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Currently, the fabrication of a functional vascular network to maintain the viability of engineered
tissues is a major bottleneck in the way of developing a more advanced engineered construct.
Inspired by vasculogenesis during the embryonic period, the in vitro prevascularization
strategies have focused on optimizing communications and interactions of cells, biomaterial
and culture conditions to develop a capillary-like network to tackle the aforementioned issue.
Many of these studies employ a combination of endothelial lineage cells and supporting cells
such as mesenchymal stem cells, fibroblasts, and perivascular cells to create a lumenized
endothelial network. These supporting cells are necessary for the stabilization of the newly
developed endothelial network. Moreover, to optimize endothelial network development
without impairing biomechanical properties of scaffolds or differentiation of target tissue
cells, several other factors, including target tissue, endothelial cell origins, the choice of
supporting cell, culture condition, incorporated pro-angiogenic factors, and choice of
biomaterial must be taken into account. The prevascularization method can also influence
the endothelial lineage cell/supporting cell co-culture system to vascularize the bioengineered
constructs. This review aims to investigate the recent advances on standard cells used in in vitro
prevascularization methods, their co-culture systems, and conditions in which they form an
organized and functional vascular network.
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1 INTRODUCTION

The concept of tissue engineering and regenerative medicine originates from the idea of replacing
damaged or dysfunctional organs with new regenerated ones. As the tissue grows, oxygen and
nutrient supply as well as wastes elimination cannot be achieved by simple diffusion. Therefore,
vascular or vascular-like networks are crucial for proper function and survival of any tissue. Central
necrosis will happen in engineered tissues thicker than 100–250 µm if there is no efficient vascular
bed (Fu et al., 2021). Therefore, developing approaches to form adequate and functional vasculature
within artificial tissues and organs and prevascularization of engineered constructs prior to
implantation are considered as a promising concept in tissue engineering field (Yazdanpanah
et al., 2015). The survival of incorporated stem cells in scaffolds depends on the efficiency and efficacy
of networks developed by prevascularization. In order to mimic the physiological structure of the
capillaries, some efforts have been dedicated to design perfusable micro-channels in scaffolds
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(Farhadihosseinabadi et al., 2018; Figueiredo et al., 2020; Liu et al.,
2020). Many studies have tried to use the physiological capability
of stem cells for developing a vascular network de novo, known as
vasculogenesis which can be usually seen in the embryonic
period. To induce vasculogenesis, many in vitro strategies such
as cell sheet engineering, cell spheroid and cell encapsulation, bio-
printing and micro-fluid techniques have been introduced. The
other methods of prevascularization take advantage of
physiological process of angiogenesis, when new blood vessels
are developed from the existing vessels (Farhadihosseinabadi
et al., 2018). To date, several in vitro, in vivo and in situ
prevascularization strategies have been employed to compose
functional engineered tissues. In vivo prevascularization
techniques such as prevascularization via AV-loop,
subcutaneous implantation and flaps mostly recruit the
angiogenesis process, counting on the ability of host vessels to

invade the implanted scaffold (Kiaie et al., 2020; Vidal et al., 2020;
Redenski et al., 2021). In situ methods employ a combination of
in vitro and in vivo approaches. In all of these methods,
endothelial lineage cells are the key part of developing a
proper vascular network. Moreover, cell-to-cell interactions,
biomaterials, and growth factors profoundly influence in vitro
prevascularization. Although formation of capillary-like
networks can be initiated by endothelial lineage cells,
interactions of endothelial and supporting cells are essential
for developing a functional vascular network (Figure 1).

2 ENDOTHELIAL LINEAGE CELLS

Producing a lumenized endothelial cell network is one of the
main milestones of prevascularization (Kiaie et al., 2020; Später

FIGURE 1 | Common cells for prevascularization and their isolation sites. EC (Endothelial cells), EPC (Endothelial progenitor cells), HUVEC (Human umbilical vein
endothelial cells), MSC (Mesenchymal stem cells), fibroblast, SMC (Smooth muscle cells), and pericyte have been used for prevascularization of different tissues.
Endothelial and supporting cells can be obtained from various cell sources, including skin, mucosal membrane, bone, and peripheral blood, or differentiated from hiPSCs
(human induced pluripotent stem cells). Recently, particular attention has been given to the umbilical cord and amniotic membrane as easy to access cell sources.
These cells show lower immunogenicity than the other cell lineages, introducing them as excellent candidates in the prevascularization process.
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et al., 2020). Endothelial cells (ECs) which form the interior lining
of blood vessels, can be obtained from various tissues including
umbilical vein, aorta and different micro vessels such as micro
vessels in adipose tissue or foreskin (Krüger-Genge et al., 2019).
These cells can be differentiated from human induced pluripotent
stem cells (hiPSCs) and pluripotent stem cells. (Natividad-Diaz
et al., 2019) Furthermore, endothelial progenitor cells (EPCs) can
be isolated from peripheral blood and bone marrow (Figure 1)
(Sun et al., 2020). Appropriate ECs should be selected based on its
isolation process and angiogenic properties. ECs are mainly
identified by expressing cluster of differentiation (CD) 31 and
von Willebrand factor (vWf) in co-cultures, while they express a
variety of biomarkers including, Fli-1 (friend leukemia
integration-1), CD13, CD29, CD36, CD34, CD39, CD44,
CD47, ICAM-1 (intercellular adhesion molecule-1), CD61,
CD62, CD80, CD102, CD105, CD106, CXCL16, CD143,
CD144, CD146, ADAMTS13 (a disintegrin and
metalloproteinase with thrombospondin motifs-13),
ADAMTS18, and VE-cadherin (vascular endothelial cadherin).
However, it must be taken into account that the ratio of expressed
markers can be different in specialized endothelial cell networks
(Goncharov et al., 2020). In recent years, different sources of
endothelial cells have been used alone or in a co-culture system to
form capillary network in vitro. In this section, we discuss the
most applicable endothelial lineage cells used in
prevascularization.

2.1 Human Umbilical Vein Endothelial Cells
Human umbilical vein endothelial cells (HUVECs), well-known
for their angiogenic features, are harvested from the endothelium
of the umbilical cord veins. Their angiogenic capabilities could be
attributed to the existence of a progenitor cell subpopulation
within HUVECs (Ingram et al., 2005; Kocherova et al., 2019).
These cells express many common EC markers such as CD31,
vWf, CD34, CD54, ICAM-1, CD62-E, CD106, VCAM-1
(vascular cell adhesion protein-1), and CD143 (Ma et al.,
2014a; Kuss et al., 2018). HUVECs have been used in various
prevascularization strategies such as bioprinting. For instance,
HUVEC spheroids encapsulated in fibrin and collagen were
printed with high rate of viability on scaffolds with tuned
surface topological features to control the alignment of the
developed capillary-bed (Benning et al., 2018). Considering
their simple and low-cost isolation methods, they have been
widely used in co-culture systems with a wide variety of
supporting and target tissue cells. HUVECs can be co-cultured
with mesenchymal stem cells (MSCs) derived from different
origins. Adipose tissue mesenchymal stem cells (AD-MSCs)
and bone marrow mesenchymal stem cells (BM-MSCs) are
known as commonly used MSCs that are frequently co-
cultured with HUVECs for prevascularization of various target
tissues. BM-MSCs and AD-MSCs show similar vasculogenic
capabilities. However, the isolation process of AD-MSCs is
more accessible than BM-MSCs (Ma et al., 2014b). In addition
to AD-MSCs and BM-MSCs, HUVECs co-culture with amniotic
membrane derived mesenchymal cells have shown successful
results with a ratio of 1:1 for developing prevascularized
micro-tissues (Zhang S. et al., 2017).

Different factors influence the prevascularization of
engineered tissues via HUVECs/MSCs co-culture systems
including seeding density ratio, growth media and culture
conditions. The optimal HUVECs/MSCs ratio recommended
by some studies is 5:1 (Kaully et al., 2009; Rao et al., 2012; Ma
et al., 2014a). Au et al. reporeted that vascular networks created by
cell suspension of HUVECs with the HUVECs/BM-MSCs ratio of
5:1 in a collagen/fibronectin hydrogel remained functional for
130 days after implantation in vivo (Au et al., 2008).

