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Abstract: Different types of noncoding RNAs like microRNAs (miRNAs) and circular RNAs (circRNAs) have
been shown to take part in various cellular processes including post-transcriptional gene regulation during
infection. MiRNAs are expressed by more than 200 organisms ranging from viruses to higher eukaryotes. Since
miRNAs seem to be involved in host–pathogen interactions, many studies attempted to identify whether
human miRNAs could target severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNAs as an
antiviral defence mechanism. In this work, a machine learning based miRNA analysis workflow was developed
to predict differential expression patterns of human miRNAs during SARS-CoV-2 infection. In order to obtain
the graphical representation of miRNA hairpins, 36 features were defined based on the secondary structures.
Moreover, potential targeting interactions between human circRNAs and miRNAs as well as human miRNAs
and viral mRNAs were investigated.
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1 Introduction
MicroRNAs (miRNAs) are noncoding RNAs involved in post-transcriptional gene regulation. The precursor
miRNAs (pre-miRNAs) fold into characteristic hairpin structures that are used as the primary feature source
in many bioinformatics approaches [1]. Another class of noncoding and endogenous RNAs is circular RNAs
(circRNAs) that are generated by a unique splicing reaction known as back-splicing [2]. CircRNAs seem to be
expressed in a widespread manner and they have important functions in regulation especially as sponges
providing binding sites for miRNAs and RNA binding proteins [3] and a player in the regulation of alternative
splicing [4].

According to the competitive endogenous RNA (ceRNA) hypothesis, RNA transcripts such as circRNAs,
messenger RNAs (mRNAs), and long non-coding RNAs, include miRNA response elements and these are in
competition among themselves for miRNA binding to be able to regulate the expression of each other [5].
Previous studies showed that not only miRNA but also circRNA expressions were changed during infections
of both DNA and RNA viruses [6]. Although there is not much information about circRNAs’ roles during
infection of emerging Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), another member of
coronaviruses, Middle East respiratory syndrome coronavirus (MERS-CoV) infection resulted in expression
changes of host circRNAs [3].

In this study, we used available differentially expressed miRNA information of SARS-CoV-2 infected cells
to build a machine learning based model for prediction. In addition, a comprehensive circRNA-miRNA-mRNA
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targeting network analysis is performed to identify biologically significant processes in SARS-CoV-2 infection.
Our results show that various cellular processes including apoptosis might be affected by the competition of
cellular and viral RNAs. These findings could increase the perceptions of infection through RNA-mediated
host–virus interactions and lead to development of new strategies for antiviral agents.

2 Related works
Various studies attempted to identify human miRNAs that could target viruses [7–10]. Although there are
not many experimentally validated examples of miRNAs encoded by RNA viruses, computational predictions
show that SARS-CoV-2 genome could produce miRNAs that could target human mRNAs [11].

Currently there is not much information about the differences in expression levels of miRNAs during
SARS-CoV-2 infection. It has been shown that, highly pathogenic MERS-CoV infection causes substantial
changes in the expression of many host cell circRNAs, miRNAs, and mRNAs [3].

3 Architecture/implementation/workflow
All data analysis, machine learning and prediction workflows were generated by using the Konstanz infor-
mation miner (KNIME) platform [12]. MiRNA – target predictions were performed by using psRNATarget tool
[13].

3.1 Graphical representation of RNA secondary structures
An RNA sequence could include four bases (A, G, C, and U) that can form base pairs such as A–U, G–C, and
G–U. RNAfold software from the Vienna package was used with default setting to create secondary structures
[14]. For better representation, the nucleotides involved in base pairs are shown as A, G, C, and U in Figure 1,
while non-base paired ones are shown as A′, G′, C′, and U′, respectively. The workflow generated in KNIME
uses RNA sequence and dot-bracket representations of secondary structure to modify bases of the sequence
as uppercase and lowercase characters [15].

Zhang et al. created a dynamic 3D graphical representation for RNA structure based on the chemical
properties of the bases [16]
– amino group M = {A, C} and keto group K = {G, U},
– purine group R = {A, G} and pyrimidine group Y = {C, U}
– weak group H-bonds W = {A, U} and strong H-bonds group S = {C, G}.

We used the same base grouping scheme and defined three maps 𝛼1, 𝛼2 and 𝛼3 (Figure 1), where n is the
length of the hairpin sequence and i is the index of base in the sequence.

In order to represent miRNA hairpin secondary structure as vectors, based on the definitions from Figure 1,
36-dimensional vector was calculated as shown in Figure 2.

Figure 1: The definition of three
maps.
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Figure 2: The components of 36-
dimensional vector.

3.2 Data sets
Human miRNA sequences were obtained from MiRBase (Release 22.1) [17], human circRNA data set was down-
loaded from circAtlas 2.0 [18], SARS-CoV-2 CDS were based on RefSeq_NC_045512.2 from NCBI. Differentially
expressed miRNA list was based on the results of Chow and Salmena [19] with some changes, since their list
is composed of mature miRNAs, we used the hairpin sequences of those available (Table 1).

Table 1: The list of miRNAs used for training of differential expression prediction.

