Activity Monitor (DAM; TriKi-
netics Inc., Waltham, MA USA) which uses 32 glass tubes in an 8 × 4 array. One fly is
placed in each tube which has small holes to allow free exchange of gasses. An infrared
detector monitors the movement of the fly, recording each time the animal moves through
the beam of the detector. Each trial began with an acclimation period of 10 min before data
recording commenced. The onset of the spreading depression coma was measured as the
time to the first cessation of movement detected by the DAM monitoring system. After the
indicated time of hypoxic/reoxygenation stress, flies were returned to normal atmosphere.
The time to recovery was scored as the first movement of the animal detected by the DAM
movement detection system. Flies that remained comatose after five hours of recovery
were marked as failing to survive the hypoxia.

2.4. Statistical Analyses

Data were analyzed using Prism statistical software (GraphPad Software, San Diego,
CA, USA). The sample number (n) in each trial represents the number of flies, one in each
glass tube, whose individual movements were monitored by the DAM movement detection
system. Data points falling outside (outliers) the interquartile range (IQR) were not used
in determining the average, standard error of the mean (SEM), sample number (n) and
statistical significance.

3. Results
3.1. Characterization and Age-Grouping of Wild-Type and MSR-Deficient Strains

Complete loss of function (null) alleles of MSRA and MSRB were created by imprecise
p-element transposon excision [18]. Briefly, the MSRA null allele is a 1.5 kb deletion that
starts 300 bp upstream of the transcription start site and extends into Exon 2. The entire 5′

UTR and a portion of the open reading frame have been removed. The MSRB null allele is
a 2.5 kb deletion that starts 364 bp upstream of the transcription start site and terminates
2163 bp into the transcribed region. The loss of these genomic sequences removes the first
three exons that includes a part of the open reading frame.

Strains that are homozygous wild-type for both MSR loci, homozygous for the MSRA
deletion, homozygous for the MSRB deletion and MSR-deficient lines due to being ho-
mozygous for both deletions were used for this study. Experiments involving one hour
of exposure to hypoxia were used for all four strains. However, no significant and repro-
ducible differences between the wild-type strain and the strains that were homozygous for
only one mutant locus were observed. Therefore, all the reported experiments only involve
wild-type (WT60) and MSR-deficient (AB46) strains.

The absence of any functional MSR loci leads to nearly a 50% shorter lifespan com-
pared to the wildtype [18]. One copy of the wild-type allele of either MSRA or MSRB was
found to be sufficient to almost completely rescue the lifespan of the MSR double-deletion
mutant to nearly that of the wildtype line (p < 0.001). The MSR double-deletion flies do not
survive past 40–45 days [18]. Preliminary experiments showed that there were age-related
differences in the response of the two strains to hypoxia. Animals were examined at a
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young age, middle age, and old age. Adjustments were made to the time period for each
stage in their lifespan to account for the significantly shorter lifespan of the MSR-deficient
line (Table 1).

Table 1. Categorization of age groups.

Age Group Wild-Type MSR-Deficient

Young 20–25 Days Old 5–10 Days Old
Middle Age 40–45 Days Old 30–35 Days Old

Old 60–65 Days Old 40–45 Days Old
MSR-deficient animals (AB46) have a markedly shorter lifespan. The ages selected to identity young, middle-age
and old adult flies for each genotype are based on a previous study, as described in the text.

3.2. Rapid Induction of the Spreading Depression Coma

A flow rate of 2.0 L/s nitrogen gas induced a spreading depression coma in both
wild-type and MSR-deficient flies in less than one minute. Onset of the protective coma
occurred too quickly to determine whether there was a difference between the two strains.