Different studies focusing on angiogenesis within bone
regeneration have used HUVECs and MSCs co-culture
systems. HUVECs/MSCs co-culture can reduce mineralization
of the engineered bone tissues. In this matter, subsequent seeding
of endothelial cells after reaching proper confluency of MSCs can
be a potent solution (Kim et al., 2019). MSCs from different
origins support both network formation and osteogenic
differentiation of engineered bone constructs. Human
umbilical cord mesenchymal stem cells, BM-MSCs, hiPSCs
derived mesenchymal stem cells (hiPSC-MSCs) and embryonic
stem cell differentiated mesenchymal cells in separate cultures
with HUVECs developed vessel-like network on a calcium
phosphate cement (CPC) scaffold. In that study, no significant
difference in capillary development and mineralization was
detected between different type of MSCs which were co-
cultured with HUVECs (Chen et al., 2018). Moreover,
HUVECs co-cultured with hiPSC-MSCs developed capillary-
like structures and promoted mineralization on CPC scaffold,
so that a complex and well-organized capillary network was
successfully formed at 21 days post-culture. (Liu et al., 2017).

HUVEC/BM-MSC spheroids encapsulated within collagen/
fibrin hydrogels showed more favorable capillary-like structure
formation and osteogenic differentiation than the cell suspension
form (Heo et al., 2019). HUVEC/AD-MSC spheroids with 1:1
ratio encapsulated in hyaluronic acid/gelatin bioactive hydrogels
were successfully used for prevascularizing a 3D-bioprinted
Polycaprolactone/Hydroxyapatite scaffold. A significant cell
migration and sprouting was observed in the co-culture
system after 7 days (Kuss et al., 2018). HUVEC/AD-MSC
spheroids with a ratio of 1:9 have been bio-printed to make a
prevascularized adipose micro-tissue. The cell spheroids formed
capillary-like structure within 7–14 days (Benmeridja et al.,
2020). HUVEC/BM-MSC spheroids can develop a capillary-
like network in fibrin scaffold. The optimal vessel development
was achieved in the HUVEC/MSC spheroids with a 1:1 ratio. It is
worth noting that there may be less chance of capillary-like
developments in HUVEC spheroids alone. Furthermore, MSCs
migration always happens after HUVECs migration (Roux et al.,
2018)

Different models of cell sheet engineering have been applied
for developing prevascularized structures in bone tissue
engineering. Zhang et al. developed a prevascularized natural
nanofibrous extracellular matrix sheet with high mechanical
strength using HUVECs/MSCs (Zhang et al., 2018). Likewise,
HUVECs/AD-MSCs magnetic responsive sheets have been used
for developing an engineered bone tissue by internalizing iron
oxide nanoparticles in the cells (Silva et al., 2020). Furthermore,
osseous cell sheets created by osteo-induction of AD-MSCs have
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been applied as a bio-paper for bio-printing HUVECs via laser-
assisted bioprinting (Kawecki et al., 2018).

Dynamic co-culture and physical tension could enhance both
angiogenic and osteogenic differentiation. Culturing HUVECs
with BM-MSCs within a dynamic condition of tubular perfusion
system bioreactor showed an increase in production of bone
morphogenic protein 2 (BMP-2) and development of CD31
network indicating osteogenesis and vasculogenesis (Nguyen
et al., 2017). It was concluded that tension could promote
osteogenic properties of HUVECs/BM-MSCs cultures (Jiang
et al., 2018).

HUVECs/MSCs have been also used for developing a
prevascularized engineered cardiac constructs. In a study
conducted by Sharma et al. a confluent culture of MSCs on a
fibroblast-derived nanoscale extracellular matrix (ECM) scaffold
formed a CD166 tracks aligned with ECM nano-fibers.
Subsequent seeding of HUVECs on the developed scaffold
resulted in formation of a well-organized capillaries aligned
with CD166 tracks (Qian et al., 2019). Culturing HUVECs and
fibroblasts on a micro-patterned polyethersulfone/
polyvinylpyrrolidone membranes also formed an aligned
network with topological features of membranes (Skrzypek
et al., 2018). It seems that the origin of MSCs profoundly
affect the vascularization capability of HUVECs. HUVECs in
culture with dermal fibroblast, AD-MSCs, BM-MSCs and
Wharton’s jelly-MSCs were used to prevascularize both
agarose-collagen and fibrin hydrogels. Particularly, capillary
networks were more noteworthy in co-cultures on fibrin
hydrogels as well as HUVECs/fibroblasts and AD-MSCs co-
culture, while co-cultures containing BM-MSCs developed less
significant capillary-like structures (Kniebs et al., 2020).

2.2 Endothelial Progenitor Cells
Endothelial Progenitor Cells (EPCs), which are circulating in
the peripheral blood, play a crucial part in regeneration of
vasculature bed endothelial lining. EPCs are also more
proliferative and potent than the adult endothelial cells,
where their pro-angiogenic properties are more noteworthy
than that of non-progenitor endothelial cells (Asahara et al.,
1997; Aicher et al., 2006). They can be derived from bone
marrow, peripheral blood, umbilical cord blood and also can
be harvested by differentiation of the hiPSCs (Garikipati and
Kishore, 2017; Huizer et al., 2017). Endothelial colony-forming
cells (ECFCs) are adult EPCs that take part in vasculogenesis
and regenerating endothelial lining. The EPCs derived from
human cord blood (human cord blood endothelial colony-
forming cells or hCB-ECFCs) show much greater
proliferative and angiogenic abilities compared with EPCs
isolated from human peripheral blood (hPB-ECFCs) (Peters,
2018). Until now, EPCs have been used for vascularizing
common scaffolds such as decellularized scaffolds (Guo et al.,
2018), Poly-Ethylene Glycol Hydrogel (Peters et al., 2016), and
Matrigel (Iqbal et al., 2017; Rosca et al., 2018). With all the
controversies over the EPCs and their applications, they show
promising potentials for scaffold vascularization (Peters, 2018).
EPCs ability to develop capillary-like networks in culture with
osteoblasts (Fuchs et al., 2007), fibroblasts (Dai et al., 2018) and

mesenchymal stem cells (Liu H. et al., 2018) has been
demonstrated in several studies.

In spite of many encouraging results obtained from using
EPCs for prevascularization, some concerns still remain
regarding their origin and classification. In fact, there is
variation in definition of EPCs phenotype and their distinctive
features in the literature (Table 1). Some authors divided EPCs
into two categories, including hematopoietic EPCs which are
stem cells originated from bone marrow with pro-vasculogenic
properties, and non-hematopoietic EPCs which have ECs
phenotype with less potency for pro-vasculogenic features
(Garikipati and Kishore, 2017). In another classification, these
cells have been categorized into two subpopulations including
early EPCs and late EPCs with different angiogenic features. Early
EPCs are spindle shaped and possess extensive proliferative
abilities in the second and third week after isolation; however,
their proliferative potential is limited after 6 weeks. It has been
reported that they are also involved in innate immunity and
inflammation. As a result, their application is limited because
they may raise inflammatory responses and consequently cause
graft rejection (Cheng et al., 2013). Late EPCs are cobblestone
shaped that form primitive colonies after 3 weeks and are far
more proliferative than early EPCs (Fedorovich et al., 2010).
There is an agreement now that late EPCs contribute in
angiogenesis and the early EPCs may indirectly join in
endothelial network formation (Medina et al., 2010). Although
there are many controversies surrounding the specific biomarkers
for EPCs isolation, some markers such as CD34, CD133, and
VEGFR2 (vascular endothelial growth factor receptor-2) have
been frequently used for identification of these cells (Sen et al.,
2011).

Recently, EPCs co-cultured with different supporting cells
have been successfully used for prevascularization. Growth
factors released from MSCs, including VEGF (vascular
endothelial growth factor) and bFGF (basic fibroblast growth
factor), enhance angiogenic capability of EPCs (Fauza et al.,
2018). EPCs from peripheral blood combined with peripheral
bloodMSCs were used for prevascularizing a 3D biphasic calcium
phosphate bio-ceramic. In that study, the expression of VEGF,
PDGF (platelet-derived growth factor) and alkaline phosphatase
significantly increased in EPCs/MSCs co-culture (Chen et al.,
2019). It has been reported that the optimal angiogenic and
osteogenic value were observed in in PB-EPCs/BM-MSCs
cultures within 1:3 or 2:1 ratio (Peng et al., 2019). Moreover, a
prevascularized patch with antifibrotic properties have been
developed by bioprinting EPCs and BM-MSCs on a
decellularized liver scaffold (Wonil et al., 2018).