Regulation type MiRNAs

Upregulated hsa-mir-4485, hsa-mir-483, hsa-mir-6891, hsa-mir-4284, hsa-mir-4463,
hsa-mir-155, hsa-mir-107, hsa-mir-29b-2, hsa-mir-139, hsa-mir-299,
hsa-mir-501, hsa-mir-4745, hsa-mir-12136

Downregulated hsa-let-7a-1, hsa-let-7a-2, hsa-let-7a-3, hsa-mir-374a, hsa-mir-194-1,hsa-mir-194-2,
hsa-mir-4454, hsa-mir-135b, hsa-mir-16-2, hsa-mir-23b, hsa-mir-21, hsa-let-7f-1,
hsa-mir-429, hsa-mir-5701-1, hsa-mir-5701-2, hsa-mir-5701-3, hsa-mir-450b,
hsa-mir-7-1, hsa-mir-26b, hsa-mir-23c, hsa-mir-374c, hsa-mir-374b,
hsa-mir-26a-1, hsa-mir-365a, hsa-mir-365b, hsa-mir-940, hsa-mir-362,
hsa-mir-1275, hsa-mir-1296, hsa-mir-126, hsa-mir-548d-2

Figure 3: Box-plots of classi-
fiers’ accuracy values.
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Table 2: Number of targets of differentially expressed miRNAs on human genes (Gene), human circRNAs (CircRNA) and
SARS-CoV-2 coding sequences.

MiRNA Gene CircRNA SARS-CoV-2 Regulation

hsa-miR-6891-5p 197 200 1 (ORF3a) Up
hsa-miR-4284 – – – Up
hsa-miR-4463 – – – Up
hsa-miR-12136 – – – Up
hsa-miR-181-5p – – – Up
hsa-miR-126-5p 130 193 1 (ORF1ab) Down
hsa-miR-194-5p 76 132 1 (ORF1ab) Down
hsa-miR-374a-3p 100 155 2 (ORF1ab, S) Down
hsa-miR-181-3p – – – Down
hsa-miR-1275 – – – Down

Figure 4: Pie-chart for the bio-
logical processes of human
genes that could be targeted
by hsa-miR-6891-5p. Labels on
the right part are sorted in
descending order making the
chart direction in a clockwise
order.

4 Results
The differential expression prediction workflow was created by using 70% learning and 30% testing ratios
and three different classifiers; random forest (RF), support vector machine (SVM) and multilayer perceptron
(MLP) were trained with 100-fold MCCV [20] (Figure 3).

Among 2654 mature human miRNAs available in miRBase, 2498 were involved in 272,822 total targeting
events with 18,950 human genes; 2498 were involved in 393,877 total targeting events with 208,642 circRNAs
and 484 miRNAs targeted 11 SARS-CoV-2 genes. Some of the miRNAs reported as differentially expressed in
Calu3 cells infected with SARS-CoV-2 or mock from GSE148729 did not have any predicted targets (Table 2).

Upregulated human miRNA hsa-miR-6891-5p might target not only human genes and circRNAs but also
ORF3a gene of SARS-CoV-2 (Table 2). PANTHER Gene Ontology analysis [21] of human gene targets showed
that various biological processes could potentially be affected by the actions of this miRNA (Figure 4).

5 Discussion
Inter-kingdom communication mechanisms mediated by RNAs have been investigated for several organisms
including a variety of viruses, Toxoplasma gondii (protozoan eukaryotic parasite) [22], Histoplasma capsulatum
(infectious fungus) [23]. Viruses are parasites that depend on their host for many of their processes. Usually
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viral infections result in alterations of cellular pathways to modulate viral gene expression and/or accommo-
date virus in a favourable environment. In some cases, e.g. SARS-CoV-2 infection, host post-transcriptional
gene regulation elements like miRNAs might also show differential expression levels during infection [19]. In
this study, we analysed such human miRNAs (Table 1) to build a machine learning based workflow that might
be used for prediction of expression changes of miRNAs during SARS-CoV-2 infection. Among the 300 models
generated, the highest accuracy value was observed with RF classifier (Figure 3). While applying machine
learning approaches to miRNA datasets, there are various elements that would affect the overall performance
[24]. Among them, feature sets [25, 26] and the quality of data [27] might be the most important parts. When
there are more datasets available, the workflow can be easily updated to include them and it is also possible
to use this workflow for any kind of differentially expressed miRNAs.

There is not much known about the individual functions of circRNAs but they are acknowledged as
sponges providing binding sites for miRNAs and some RNA-binding proteins [28]. The activities of host
circRNAs have been investigated in Hepatitis C virus-infected cells [6] and MERS-CoV infection [3]. We
performed a comprehensive target prediction analysis for human miRNAs to measure their capacity to bind
human mRNAs, human circRNAs and SARS-CoV-2 genes. Based on the results represented in Table 2, SARS-
CoV-2 ORF3a is the only viral target for upregulated human miRNAs. Since ORF3a protein is associated
with apoptosis which is an essential mechanism for host antiviral defence to control viral infection [29],
upregulation of hsa-miR-6891-5p might be crucial to decrease ORF3a expression during certain stages of
infection.

Out of 2498 miRNAs that have predicted targets, 2448 had more targets in circRNAs, 27 had more in
mRNAs and 23 miRNAs had equal number of targets in both groups. If the mRNA and circRNA targets of
specific miRNAs are coexpressed there might be a competition for miRNA binding and considering the wide
range of biological processes of a single miRNA’s targets (Figure 4) circRNA-miRNA-mRNA network could play
important roles in overall gene expression especially when there is a new set of genes as target candidates
during viral infections.
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