After one hour of acute hypoxia due to continuous air displacement with nitrogen,
the animals were returned to normoxic (standard atmosphere) conditions and allowed to
recover. Recovery was scored as the first movement detected by the infrared detector of
the Drosophila Activity Monitor (see methods). There was an age-dependent effect in the
recovery times for both wild-type and the MSR-deficient flies with an increase in recovery
time as the animals aged (Figure 1). However, the MSR-deficient animals took significantly
longer (t-test; p < 0.0001) compared to wild-type to recover at every age through their entire
lifespan. This difference was most notable among the old animals where the wildtype took
an average of 65.6 min to recover, but the MSR-deficient animals took 72% longer with an
average of 112.8 min (p < 0.0001).
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Figure 1. Recovery after one hour hypoxia under rapid induction of spreading depression. Wild-type (WT60) and MSR-
deficient (AB46) animals were exposed to one hour of hypoxia using a nitrogen flow rate of 2.0 L/s. After one hour of
hypoxia, the animals were returned to normoxic conditions and allowed to recover from the spreading depression coma.
Recovery was marked as the time to the first movement detected by the Drosophila Activity Monitor. The number of
individual animals (n) used for each age-group and genotype is shown on the graph. Error bars are the SEM. Significance is
indicated by an asterisk where p < 0.0001 using an unpaired t-test.
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3.3. Moderate and Slow Induction of Hypoxic Coma

Two slower flow rates of nitrogen were used to extend the time to onset of the spread-
ing depression coma to better determine whether there was an effect due to the absence of
MSR activity. Onset of the coma was determined by the time required to no longer detect
movement by the IR sensor of the Drosophila Activity Monitor. Overall, there was an
age-dependent decrease in the time to induce the coma for both the moderate (Figure 2A)
and slow (Figure 2B) flow rates of nitrogen gas. Interestingly, significant differences in the
time for coma induction only occurred among middle age flies using the moderate flow
rate and young flies using the slow flow rate. Wildtype middle age flies took an average
of 4.1 min (n = 45) whereas the MSR-deficient flies took 24% longer with an average of
5.1 min (n = 120; p < 0.0001). Under the slow induction of spreading depression, wild-type
flies took an average of 6.75 min (n = 83) which was 28% longer than the MSR-deficient
flies which took an average of 5.3 min (n = 57; p < 0.0001).

Antioxidants 2021, 10, x FOR PEER REVIEW 5 of 13 
 

individual animals (n) used for each age-group and genotype is shown on the graph. Error bars are the SEM. Significance 
is indicated by an asterisk where p < 0.0001 using an unpaired t-test. 

3.3. Moderate and Slow Induction of Hypoxic Coma 
Two slower flow rates of nitrogen were used to extend the time to onset of the spread-

ing depression coma to better determine whether there was an effect due to the absence 
of MSR activity. Onset of the coma was determined by the time required to no longer 
detect movement by the IR sensor of the Drosophila Activity Monitor. Overall, there was 
an age-dependent decrease in the time to induce the coma for both the moderate (Figure 
2A) and slow (Figure 2B) flow rates of nitrogen gas. Interestingly, significant differences 
in the time for coma induction only occurred among middle age flies using the moderate 
flow rate and young flies using the slow flow rate. Wildtype middle age flies took an av-
erage of 4.1 min (n = 45) whereas the MSR-deficient flies took 24% longer with an average 
of 5.1 min (n = 120; p < 0.0001). Under the slow induction of spreading depression, wild-
type flies took an average of 6.75 min (n = 83) which was 28% longer than the MSR-defi-
cient flies which took an average of 5.3 min (n = 57; p < 0.0001). 

 

  

 

Figure 2. Moderate and slow induction of spreading depression. Wild-type (WT60) and MSR-deficient (AB46) animals 
were exposed to one hour of hypoxia. A nitrogen gas flowrate of 1.4 L/s was used for a moderate rate of induction (A) 
while a flow rate of 25 mL/s was used for a slow rate of induction (B). Onset of the coma was scored when the IR detector 
no longer recorded movement. The number of individual animals (n) used for each age-group and genotype is shown on 
the graph. Error bars are the SEM. Significance is indicated by an asterisk where p < 0.0001 using an unpaired t-test. 