EPCs isolated from cord blood in culture with fibroblasts
developed a capillary-like network in 7 days with a similar
morphology to HUVECs/fibroblasts co-culture. Interestingly,
EPCs/fibroblasts made anastomosis with the host vasculature
earlier than HUVECs/fibroblasts and signs of blood perfusion
was appeared after 1 day of implantation. It was observed that
higher ratio of fibroblasts can result in stronger anastomosis to
the host vasculature (Chen et al., 2010). Lee et al. used a co-culture
system by peripheral blood isolated EPCs and human mucosal
fibroblasts and keratinocytes to develop a skin tissue construct.
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They seeded EPCs on a fibroblast-incorporated fibrin layer. Then,
keratinocytes were seeded subsequently on the developed
scaffold. It was showed that their co-cultured system formed a
prevascularized construct whit successful results in the excisional
wound of a nude mice (Lee et al., 2019).

2.3 Microvascular and Adult Endothelial
Cells
Adult endothelial cells have limited proliferation. These cells are
highly specialized and exhibit unique morphology and
characteristics in tissues like liver and kidney, which limit
their potential application in prevascularization (Bale et al.,
2015). However, microvascular endothelial cells such as
human dermal microvascular endothelial cells (hDMECs),

adult human cardiac endothelial cells (hCECs), adult human
pulmonary artery endothelial cells (hPAECs), and aortic
endothelial cells have been successfully used for
prevascularization of engineered tissue constructs (Jiang et al.,
2018; Manikowski et al., 2018). For instance, aortic endothelial
cells in co-culture with BM-MSCs developed microvasculature
after 14 days of culture (Pekozer et al., 2016).

MSCs co-culture with other adult endothelial cells such as
human cardiac microvascular endothelial cells (hCMVECs) has
been found to be effective to produce a functional prevascularized
3D cardiac graft (Valarmathi et al., 2018). hCMVECs in the
present of MSCs could successfully form a capillary-like network
in a 3D collagen cell carrier (CCC) within 7 days under
vasculogenic conditions. Later, hiPSC-derived embryonic
cardiomyocytes were cultured on the prevascularized CCC

TABLE 1 | Common markers used for isolation of endothelial cells and supporting cells.

Cell type Specific cell category Markers used for isolation References

Positive Negative

Endothelial
lineage cells

HUVECs CD31, CD34, CD40, CD54, CD62-E, CD106,
CD143, vWf, ICAM-1, VCAM-1, VE-cadherin,
ADAMTS13, ADAMTS18

- Chopra et al. (2018)

EPCs Bouïs et al. (2001)
Early EPCs CD14, CD31, CD45, CD133, vWF - Peters (2018)
Late EPCs(OECs) CD31, CD34, CD133, vWF, VEGFR-2, VE-

cadherin
CD14, CD45,
CD115

Jang et al. (2019)

Non-
hematopoietic
EPCs

CD31, CD34, CD105, CD146, VEGFR-2, VE-
cadherin

CD133 Hofmann et al. (2009)

Hematopoietic
EPCs

CD31, CD34, CD105, CD133, VEGFR-2, CXCR-4,
c-Kit

- Garikipati and Kishore,
(2017)

ECFCs CD31, CD34, CD44, vWF, VEGFR-2, VE-cadherin CD14, CD45,
CD115, CD133

Khaki et al. (2018)

CECs CD31, CD34, CD44, CD146, vWF, VEGFR-2, VE-
cadherin

CD45 Oswald et al. (2004)

Microvascular and
differentiated endothelial
cells

Müller et al. (2002)

hDMECs CD31, CD36, CD40, CD144, vWF - Mukai et al. (2008)
hiPSC-ECs CD31, CD49d, CD105, CD144, vWF, VEGFR-2,

VE-cadherin
- Sukmawati and Tanaka,

(2015)
MSC-ECs CD31, CD44, CD73, CD105, CD144, vWF,

VCAM-1, FLT-1, VEGFR-2, VE-cadherin
- Swerlick et al. (1992)

Xing et al. (2020)

Supporting
cells

MSCs CD11, CD44, CD73, CD90, CD105, CD106,
CD166, Integrin-α1, IGF-2

CD11b, CD19,
CD34, CD45,
HLA-DR

De Souza et al. (2016a)

Fibroblasts CD9, CD29, CD44, CD73, CD90, CD105, CD166,
MMP-1, MMP-3

CD146 Lynch and Watt, (2018)

Pericytes CD73, CD90, CD105, CD146, PDGFRβ, α-SMA,
NG2, Desmin, RGS5

- Owens and Wise (1997),
Xueyong et al. (2008)

VSMCs CD73, CD90, CD105, α-SMA, PDGFRβ,
H-caldesmon, Smoothelin, Calponin

- Viswanathan et al. (2019)

HUVECs, Human umbilical vein endothelial cells; EPCs, Endothelial progenitor cells; OECs, Outgrowth endothelial cells; ECFCs, Endothelial colony forming cells; CECs, Circulating
endothelial cells; hDMECs, Human dermal microvascular endothelial cells; hiPSC-ECs, Human induced pluripotent stem cells derived endothelial cells; MSC-EC, Mesenchymal stem cell-
derived endothelial cells; MSCs, Mesenchymal stem cells; VSMCs, Vascular smooth muscle cells; CD, Cluster of differentiation; vWF, vonWillebrand factor; ICAM-1, Intercellular adhesion
molecule-1; VCAM-1, Vascular cell adhesion molecule-1; ADAMTS, A disintegrin and metalloproteinase with thrombospondin motifs;VEGFR-2, Vascular endothelial growth factor
receptor 2;VE-cadherin, Vascular endothelial cadherin;CXCR-4, C-X-C chemokine receptor type 4; FLT-1, FMS-like tyrosine kinase-1; IGF-2, Insulin-like growth factor-2; HLA-DR, Human
leukocyte antigen-DR; MMP, Matrix metalloproteinase; PDGFRβ, Platelet-derived growth factor receptor β; α–SMA, α-Smooth muscle actin; NG-2, Neuron-glial antigen 2; RGS-5,
Regulator of G-protein signaling 5.
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under myogenic conditions for another week to achieve myogenic
differentiation (Valarmathi et al., 2017). Human adipose tissue
microvascular endothelial cells (hAMECs) are potent candidates
for prevascularization of skin and soft tissue substitutes.
Promising results have been reported in co-seeding of
hAMECs and adult normal human dermal fibroblasts to form
a well-organized vascular network. The optimal mechanical
strength and capillary development are achieved in ECs/
fibroblasts ratio of 4:1. It is observed that modifying the ECs/
fibroblasts ratio can change the pattern of vascular network,
giving researchers more choices for prevascularization of
different tissues (Czajka and Drake, 2014). For instance,
human dermal microvessel endothelial cells isolated from
foreskin in culture with gingival fibroblasts and gingival
epithelial cells, by an ECs/fibroblasts ratio of 1:1 were used to
develop a prevascularized buccal mucosa substitute, with the
potential application in urethral defects (Heller et al., 2016). In
another example, a complex capillary-like network was developed
by human dermal fibroblasts (hDFs) co-cultured with hDMECs
with ratio 1:1 in thermoresponsive biomimetic
polyisocyanopeptide (PIC) with pore diameters of 100–150 μm
(Zimoch et al., 2018). In another study Sasagawa et al. created a
construct using human aortic endothelial cells entrapped between
two hDFs cell sheets that successfully developed a CD31+ network
within 3 days (Sasagawa et al., 2014).

2.4 Stem Cell-Derived Endothelial Cells
Finding an autologous endothelial cell source is one of the main
challenges of prevascularization. Endothelial cells can be
differentiated from different stem cell sources such as MSCs,
hiPSCs, and also from embryonic stem cells, fetal pluripotent
stem cells, and totipotent embryo stem cells (Xu et al., 2019).
Several strategies have been employed for the endothelial
differentiation of stem cells. Most of these strategies use an
endothelial differentiation medium that contains growth
factors such as VEGF (Oswald et al., 2004; Wu et al., 2007;
Wang et al., 2018). A 2D monolayer or a 3D embryoid body of
hiPSCs or embryonic stem cells can be differentiated into
endothelial lineage cells using an endothelial differentiation
medium (Kim et al., 2007; Zhang J. et al., 2017; Suresh and
West, 2020). Furthermore, the pluripotent stem cells can be co-
cultured with OP9 stromal cells that produce endothelial
differentiating factors (Figueiredo et al., 2015). As another
strategy, genetic modification can be used for endothelial
differentiation of the embryonic stem cells and hiPSCs. For
Instance, Wang et al. differentiated endothelial cells from
hiPSCs by altering the transcription factor
E26 transformation-specific variant 2 or ETV2 gene (Wang K.
et al., 2020). Lindgren et al. also modified the expression of ETV2
for endothelial differentiation of embryonic stem cells (Lindgren
et al., 2015). In addition to ETV2, alteration of the other
transcriptional factors such as GATA-2, LMO-2, and TAL-1
have been proposed as a strategy for endothelial differentiation
of stem cells (Elcheva et al., 2014; Lange et al., 2020). After
endothelial differentiation, endothelial-specific markers such as
CD31, CD34, CD144, VEGFR-2, and vWF have been used for
confirming the endothelial differentiation of stem cells (Kennedy

et al., 2021). There are still several questions regarding the
functionality of endothelial cells differentiated from hiPSCs. Li
et al. observed that endothelial cells derived from hiPSC have a
significantly decreased proliferation rate than those derived from
embryonic stem cells, and they can lose their endothelial
phenotype and markers through passages (Li et al., 2011).
Although ECs differentiated from hiPSCs have been used to
develop functional capillary beds, it has been shown that the
vascular network developed by hiPSCs had less density than the
vascular network created by HUVECs (Bezenah et al., 2018).
Further investigations are required on the effect of various
endothelial differentiation strategies on network forming
ability of stem cell-derived endothelial cells.

Several studies used stem cell-derived endothelial cells for
prevascularization. Culture of various ECs, such as hCECs,
hPAECs, hiPSCs derived endothelial cells (hiPSC-ECs) with
adipose-derived stromal cells successfully developed a well-
formed capillary-like network (Calderon et al., 2017;
Manikowski et al., 2018). However, it was observed that
without external growth factors, the developed network
collapsed, and ECs mono-culture could not complete the
capillary-like network (Manikowski et al., 2018). In another
study, co-culture of ECs differentiated from BM-MSCs of
Witsar rat with BM-MSCs have been used for developing a
scaffold-free cell sheet. Accordingly, the development of a
capillary-like network and lumen formation was observed
within a week that eventually promoted repair of the rat
cranial bone defects (Xu et al., 2019). Moreover, MSC-derived
CD31+ endothelial cells in culture with AD-MSCs and MSC-
derived fibroblasts were successfully used for prevascularizing a
fibroblast niche coated tissue engineered dermal graft (TEDG)
scaffold, which was developed as a skin substitute (Ajit et al.,
2020). In another study, Masuda et al. developed a cardiac cell
sheet using rat embryonic stem cell-derived ECs, dermal
fibroblasts and embryonic stem cell-derived cardiomyocytes. It
was reported that cardiomyocytes could promote endothelial cell
differentiation and sprouting (Masuda et al., 2015). Overall, stem
cell-differentiated endothelial cells represent a valid and
promising cell source for prevascularization. However, prior to
clinical application of these cells in prevascularized constructs, it
is important to resolve concerns regarding the efficiency of these
cells in fabricating endothelial networks, and their teratogenicity.

3 SUPPORTING CELLS

To achieve proper perfusion in engineered tissue constructs, the
quality of vessels is as vital as their length and sprout numbers.
Development of these functional networks can be achieved using
supporting cells along with endothelial cells. Combination of
endothelial lineage cells with target tissue cells and supporting
cells like fibroblasts (Sorrell et al., 2007), smooth muscle cells
(Fillinger et al., 1997), mesenchymal stem cells (Aguirre et al.,
2010), pericyte cells (Antonelli-Orlidge et al., 1989), epithelial
cells (Kim et al., 2002), and osteoblasts (Hofmann et al., 2008)
seems to be a potential solution for vascularization of engineered
tissue constructs. Supporting cells affect the formation and
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organization of capillary networks directly, while target tissue
cells such as cardiomyocytes, osteoblasts, epithelial cells,
keratinocytes, and neural cells have an indirect effect (Grellier
et al., 2009). Supporting cells facilitate inosculation to the host
vasculature in addition to their ability to improve ECs viability
and proliferation and they also stabilize newly formed vessels by
inhibiting uncontrolled angiogenesis. The effectiveness and
supportive role of supporting cells are owing to the production
of growth factors and ECM, resulting in stabilizing the capillary-
like formations. In fact, these cells not only support and stabilize
newly formed capillaries, but also act as a source of pro-
angiogenic growth factors such as VEGF and bFGF.

3.1 Mesenchymal Stem Cells
Mesenchymal stem cells, as the first group of supporting cells, are
able to differentiate into various cell types such as pericytes,
adipocytes, chondrocytes, myocytes and osteoblasts (Caplan,
1991; Abbasi-Kangevari et al., 2019). They can be harvested
from different tissues including bone marrow (BM-MSCs),
adipose tissue (AD-MSCs), placenta, umbilical cord, amniotic
fluid, peripheral blood (PB-MSC), dental pulp, limbal stroma as
well as differentiated hiPSCs (Funderburgh et al., 2016). They
express various surface markers including CD11, CD44, CD73,
CD90, CD105, CD106, and CD166. However, these cells do not
express CD14, CD34, and CD45 (Avolio et al., 2017; Valarmathi
et al., 2018) (Table 1). The angiogenic ability of MSCs is differ
from each other, so that they morphologically form different
vessel networks depending on their origins. For example, the
morphology of vessels induced by umbilical artery, umbilical vein
and “Wharton’s jelly” mesenchymal cells are different (Xu et al.,
2017).

AD-MSCs are preferred in many studies due to their simple
isolation and their ability to induce angiogenesis (Chen et al.,
2015; Freiman et al., 2016). The umbilical-derived mesenchymal
cells have a great angiogenic ability, while the placenta-derived
MSCs show a higher proliferation rate, multi-lineage
differentiation capability and lower immunogenicity (Kargozar
et al., 2018). It is worth to mention that the hiPSC-MSCs and BM-
MSCs both promote vascularization, even though telomerase
activity is 10-fold greater in hiPSC-MSCs than in BM-MSCs
(Chen et al., 2018).

MSCs have been used in many studies due to their abilities to
promote vessel formation and maturation by different
mechanisms (Navone et al., 2014; Oki et al., 2018). The MSCs
produce pro-angiogenic cytokines such as hypoxia-inducible
factor 1α (HIF-1α), angiogenin, angiopoietin I, angiopoietin II,
angiopoietin IV, interleukin-1β (IL-1β), interleukin-6 (IL-6),
interleukin-8 (IL-8), insulin-like growth factor 1 (IGF-1),
VEGF, bFGF, PDGF, transforming growth factor-β (TGF-β),
monocyte chemoattractant protein-1 (MCP-1), and as well as
by triggering the VEGF-A signaling cascade. They are also
capable of producing anti-angiogenic factors such as
angiostatin and vasohibin (Bandara et al., 2017; Rezaie et al.,
2019; Maacha et al., 2020). Therefore, the balance between
autocrine and paracrine secretion of pro-angiogenic and anti-
angiogenic factors is responsible for promoting vasculogenesis
and stabilizing the newly formed vessels by adjusting the

permeability of new vessels through manipulation of cell-to-
cell junctions (Ghajar et al., 2006; Sorrell et al., 2009; Bussche
and Van De Walle, 2014). Origin of MSCs, culture environment,
culture growth factors, scaffold, and co-culture ratio can
contribute to the ability of MSCs for utilization for
prevascularization.

In recent years, several studies suggested the potential use of
MSCs exosomes for inducing angiogenesis (Moghadasi et al.,
2021). Moreover, mesenchymal exosomes extracted from the
placenta and adipose tissue can be a promising tool for
prevascularization (Liang et al., 2016; Komaki et al., 2017).
However, there are contradictory findings regarding the
angiogenic effect of BM-MSC derived exosomes. Lee et al.
showed BM-MSCs’ exosomes could suppress angiogenesis (Lee
et al., 2013).