3.4. Recovery Following Moderate and Slow Induction of Hypoxia 
The animals were returned to a normal atmosphere after one hour of hypoxic expo-

sure to nitrogen gas at the indicated flow rate. Recovery was monitored as the first move-
ment detected by the IR sensor as described above. There was an overall increase in re-
covery time for both wild-type and MSR-deficient animals as they aged. Unexpectedly, 
we found that the MSR-deficient animals recovered significantly faster than the wild-type 
at every age group for both the moderate (Figure 3A) and slow (Figure 3B) nitrogen flow 
rates. The difference was most pronounced in the old animals. When the coma was in-
duced under a moderate nitrogen flow rate, old wild-type flies took an average of 127.2 
min which was 73% longer than the average of 73.6 min required for recovery of the old 
MSR-deficient animals (p < 0.0001). The old wild-type animals recovered more quickly 
when the slow flow rate of nitrogen was used whereas recovery of the old MSR-deficient 
animals was nearly the same as those under a moderate nitrogen flow rate (73.6 min vs. 
72.4 min). The wild-type flies still recovered more slowly with an average time of 108.0 
min which was 49% longer than the average of 72.4 min required by the old MSR-deficient 
flies (p < 0.0001). 

 

Figure 2. Moderate and slow induction of spreading depression. Wild-type (WT60) and MSR-deficient (AB46) animals were
exposed to one hour of hypoxia. A nitrogen gas flowrate of 1.4 L/s was used for a moderate rate of induction (A) while a
flow rate of 25 mL/s was used for a slow rate of induction (B). Onset of the coma was scored when the IR detector no longer
recorded movement. The number of individual animals (n) used for each age-group and genotype is shown on the graph.
Error bars are the SEM. Significance is indicated by an asterisk where p < 0.0001 using an unpaired t-test.

3.4. Recovery Following Moderate and Slow Induction of Hypoxia

The animals were returned to a normal atmosphere after one hour of hypoxic exposure
to nitrogen gas at the indicated flow rate. Recovery was monitored as the first movement
detected by the IR sensor as described above. There was an overall increase in recovery
time for both wild-type and MSR-deficient animals as they aged. Unexpectedly, we found
that the MSR-deficient animals recovered significantly faster than the wild-type at every
age group for both the moderate (Figure 3A) and slow (Figure 3B) nitrogen flow rates. The
difference was most pronounced in the old animals. When the coma was induced under a
moderate nitrogen flow rate, old wild-type flies took an average of 127.2 min which was
73% longer than the average of 73.6 min required for recovery of the old MSR-deficient
animals (p < 0.0001). The old wild-type animals recovered more quickly when the slow
flow rate of nitrogen was used whereas recovery of the old MSR-deficient animals was
nearly the same as those under a moderate nitrogen flow rate (73.6 min vs. 72.4 min). The
wild-type flies still recovered more slowly with an average time of 108.0 min which was
49% longer than the average of 72.4 min required by the old MSR-deficient flies (p < 0.0001).
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and MSR-deficient (AB46) animals were exposed to one hour of hypoxia using a moderate nitrogen flow rate of 1.4 L/s
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allowed to recover, their activity was scored as the first movement detected by the Drosophila Activity Monitor. The number
of individual animals (n) used for each age-group and genotype is shown on the graph. Error bars are the SEM. Significance
is indicated by an asterisk where p < 0.0001 using an unpaired t-test.

3.5. Survival Following One Hour of Hypoxia

The flow rate used for inducing the spreading depression coma had a major effect on
the survival of animals as they aged. Survival of the wild-type strain was 99–100% at all
ages tested and under all three modes for inducing spreading depression (data not shown).
In contrast, survival of the MSR-deficient strain (AB46) as the animals aged was strongly
dependent on mode of coma induction. The young MSR-deficient animals had a 99–100%
survival irrespective of the nitrogen flow rate, which was like the survival success of the
wild-type strain (Figure 4). At middle-age, the MSR-deficient had a 93–99% survival when
the moderate or slow flow rate was used but survival declined to 79% using the rapid
nitrogen flow rate (Figure 4). The effect of the nitrogen flow rate on survival was most
pronounced among the old MSR-deficient flies. Nearly all the animals (99%) survived
with the slow nitrogen flow rate. Even at the moderate nitrogen flow rate, the survival
rate was 93%. However, under the rapid flow rate, where the MSR-deficient animals took
72% longer than the wildtype to recover from the hypoxia (Figure 1), only 38% of the
animals survived.
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hypoxia using the indicated flow rate of nitrogen. The flies were then returned to standard atmosphere and monitored for
recovery from the coma as described in the legend of Figure 2. Animals that did not recover movement within 5 h were
scored as not surviving.