MSCs can be differentiated into the endothelial lineage cells.
Du et al. induced MSCs in culture with osteogenic MSCs
prevascularized mesoporous bioactive glass (MBG) scaffold
where they used 10 ng/ml of bFGF and 40 ng/ml of VEGF to
induce endothelial differentiation in AD-MSCs. MSC-EC were
positive for CD31 and vWF (Du et al., 2018). It is also reported
that BM-MSCs can differentiate into ECs in a non-direct co-
culture with ECs. It was observed that ECs induced differentiation
of BM-MSCs into CD31 positive cells (Li et al., 2018).

3.2 Fibroblasts
Fibroblasts, as the main producers of ECM collagen, have an
essential role in angiogenesis and wound healing process. These
cells have been utilized in co-culture with endothelial cell lines
such as HUVECs, EPCs, and microvascular endothelial cells
(MVECs) to develop a prevascularized skin substitute (Sorrell
et al., 2007; Dai et al., 2018). Fibroblasts are mostly isolated from
skin, mucosal membrane and other soft tissues. Both the method
and the site of isolation are considered as the important factors
for the angiogenic ability of fibroblasts (Bishop et al., 1999). It was
reported that formation of a capillary-like network was only
observed in the culture of endothelial lineage cells with human
dermal fibroblasts, not in culture with neonatal human foreskin
fibroblasts 1 (hFF-1) (Costa-Almeida et al., 2014).

Since fibroblasts have mesenchymal origins, no significant
marker has been identified for distinction of MSCs and
fibroblasts. Markers like CD9, CD29, CD44, CD90, CD105,
CD166, and CD73 are expressed in both MSCs and
fibroblasts. However, there is a slight difference between the
expression levels of some markers in MSCs and fibroblasts.
The expression of CD106, integrin alpha 1, and IGF-2
(insulin-like growth factor 2) are high in MSCs, while MMP-
1(matrix metalloproteinase-1), and MMP-3 are highly expressed
by fibroblasts. Moreover, fibroblasts show a lower expression of
CD146 compared with MSCs (Costa-Almeida et al., 2018).

Paracrine interactions between fibroblasts and ECs would
regulate angiogenesis (Montesano et al., 1993). Physical
stimulation can affect paracrine signaling, which induces
angiogenesis. For instance, mechanical strain helps to stabilize
capillary network assembly, and electrical stimulation can
promote angiogenesis by ECs/fibroblasts interaction (Landau
et al., 2018; Geng et al., 2019). In a study conducted by
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Asakawa et al., HUVECs cell sheet stacked with two hDFs cell
sheets on a fibrin layer in five different orders. The best network
formation with the highest relative vascular network lumen area
was observed when HUVECs sheets directly placed on the fibrin
layer and under the two fibroblast sheets (Asakawa et al., 2010).
Using layer by layer assembly, Miyazaki et al. developed a
prevascularized skin substitute by HUVECs and neonatal
hDFs co-culture. In that study, HUVECs showed elongation at
days 4 and 7 post-culture, where the vessel-like lumenized
structures were clearly observed (Miyazaki et al., 2019).

HUVECs/fibroblast’s co-culture have been frequently used
alongside another supporting cells or target tissue cells in
different tri-culture methods. Using self-assembly and re-
seeding methods, Jakubowska et al. constructed a
prevascularized vaginal mucosa substitute through tri-culture
of HUVECs/fibroblasts/epithelial cells, with a HUVECs/
fibroblasts ratio of 2:1 (Jakubowska et al., 2020). In another
study, in a tri-culture system, HUVECs and human
respiratory epithelial cell were cultured with hDFs or human
nasal fibroblasts in a fibrin gel and agarose-collagen type 1
scaffold which successfully formed a prevascularized
respiratory mucosa.

Adding small molecules can alter network formation and
morphology in an ECs/fibroblasts co-culture system. For
instance, adding trehalose in a HUVECs/human normal
dermal fibroblasts co-culture with a growth media containing
VEGF can inhibit network formation and altering endothelial cell
morphology through inhibition of VEGFR2 receptor in a dose-
dependent manner. Moreover, fibroblasts in this co-culture
system showed myofibroblasts’ phenotype and supported
endothelial vessel network which was identified by
presentation of α-smooth muscle actin (α-SMA) (Takeuchi
et al., 2011). Recently, we used lacto-n-neotetraose to improve
the healing process of full-thickness wounds in the mice models.
Our results showed that subcutaneously injection of this
oligosaccharide significantly increased the expression of VEGF
in the wound bed. These findings highlight the great potential of
natural materials to induce secretion of angiogenic factors within
the implant sites (Farhadihosseinabadi et al., 2020).

3.3 Perivascular Cells
Perivascular cells including vascular smooth muscle cells
(VSMCs) and pericytes regulate many features of natural
vessels (Kerkar et al., 2006). VSMCs surround larger arteries,
while pericytes wrap around capillaries to stabilize the newly
formed vessel. VSMCs can be differentiated from mesenchymal
stem cells, human embryonic stem cells, skin fibroblasts, hiPSCs
or isolated from vascular tissues such as aortic ring and human
umbilical cord (Montezano et al., 2017; Pang and Thomas, 2018;
Perry et al., 2019). VSMCs show two different major phenotypes:
synthetic and contractile. Synthetic phenotype, which is usually
observed near sites of vascular remodeling, has more remarkable
proliferative ability than the spindle-shaped contractile type
which has less proliferative capacity and more contractile
fibers (Metz et al., 2012). VSMCs isolated from microvessels
and their native environment initially show spindle-shaped
phenotype with a hill and valley morphology of synthetic type

after growing in culture media (Kwartler et al., 2016). VSMCs in
angiogenesis models are identified by α-SMA. The contractile
phenotype of these smooth muscle cells is characterized by
smooth muscle myosin heavy chain, smoothelin, calponin, and
SM22α (Owens and Wise, 1997).

ECs and VSMCs act as a coupled system for transmission of
signals from receptors localized on the endothelium surface and
vice versa. Angiogenic growth factors expression will be higher
when cell-to-cell interactions exist in this co-culture system
(Heydarkhan-Hagvall et al., 2003). In a bilayer co-culture
system, provoked by ECs-SMCs physical contacts, ECs
influence SMCs’ morphology, proliferation rate, and protein
production (Fillinger et al., 1993). It has been demonstrated
that down regulation of PDGF expression in a spheroidal co-
culture system of ECs and SMCs can inhibit apoptosis of ECs,
resulting in longer viability of the vessels (Korff et al., 2001). In a
study, pre-culturing of SMCs on decellularized native bone
scaffold and subsequent seeding of HUVECs induced
tubulogenesis. Moreover, higher vascular density and lumen
formation was observed after using this method by dynamic
culturing in a bio-reactor (Liu X. et al., 2018).

SMC spheroids have been used for stabilizing a mono-layer of
HUVECs for developing a double-layered vascular-like
structures. In that study, HUVECs were seeded around a
golden needle and the encapsulated SMC spheroid were added
subsequently. After 4 days of HUVECs/SMCs incubation, the bi-
layer structure was separated from the needle where they showed
a well-formed network vessels (Shimazu et al., 2019).

Pericytes are attached to the abluminal side of ECs, where they
are around the basement membrane. These cells show excellent
pro-angiogenic capabilities (Avolio et al., 2017). These cells can
be harvested from umbilical cord, adipose tissue, human heart,
skeletal muscle, dental pulp, saphenous vein and also from
differentiation of hiPSCs (Sims, 1986; Geevarghese and
Herman, 2014). Pericytes express markers such as α-SMA,
NG2 (neuron-glial antigen 2), desmin, and RGS5 (regulator of
G-protein signaling 5). Additionally, they represent CD73, CD90,
CD105, CD146, and PDGFRβ, which are also produced byMSCs.
It seems that some MSCs can be differentiated into pericytes.
These differentiated cells express pericyte markers with pericyte-
like morphology in ECs/MSCs co-culture, which support the
endothelial network (De Souza et al., 2016a). When EPCs and
MSCs were seeded on 3D polyurethane, the constructed vessels
were positive for common pericytes’ markers, supporting the
hypothesis that MSCs in co-culture with EPCs can be
differentiated into pericytes. Furthermore, MSCs can be
differentiated into pericytes after subsequent addition into a
pre-formed capillary-like network (McFadden et al., 2013).
Similarly, pericytes have the ability to be differentiated to the
other mesenchymal-originated cells such as SMCs, fibroblasts
and osteoblasts that can significantly alter metabolic and
mechanical properties of these supporting cells as well as
signaling cascades of ECs (Armulik et al., 2005; Bergers and
Song, 2005; Blocki et al., 2013; Orlova et al., 2014).