Antioxidants 2021, 10, 1135 7 of 12

3.6. Effects of Prolonged Hypoxia on Recovery and Survival

All the previous experiments used one hour of hypoxic exposure. However, wild-type
Drosophila can survive hours of chronic hypoxia [20,21]. Therefore, we examined the effect
of three hours and six hours of hypoxia on the recovery and survival of the MSR-deficient
flies. For these experiments, the slowest flow rate (25 mL/s) was used since the recovery
and survival of the MSR-deficient flies was most robust.

Young MSR-deficient flies recovered significantly faster than the wild-type after three
hours of hypoxia, using the slow flow rate of nitrogen (Figure 5A). Young wild-type flies
took 98.2 min to recover which was 31% longer than the 75.5 min for recovery of the young
MSR-deficient animals (p < 0.0001). After six hours of hypoxia (Figure 5B), the wild-type
flies took twice as long to recover (197.0 min) compared to three hours of hypoxia. The
MSR-deficient flies also took longer to recover (176.5 min) after the two additional hours of
hypoxia (compare Figure 3 to Figure 5). While the MSR-deficient strains recovered faster
than the wild-type after six hours of hypoxia, the difference was not significant (p = 0.08).
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Figure 5. Recovery after prolonged hypoxia. Wild-type (WT60) and MSR-deficient (AB46) animals were exposed to three
hours (A) or six hours (B) hypoxia using the slow nitrogen flow rate (25 mL/s). After the indicated time of hypoxia, the
animals were returned to normal atmosphere and allowed to recover from the spreading depression coma. Recovery was
scored as the first movement detected by the Drosophila Activity Monitor. The number of individual animals (n) used for
each age-group and genotype is shown on the graph. NA indicates that none of the test animals survived the hypoxic
treatment. Error bars are the SEM. Significance is indicated by an asterisk where p < 0.0001 using an unpaired t-test.

All the young test animals of both genotypes survived both 3 h and 6 h of hypoxia
(Figure 6). However, there was a striking effect of age. All the old wildtype flies survived
3 h of hypoxia whereas only 3% old MSR-deficient flies (1 of 32 animals) survived. In sharp
contrast to the young animals, none of the old flies of either genotype survived six hours of
hypoxia.
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Figure 6. Survival following prolonged hypoxia. Young flies (A) or old flies (B) were subjected to
either 3 h or 6 h of anoxia using a 25 mL/s flow rate of nitrogen. Flies were then returned to standard
atmosphere and monitored for recovery from the spreading depression coma as described in the
legend of Figure 2. Animals that did not recover movement within 5 h were scored as not surviving
the hypoxia. NA indicates that none of the animals survived.

4. Discussion

Although the role of MSR in oxidative stress has been extensively studied, the in-
vestigation into how the absence of MSR activity affects hypoxia tolerance in Drosophila
melanogaster is a relatively new area of exploration. Fruit flies were discovered to be
tolerant to acute hypoxia (0 mm Hg O2) in the early 1990s, where they survived in oxy-
gen depleted environments for several hours without any evidence of injury [1]. The
disruption of oxygen homeostasis is a major factor for many disease etiologies and pathobi-
ology [22]. The low oxygen conditions (hypoxia) used in this study is a prominent clinical
problem associated with many diseases such as ischemic heart disease, cerebral ischemia
(stroke), pulmonary hypertension, diabetes complication, high altitude illness, and cardio-
respiratory disorders (bronchopulmonary dysplasia and obstructive sleep apnea). The
evolutionary conservation of genetic and signaling pathways from Drosophila to mammals
allows for it to be an ideal model system to investigate the genetic basis of hypoxia toler-
ance [22]. Fruit flies enter a protective coma called spreading depression, which allows
survival to prolonged periods of hypoxia, by suppressing their overall metabolic rate to
prevent cellular injury during reoxygenation [23]. Insect spreading depolarization provides
new insight for mammalian spreading depolarization due to its association with stress-
induced neural shutdown and energy conservation response [24]. Hypoxia/reoxygenation
induces cellular injury through the promotion of oxidative stress, which was the impetus
to quantify recovery during these conditions. ROS cause oxidative damage to amino acids,
lipids, nucleic acids, and play a crucial role in aging and senescence [25]. The MSR system
protects vital cell constituents from oxidative stress and redox regulation of signaling
pathways [26].