While ECs/pericytes in a 3D co-culture can result in tube-like
formations, a 2D co-culture with ECs/pericytes direct contact
does not form such structures (Darland and D’amore, 2001).
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Several studies indicated that pericytes might act as inhibitors of
ECs proliferation. It has been suggested that pericytes prevent
proliferation of ECs via contact inhibition. Although, they inhibit
proliferation of ECs, they stabilize the forming vessels and alter
tube length lumen diameter and sprouting (Orlidge and D’amore,
1987; Waters et al., 2013).

Pericytes have been used in tri-culture system in the presence
of HUVECs and hiPSC-MSCs with a HUVECs/pericytes ratio of
4:1 for prevascularizing a calcium-phosphate scaffold. In that
investigation, both angiogenesis and osteogenesis were
significantly promoted after implantation the developed
construct in the rat cranial bone defect (Zhang C. et al., 2017).

Pericyte-like MSCs and SMCs can support the newly formed
endothelial cell network in culture with EPCs (Loibl et al., 2014).
Cell sheets engineered by EPCs and SMCs differentiated from
MSCs improved ejection fraction of infarcted cardiac muscles
(Shudo et al., 2017). It is reported that prevascularization of a
polystyrene scaffold was achieved by co-culture of EPCs and
SMCs with a 6:1 ratio (Jia et al., 2018a).

3.4 Differentiated Cells in Target Tissues
The native cells of the target tissue can indirectly affect
differentiation and proliferation of ECs and development of
the capillary-like networks. Besides, vascular development can
affect the tissue-resident cells behaviors. These reciprocal
interactions can influence the formation of prevascularized
target tissues such as neural networks. HUVECs in co-culture
with Witsar rat neural cells by a ratio of 1:2.5 were used for
prevascularization of a poly (L-lactide) (PLLA)/poly (lactide-co-
glycolide) (PLGA) scaffold. It was observed that interaction
between endothelial cell network and neural cells lead to
development of a more complex neural network and
morphologies (Shor et al., 2018). Vascular growth can
interfere with development of myotubules formations.
HUVECs in culture with skeletal muscle cells isolated from
fresh human muscle tissue were used for prevascularization of
skeletal muscle constructs. In that study, two methods have been
evaluated. In the first method, direct co-culture of HUVECs and
skeletal muscle cells were considered for developing a
prevascularized construct, while in the second method
myotubules differentiated in a HUVECs free environment and
endothelial cells in a fibril hydrogel were subsequently added. The
findings indicated that in the first method, myotubules
development was suboptimal and endothelial network
development interfered with myotubules differentiation.
However, subsequent addition of endothelial cells resulted in
better capillary network development without interfering with
myotubule differentiation (Gholobova et al., 2020).

The development of vascular network does not always hinder
differentiation of target tissue cells and even sometimes
endothelial cell differentiation can enhance capabilities of
target tissue cells and promote target tissue cell proliferation.
Using layer by layer assembly, HUVECs in culture with human
hepatocytes and fibroblasts were used for developing a 3D liver
engineered tissue construct. After implantation, prevascularized
construct produced more albumin, which indicates that
prevascularization can enhance performance of hepatocytes

(Sasaki et al., 2017). In another study, a sub-population of
EPCs, outgrowth endothelial cells (OECs) from peripheral
blood, cultured with human primary osteoblasts were used for
prevascularization of platelet-rich fibrin (PRF). It was reported
that capillary-like structures were developed 7 days post-culture
and primary osteoblasts promoted angiogenic abilities of EPCs
(Dohle et al., 2018).

Several strategies such as adding small molecules, culturing
under hypoxic condition and subsequent seeding of endothelial
cells have been considered to promote ECs/target tissue cells
interactions. Co-culture of HUVECs and human endometrial
epithelial cells with a 1:1 ratio in a 3D collagen scaffold was
successfully used for developing an endothelial network. It was
showed that adding estradiol could not influence endothelial cell
behaviors directly, however, estradiol increased endogenous
VEGF levels of endometrial epithelial cells which promoted
endothelial network formation (Pence et al., 2015).

Short term hypoxia improves development of a capillary-like
network in an ECs/primary osteoblasts co-culture. However,
prolonged hypoxia is considered as a cytotoxic parameter that
shows negative effect on capillary network formation.
(Gholobova et al., 2020) Sometimes, ECs can be used with
heterogeneous populations of stem cells for fabricating a
capillary-like network. HUVECs in co-culture with amniotic
fluid stem cells were utilized for prevascularization of a
collagen chondroitin sulfate scaffold. Culturing under hypoxic
conditions did not result in better capillary formation
development. It was revealed that hypoxia increased VEGF,
PDGF, and VEGR1, but reduced expression of VEGFR2
(Lloyd-Griffith et al., 2015). In some studies, instead of using
an isolated cell line, cellular extract or isolated heterogeneous cell
population or isolated microvessels were used for
prevascularizing scaffolds. For instance, stromal vascular
fraction (SVF) (isolated from adipose tissue which contains
mesenchymal cells, endothelial progenitor cells, hematopoietic
lineage cells and stromal cells, fibroblast and pericytes) and micro
vascular fraction (MVF-microvascular fragments that are usually
isolated from adipose tissue) can be used for prevascularization of
engineered tissue constructs. It has been shown that wound
healing can be promoted by encapsulating SVF cells in a
collagen-fibrin hydrogel (Nilforoushzadeh et al., 2019). In
another study, a prevascularized adipose tissue was
constructed by using MVF (Acosta et al., 2020). Furthermore,
a prevascularized skin substitute was developed utilizing MVF
and SVF via in vivo prevascularization methods (Später et al.,
2018). In another study amniotic fluid stem cells cultured with
HUVECs with a ratio of 4:1 resulted in prevascularization of a
collagen chondroitin sulphate scaffold in 7 days (Lloyd-Griffith
et al., 2015).

4 CO-CULTURE SYSTEM OPTIMIZATION

Providing a proper environment for proliferation and migration
of endothelial cells, and development of a capillary-like network
assembly with the help of supporting cells can be somewhat
challenging since many considerations including the following
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parameters must be taken into account (Supplementary
Table S1).

4.1 Target Tissue
Since blood perfusion and vascular network of most of the tissues
are different, it is evident that target tissue can play a significant
role in determining the best types of endothelial and supporting
cells for the co-culture system as well as methods and the other
co-culture factors (Figures 2A,B). The structure of target tissues
is a decisive factor in choosing the method of prevascularization.
For instance, 2D co-culture systems and cell sheet engineering
can be used for developing the prevascularized 2D constructs
such as cardiac patch, skin graft, or lumenized structures
including vascular or urethral grafts. In contrast, cell spheroids
and cell encapsulations can be used for developing a 3D bone
constructs. Moreover, since formation of a vascular network can
change the biomechanical properties of scaffolds, many studies
have been conducted to develop prevascularized scaffolds without
reducing their biomechanical properties. Considering the
biomechanical properties of target tissues, an appropriate
scaffold can be selected to limit the uncontrolled formation of
vascular-like structures.

The formation of a vascular network can impact some unique
features of target tissues. For example, it has been shown that
although the optimal vascular network development was seen in
HUVECs/MSCs co-culture systems, the mineralization of the
scaffolds was decreased in the co-culture group compared with
MSCs monoculture (Ma et al., 2014b). In another example,
increasing the cell seeding density of fibroblasts enhanced the
mechanical properties of a prevascularized cardiac patch, while it
decreased cardiac conductivity. Furthermore, the target tissue
cells can significantly impact the formation of vessels by either
promoting or inhibiting vasculogenesis and interacting with
endothelial cells (Ong et al., 2017).