The loss of all known MSR activity has been reported in bacteria [27] and yeast [28],
although these organisms are not as developmentally complex as Drosophila. The correla-
tion between the loss of MSRA activity and reduction in longevity were documented in
yeast [28], C. elegans [29] and mice [30]. However, a previous study on an MSRA knockout
mouse did not find an effect on lifespan [31]. In our lab, MSRA and MSRB gene deletions
were created through imprecise excision of p-element transposons located in each gene,
leading to the establishment of Drosophila as an in vivo animal model to lack any known
MSR activity. We have previously found a significantly shorter lifespan in the MSR double
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mutant with nearly full restoration of normal lifespan in the presence of a single wild-
type allele of either MSRA or MSRB [18]. Our previous experiments failed to identify a
significant phenotype in Drosophila lacking just one of the two MSR genes. In fact, there
is a significantly longer third instar with larvae growing at a slower rate and adult flies
having a shortened lifespan in the absence of any MSR activity (MSRA∆/∆MSRB∆/∆) [18].
Similarly, we found key behavioral differences on the effects of hypoxia under conditions
that vary the rate which the spreading depression coma is induced, as well as the length of
hypoxia/reoxygenation stress.

The time required for flies to cease movement due to the protective coma induced
by hypoxia can be varied by altering the rate at which the chamber becomes hypoxic (i.e.,
by controlling the flow rate of the nitrogen gas). In our study, the survival of flies was
dependent on neural function because of the differences in onset of spreading depression.
After sudden exposure to hypoxia, the MSR double mutant flies took significantly longer
to recover compared to the wildtype flies throughout the flies’ entire lifespan (Figure 1).
More interestingly, the MSR-deficient flies showed a markedly reduced ability to survive
the hypoxic/reoxygenation stress as they approached senescence with only 38% surviving
among the flies that were 40–45 days old (Figure 4). In contrast, the wildtype strains
had nearly 100% survival of the hypoxia throughout their entire lifespan including the
period of senescence (60–65 days old) (data not shown). According to the oxidative stress
theory of aging, as animals age, an increase in ROS and oxidative stress plays a role
in governing lifespan. Previous research suggesting that the accumulation of oxidative
damage is part of the aging process is an outdated approach, suggested as far back as
1954. Aging is rather a genetically programmed series of events that increases fitness of
each species [32]. For example, the oxidation of methionine residues activates the key
enzyme involved in calcium signaling pathway, multifunctional calcium/calmodulin-
dependent protein kinase II (CaMKII). Mice that were MSRA−/− displayed exaggerated
CaMKII oxidation and myocardial apoptosis, leading to impairment in cardiac function and
increased mortality under myocardial infarction. These previous in vivo studies confirmed
a physiologically regulatory role for methionine oxidation of CAMKII in cardiomyocytes.
In fact, overexpression of the MSRA gene predominantly in the nervous system was
found to extend Drosophila lifespan. MSRA transgenic animals were more resistant to
paraquat-induced oxidative stress with a remarkable delay in the onset of senescence-
induced decline in activity as well as reproductive capacity [33]. MSRA could be also
involved in regulating target protein function and/or expression in ROS-mediated signal
transduction. Changes in gene expression, including those of oxidative stress-response
genes, were previously seen when MSRA is overexpressed [34]. Our experiments are the
first evidence of an age-dependent effect of MSR deficiency in both recovery and survival
from hypoxic/reoxygenation stress.