4.2 Scaffolds and Biomaterials
The crosstalk between ECM components and ECM composition
such as collagen type I and IV, laminin, fibrin, and hyaluronic
acid have a direct effect on ECs migration and elongation, length
and number of sprouts as well as the alignment of newly formed
vessels in the natural process of angiogenesis and vasculogenesis.
The scaffolds mimic ECM by providing an environment that can
support endothelial attachment, sprout formation,
lumenogenesis and tubulogenesis and finally regulate

FIGURE 2 | Co-culture system optimization. Co-culture system optimization depends on critical factors that profoundly alter cell behaviors. Target tissue is a
decisive factor in the vascularization process. The cellular microenvironment is another critical factor that influences prevascularization. As shown in the (A,B), co-culture
of AD-MSCs (Adipose tissue derived mesenchymal stem cells) and HUVECs (Human umbilical vein endothelial cells) in a 3D printed polycaprolactone/hydroxyapatite
scaffold coated with cell-laden hydrogels leads to the formation of an appropriate capillary network (white arrow) at day 21 (Kuss et al., 2018). It is evident that
topographical and physicochemical properties and even the type of biomaterial used in scaffolds affect prevascularization. (C,D) Aortic rings (pointed by stars) cultured
on the mesenchymal side (C) and epithelial side (D) of a decellularized amniotic membrane developed in our laboratory. After 7 days of culture, capillary-like structures
and endothelial-like penetrations (black arrows) have been identified on both sides of the amniotic membrane (original magnification X40) (Niknejad et al., 2013). (E,F)
HUVECs and hiPSC-MSC (human induced pluripotent stem cell derived mesenchymal stem cells) co-culture on a calcium phosphate cement (CPC) scaffold.
Microcapillary formations was formed at day 21 (Liu et al., 2017). The prevascularization process is also influenced by growth factors used in cell culture media. (G–I) The
formation of cord-like structures by endothelial cells in response to FGF2 (G), VEGF (H), and the combination of both (I) has shown at day 10 (original magnification X20)
(Khan et al., 2017).
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vasculogenesis process (Figures 2C–F). Although, the currently
designed 3D scaffolds are less suitable to be applied in vivo and
the ideal strength is not achieved yet, there are many
improvements in cell penetration and migration inside the
tissues thanks to bioprinting technology. Factors influencing
scaffold design vary from case to case. To design a
prevascularized implantable and viable tissue, the scaffold
should be permeable and able to excrete wastes out of the
tissue. Moreover, scaffolds are needed to show appropriate
biocompatibility and less toxicity. Natural biomaterials are
derived from components found in extracellular matrix, such
as collagen or other natural materials including those obtained
from plants, insects, or animals. Natural biomaterials usually have
superb biocompatibility with the binding sites for proteins and
cells similar to ECM. We used a Gelatin Methacryloyl (GelMA)/
chitosan nanoparticles composite hydrogel to delivery bFGF
angiogenic factor. According to our findings, the bFGF was
released from the developed scaffold in a sustain manner and
promoted proliferation of cultured fibroblasts. The GelMA/
chitosan nanoparticles scaffold exhibited an excellent
biocompatibility with great potential to be used in
prevascularization processes (Modaresifar et al., 2018).
However, natural materials may be immunogen and suffer
from limited physical and mechanical stability. Major
advantages of synthetic biomaterials include control over the
bio-chemical and physical characteristics, and degradation rate of
these constructs. Besides, these polymers are highly tunable and
their pore size can be controlled for enhancing angiogenesis. To
come up with a scaffold that take advantage of both
biomechanical properties of a synthetic scaffold and cell
supporting abilities of natural scaffolds, synthetic biomaterials
are frequently coated with natural ones (Yu et al., 2015).

4.3 Growth Factors and Culture Conditions
Adding angiogenic factors to tissue-engineered constructs can
enhance their vascularization process (Figures 2G–I) (Patel et al.,
2008). Pro-angiogenic growth factors are used to initiate different
steps of angiogenesis. Formation of new vessels can be increased
by direct or indirect role of growth factors. VEGF and bFGF show
direct effect on angiogenesis (Choi et al., 2018; Kawecki et al.,
2021). They stimulate mobilization of EPCs that speed up the
initiation of angiogenesis. For instance, it has been reported that
genipin cross-linked electrospun gelatin mats loaded with VEGF
can stimulate and induce angiogenesis for tissue engineering
applications (Del Gaudio et al., 2013). However, the
concentration of angiogenic factors must be firmly controlled
because severe vascular leakage or hemangioma may occur in
high concentrations of VEGF.

In addition to main angiogenic factors, there are some growth
factors that indirectly increase angiogenesis process. These
products including sonic hedgehog homolog (SHH) (Weyers
et al., 2020), HIF-1 (Chai et al., 2020; Coyle et al., 2020), and
BMP (Samee et al., 2008; Yang et al., 2021), which recruit cells in
the vascularization area to secret angiogenic factors. PDGF,
angiopoietin 1, and ephrinB2 also show an indirect role on
angiogenesis (Harel et al., 2020; Hosaka et al., 2020; Yoon
et al., 2020). They may help to stabilize the newly formed

capillaries by recruiting smooth muscle cells. VEGF initiate
angiogenesis but cannot induce blood vessel maturation, while
PDGF induce blood vessel stability and maturation. Furthermore,
combined administration of growth factors such as VEGF/bFGF
(He et al., 2012) and VEGF/PDGF (Lutton et al., 2012) have
shown an effective way to generate more stable capillary bed
(Wang B. et al., 2020). However, further studies on the combined
use of angiogenic agents help to identify the optimal angiogenic
environment used in various fields of tissue engineering.

Hypoxic conditions can enhance the angiogenic ability of
MSCs in the culture media. The MSCs cultured under hypoxic
condition showed higher expression of pro-angiogenic factors
including VEGF, vWF, FGF, and Flk-1, which significantly
improved vascularization of PLGA scaffold compared with
MSCs cultured under normal conditions (Kim et al., 2019).
Confirmed by another study, MSCs sheet engineered under
hypoxic conditions (2% O2) had greater capillary network
development compared to those cultured under normal
condition (20% O2) (Zhang et al., 2016).

4.4 Prevascularization Strategy
One of the critical elements determining the quality of
prevascularization is choosing the most suitable method. The
most important consideration for selecting the most suitable
method is the target tissue. 2D prevascularization methods can
be used for prevascularizing tissues like skin, gastrointestinal
and urethral tract. Direct cell seeding on a 2D scaffold is one of
the most common, yet inefficient methods for the
prevascularization of 2D engineered constructs since random
incorporation of endothelial lineage cells and supporting cells
does not result in an aligned, maintainable, and functional
vascular-like network. Co-culture of cells on highly aligned
microfibers or using bioprinting for the patterned culture of
endothelial cells and supporting cells on the scaffold have been
proposed as potential solutions for this issue (Bourget et al.,
2016; Qian et al., 2019).

Cell culture in two dimensions has been routinely performed
during past decades in many labs. Although this approach was
considered suitable, it does not properly mimic that of natural
tissues function (Jensen and Teng, 2020). There are different cell
responses in two and three-dimensional cultures.
Prevascularization of 3D tissues can be much more
challenging since it requires the endothelial network assembly
to be aligned in a three-dimensional space. Some cells will
immediately lose their normal physiologic features after they
are taken out of the body and placed in 2D cell culture, while they
might not be affected in a 3D culture medium (Duval et al., 2017).
Both in vivo and in vitro strategies have been employed to achieve
a functional 3D endothelial network assembly.

In-Vivo prevascularization methods such as AV-loop use the
angiogenesis ability of host vessels to penetrate and vascularize
the scaffold. In the AV-loop method, an arteriovenous shunt is
surgically incorporated into the scaffold in order to prevascularize
the construct (Wu et al., 2017; Weigand et al., 2018). Another in
vivo strategy is implantation of the scaffold in a highly vascular
pouch or flap in the body of the host (Lee et al., 2021). After the
prevascularization of the scaffold, the final scaffold can be
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implanted in the defected tissue. However, these methods are
time-consuming and invasive and are not ideal for translation in
clinical practice.

Over the years, direct injection of endothelial cell suspensions
has been the most frequent strategy applied in regenerative
medicine. This simple method has many weaknesses, including
rapid diffusion of cells, low engraftment efficiency by loss of ECM
interactions, and shear-induced cell death (Kito et al., 2013).
Although random seeding of endothelial cells with supporting
cells in a 3D scaffold with an optimal ratio in a biomaterial with
optimal pore size can result in an endothelial network assembly,
this method requires a lot of trial and error, and usually, the
fabricated network is not organized. Furthermore, another issue
is survival, differentiation, and migration of incorporated cells in
a 3D environment. Encapsulating endothelial lineage cells and
supporting cells in hydrogels containing essential factors for
survival and differentiation of cells such as VEGF can ensure
the survival of incorporated cells (Phelps et al., 2015; Kuss et al.,
2018). Furthermore, it has been shown that using bioreactors for
a dynamic culture environment with chemical and mechanical
stimuli or growth factors gradient can direct the alignment of
endothelial network assembly formed by encapsulated
endothelial lineage cells/supporting cells (Tocchio et al., 2015;
Nguyen et al., 2017).

Using cell spheroids as a prevasculrizing unit is an option to
overcome the limitations of routine cell suspension methods. The
endothelial cell spheroid system was first established as an in vitro
model to study endothelial cell differentiation (Korff and
Augustin, 1998). The spheroid sprouting method has also been
applied as one of the in vitro models of angiogenesis. However,
investigations on its ability to create a prevascularized tissue are in
progress (Blacher et al., 2014). One study investigated bone
regeneration using the co-culture of endothelial cells and
osteoblasts for vascular sprouting and angiogenesis initiation.
It was demonstrated that this co-culture system is likely to control
the angiogenic properties of the ECs and also has a role in the
optimization of osteoblast differentiation (Stahl et al., 2004).
Encapsulation of cell spheroids has also been used for
prevascularization. It has been shown that encapsulation of
cell spheroid can result in more intricate and organized
vascular network development compared to routine cell
encapsulation (De Moor et al., 2021; Roux et al., 2021).
However, it is worth noting that optimal EC/supporting cell
ratio and EC/supporting cell interactions can be quite different
in the spheroidal environment compared to the 2D and 3D co-
culture systems (Benmeridja et al., 2020).

Scaffold-free cell sheet engineering has been widely used to
achieve prevascularized 2D and 3D tissue constructs. Cell sheet
engineering is a method of developing tissue constructs in which
cell sheets are usually harvested on temperature-sensitive culture
dishes (Yamato and Okano, 2004). These dishes are made by
covalent grafting of a temperature-responsive polymer to
ordinary culture plates. Changing the temperature modifies the
surface characteristics from hydrophilic to hydrophobic allowing
many cells to attach or detach. Alternatively, instead of thermal
fluctuation, electromagnetic force can be utilized for attaching
and detaching magnetic responsive sheets (Silva et al., 2020). In

both methods, the formed cell sheets can keep their ECM and
thus freely stick to other surfaces, including host tissues and
another cell sheet. Several, tissues and organs such as the skin, the
cornea, urothelium, and cardiac muscle are reconstructed by this
method (Ng and Hutmacher, 2006; Umemoto et al., 2013; Song
et al., 2020). One of the drawbacks of cell sheet engineering is
ischemia or hypoxia of cells in the core. It has also been
demonstrated that the location of the endothelial cell sheet
compared to sheets composed of supporting cells could be
crucial for developing an organized endothelial network and
preventing hypoxia (Asakawa et al., 2010).

Recent advances in 3D-bioprinting, micro-molding, and
microfluidic enabled researchers to micro-design the scaffold.
As mentioned, micro-designing of the scaffold and micro-
patterning of the surface topography has been used as one of
the leading solutions to achieve an aligned network. Currently,
lab-on-a-chip technologies have been widely used as angiogenesis
and vasculogenesis models in vitro (Ko et al., 2019). These
strategies focus on fabricating microchannels that will be later
cellularized by endothelial and supporting cells to achieve a
prevascularized construct. Several techniques such as
microfluidics, laser degradation, photolithography, layer by
layer assembly, micro-molding, and biodegradable sacrificial-
template have been used to make microchannels mimicking
the natural vascular network.

Microfluidic techniques have been widely used for simulating
vasculogenesis and angiogenesis (Rambøl et al., 2020). One of the
main challenges regarding the use of the microfluidic technique is
finding the correct factors to maintain the optimal flow for
cellularizing channels with endothelial and supporting cells.
Furthermore, the microfluidic techniques are not scalable, and
currently, most of their application remains limited to
angiogenesis models. A common method for micropatterning
is lithography which uses a particular electromagnetic wavelength
to fabricate specific patterns on a scaffold incorporated with
photosensitive biomaterials (Michna et al., 2018). An aligned
microchannels network can be fabricated using this technique
that will be used for the adhesion of endothelial cells to form an
intricate and aligned endothelial network (Jiang and Luo, 2013).
Another method of developing a microchannel network is using a
biodegradable sacrificial template that can be degraded or washed
after implantation and forming the microchannel network
(Miller et al., 2012; Li et al., 2017; Hu et al., 2021). The
microchannels can also be formed using laser biodegradation
techniques (Pradhan et al., 2017). Another method is the layer-
by-layer assembly technique which is used to form a thin scaffold
with various patterns. In this technique, alternative charged layers
will be deposited layer-by-layer to form microchannels (Sousa
et al., 2021). These microchannels can be used as substrates for
adhesion, proliferation, and network formation of endothelial
cells (Miyazaki et al., 2019). These methods provide great control
over the alignment of vascular-like networks. However, currently,
the choice of biomaterials for designing the scaffold is limited,
which means that the biomaterials used for creating these
microchannels do not provide the ideal niche for endothelial
cells. Also, we have yet to achieve 3D constructs with
microchannels with desirable biomechanical properties using
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these techniques. Furthermore, inosculation of microchannels
formed by these techniques to the host vessels after implantation
requires further in vivo investigations. Overall, these advances are
promising, and further investigations in this area can pave the
way for achieving a 3D engineered tissue with an organized and
functional vascular network.

Another solution for fabricating a 3D prevascularized
engineered construct is 3D bioprinting of endothelial and
supporting cells or EC/supporting cell spheroid in a similar
pattern to the vascular network (De Moor et al., 2021). This
method can be used in combination with other techniques to
achieve proper results (Nulty et al., 2021). However, one of the
main obstacles of bioprinting is ensuring the survival of cells
through the process of bio-printing. Benning et al. investigated
the ability of various hydrogels including Matrigel, collagen,
gelatin, gelatin/alginate, fibrin, agarose, and Pluronic F-127 for
bioprinting of endothelial cells. They observed that endothelial
cells that have been bioprinted using collagen and fibrin
hydrogels were capable of proliferation and sprouting and
maintained their endothelial phenotype. Although endothelial
cells bioprinting in gelatin hydrogels were capable of
proliferation, they were unable to initiate sprouting (Benning
et al., 2018). Due to the promising results of bioprinting,
developing more suitable hydrogels can be essential for using
bioprinting in prevascularization.

5 FUTURE PERSPECTIVE

In vitro prevascularization strategies emphasize on optimization
of the interactions between cells, biomaterials and culture
conditions. To date, a wide variety of cells with diverse
vasculogenic features have been studied to ensure survival of
the engineered tissue. HUVECs, taking advantages of convenient
and ethical isolation methods, are the most common endothelial
cell lineage employed in prevascularization strategies and
angiogenesis methods. Furthermore, efforts are being made to
find a suitable cell source with high accessibility and angiogenesis
capability. In this light, MSC-ECs and hiPSC-ECs have been
suggested for the prevascularization of scaffolds since they can
easily be isolated from various tissue, differentiated in vitro, and
act as an autologous cell source. However, several inconsistencies
exist in the reports regarding their pro-angiogenic abilities and
their utilization for prevascularization. Further studies must be
conducted to compare the pro-angiogenic capabilities of these
cells, their markers, and their morphology to the current common
endothelial lineage cells used in prevascularization. Moreover,
amniotic-derived cells seem provide a reliable cell source that can
be easily isolated and differentiated toward endothelial cells
(Yazdanpanah et al., 2015; Abbasi-Kangevari et al., 2019).

These cells also produce various angiogenic growth factors
that candidate them as an appropriate supporting cell. Beside
the cell sources, advances in biomaterial designs come up with
positive results in prevascularization. Recent studies have focused
on new strategies such as cell bioprinting and producing highly-
tunable scaffolds with micro-patterning design to make further
organized vessels similar to host vascular hierarchy. However, an
important roadblock in achieving a sustainable vascularized
construct is the interference of endothelial network
development with the target tissue cells. To overcome this
challenge, different ways are available including changing the
ratio of endothelial cells and protective cells, applying genetic
modifications to alter the signaling pathways in favor of
angiogenesis, and using different growth factors and small
molecule to facilitate anastomosis in the target tissue. Future
studies provide more tools for achieving perfect
prevascularization approaches to develop functional tissue
engineered constructs.
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