Being that we measured hypoxia tolerance through percent survival and/or recovery
time, we were curious to see whether this would be altered if spreading depression was in-
duced more slowly. The onset of spreading depression was not affected by the lack of MSR
activity but there was an age-dependent decrease in the time to induce the coma for both the
moderate (Figure 2A) and slow (Figure 2B) flow rates. However, upon reoxygenation, the
MSR-deficient flies displayed a stark contrast to previous experiments and recovered faster
than wildtype flies throughout their entire lifespan (Figure 3). More interestingly, the sur-
vival of the MSR-deficient flies improved dramatically and was nearly 100% throughout the
entire lifespan (Figure 4). Our results suggest slow induction of spreading depression may
allow for ischemic preconditioning to commence. There has been interest in understanding
the nature of ischemia-reperfusion (IR) injury and therapy development to prevent its
effects [35,36]. The first few minutes of reperfusion initiates long-term tissue damage and
dysfunction [36]. Early studies revealed a role for mitochondrial activity in early IR injury,
where the reperfusion through a burst of reactive oxygen species (ROS) production is from
the mitochondria [37,38]. Ischemia can alter the abundance of mitochondrial metabolites
that act as electron stores and CoQ reductants upon reperfusion [36,39–41]. Succinate was
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a common signature of ischemia throughout metabolically diverse tissues, where it was
found to accumulate more than any other mitochondrial metabolite [39]. Numerous studies
have showed an increase in succinate during ischemia or anoxia [40,41]. Thus, reducing
ischemic succinate accumulation or slowing succinate metabolism at reperfusion is known
to be cardioprotective against IR injury [42]. This may be why MSR-deficient flies recover
faster and have markedly improved survival when the induction of hypoxia occurs more
slowly [43].

The hypoxia tolerance in fruit flies permits survival of extended hypoxia without
neuronal deficit, due to the protective coma they entered during hypoxia [44]. Our next
set of experiments focused on studying hypoxic tolerance upon prolonged hypoxia (3 and
6‘h) and the slow induction of spreading depression. Young animals had 100% survival for
both the wild type and MSR-deficient strains up to six hours of slow induction of hypoxia
(Figure 6). At old age, 100% of the wildtype flies survived three hours of hypoxia although
none of the animals survived six hours of hypoxia (Figure 6B). In sharp contrast, only 3%
(1 of 32 flies) of the old MSR-deficient flies survived the three hours of hypoxia (Figure 6B).
There is a clear age-dependent decline in the ability to survive prolonged hypoxia in the
absence of MSR. Young MSR-deficient flies continued to recover significantly faster than
wildtype animals upon prolonged hypoxia, while old MSR-deficient flies did not recover
at all (Figure 5). The underlying mechanism may be associated with the relationship
between the production and depletion of cellular energy during spreading depression.
During hypoxia, the metabolic rate is known to significantly decrease to allow Drosophila to
preserve cellular ATP while also decreasing its total production [20,45–47]. When flies start
to recover upon reoxygenation, there is less available ATP to restore metabolic deficits due
to the ATP depletion during the period of hypoxia. Overall, survival is compromised [45,48].
In addition, ATP depletion is known to lead to failure of the Na+/K+ ATPase, which
results in dysregulation of ionic homeostasis, protein unfolding and subsequently protein
aggregation [49]. Numerous reports in the literature reflect similar trends of a strong
inverse correlation between increased stress duration and decreased survival probability,
possibly due to deficiency in ATP production and the inability of the fly to compensate for
ATP consumption [20,47].

5. Conclusions

The results obtained from this study demonstrate that MSRA and MSRB play an
age-dependent role in protection against oxidative stress throughout the lifespan of
D. melanogaster. MSRA and MSRB are known to behave as antioxidants to reduce me-
thionine sulfoxide (nonfunctional form of methionine from ROS oxidation) back to the
functional form of methionine [50]. The original expectation was that MSR-deficient flies
would have a compromised ability to tolerate hypoxia. The results of experiments using
the MSR-deficient flies suggest new lines of inquiry involving ischemic preconditioning
and longevity pathways. These results support previous studies that suggest the activation
of protective mechanisms to defend against oxidative stress, essentially leading us to a
better understanding how these MSR genes affect aging. Our studies offer possible insight
into hypoxic-like conditions in humans, such as stroke, that may ultimately contribute to
better drug design or other treatments.
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