
royalsocietypublishing.org/journal/rsbl
Research
Cite this article: Kelly ML, Collins SP, Lesku
JA, Hemmi JM, Collin SP, Radford CA . 2022

Energy conservation characterizes sleep

in sharks. Biol. Lett. 18: 20210259.
https://doi.org/10.1098/rsbl.2021.0259
Received: 14 May 2021

Accepted: 11 February 2022
Subject Areas:
behaviour, evolution

Keywords:
elasmobranchs, eye state, metabolism, oxygen

consumption, posture, respirometry
Authors for correspondence:
Shaun P. Collin

e-mail: s.collin@latrobe.edu.au

Craig A. Radford

e-mail: c.radford@auckland.ac.nz
© 2022 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
†Primary author (contributed equally).

Electronic supplementary material is available

online at https://doi.org/10.6084/m9.figshare.

c.5870801.
Animal behaviour

Energy conservation characterizes sleep
in sharks

Michael L. Kelly1,†, Selwyn P. Collins2,†, John A. Lesku1, Jan M. Hemmi3,4,
Shaun P. Collin1,4,5 and Craig A. Radford2

1School of Life Sciences, La Trobe University, Melbourne, Australia
2Institute of Marine Science, Leigh Marine Laboratory, The University of Auckland, Auckland, New Zealand
3School of Biological Sciences, 4Oceans Institute, and 5Oceans Graduate School, The University of Western
Australia, Perth, Australia

MLK, 0000-0003-3421-4026; SPCollins, 0000-0002-6171-3966; JAL, 0000-0001-5073-6954;
JMH, 0000-0003-4629-9362; SPCollin, 0000-0001-6236-0771; CAR, 0000-0001-7949-9497

Sharks represent the earliest group of jawed vertebrates and as such, they may
provide original insight for understanding the evolution of sleep in more
derived animals. Unfortunately, beyond a single behavioural investigation,
very little is known about sleep in these ancient predators. As such, recordings
of physiological indicators of sleep in sharks have never been reported.
Reduced energy expenditure arising from sustained restfulness and lowered
metabolic rate during sleep have given rise to the hypothesis that sleep
plays an important role for energy conservation. To determine whether this
idea applies also to sharks, we compared metabolic rates of draughtsboard
sharks (Cephaloscyllium isabellum) during periods ostensibly thought to be
sleep, along with restful and actively swimming sharks across a 24 h
period. We also investigated behaviours that often characterize sleep in
other animals, including eye closure and postural recumbency, to establish
relationships between physiology and behaviour. Overall, lower metabolic
rate and a flat body posture reflect sleep in draughtsboard sharks, whereas
eye closure is a poorer indication of sleep. Our results support the idea for
the conservation of energy as a function of sleep in these basal vertebrates.
1. Introduction
Sleep is a ubiquitous behaviour found across the animal kingdom, which is typi-
cally characterized by sustained immobility and reduced responsiveness [1].
Despite the vulnerability inherent with sleeping, its persistence across evolution-
ary time suggests it serves one or more core functions [2]. One hypothesis for
such a core function is that sleep serves to conserve energy through enforcing
restfulness and lowering metabolic rate relative to wakefulness [1,3,4]. Energy
savings during sleep have been reported in diverse animals, including humans
[5,6], cats [7], rats [8], birds [9] and fruit flies [10]. It is unknown, however,
whether reduced energy expenditure also occurs in sleeping fishes.

Extant sharks represent the earliest group of jawed vertebrates and, therefore,
may provide original insight into the evolution of sleep in vertebrates [11]. This
rationale is particularly salient following the recent discovery of two sleep states
in teleosts [12] and in at least two species of lizard [13,14] that in some respects
resemble mammalian and avian non-rapid eye movement (non-REM) and
REM sleep [15]. The existence of two sleep states in birds and mammals suggests
that each state performs a different, but perhaps complementary, function. Any
homology between the multiple sleep states observed in ectothermic vertebrates
to that of endothermic vertebrates is unclear.
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Table 1. Mixed effects model showing the effects of activity (swimming,
rest and sleep) and photoperiod (12 h day and night) on residual _MO2
values as calculated from a regression of _MO2 and body mass underlying
figure 1d. In each model, individual was set as a random effect; activity
and photoperiod were treated as fixed effects.

effect
nominator d.f.;
denominator d.f. F-ratio p-value

_MO2
activity 2; 21 15.38 <0.01

photoperiod 1; 21 25.08 <0.01

activity * photoperiod 1; 20 5.84 0.03
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Recent studies have found that Port Jackson (Heterodontus
portusjacksoni) and draughtsboard (Cephaloscyllium isabellum)
sharks are nocturnal with a reduced responsiveness to stimu-
lation while asleep [16,17]. However, as sleep is both a
behavioural and physiological state involving multiple com-
ponents, including changes in eye state, muscle tone, brain
activity and metabolism [18], it is necessary to investigate
as many sleep components as possible to fully characterize
the sleep state, or states, in sharks [19].

Here, in draughtsboard sharks, we assessed changes in
metabolic rate (mass-specific oxygen uptake rate or _MO2),
via intermittent-flow respirometry, and behaviours associated
with sleep in other animals: eye state (open/closed), and
body posture (upright/flat) over a 24 h period to determine
whether sleep plays a role in energy conservation in sharks.
 Lett.18:20210259
2. Material and methods
(a) Experimental animals and housing
Seven draughtsboard sharks (766–2705 g in weight) were col-
lected from Hauraki Gulf, north-eastern New Zealand, and
were housed in outdoor aquaria under natural light conditions.
Animals were fed a diet of pilchards and held for a minimum
of two weeks before the commencement of experiments. Food
was withheld for at least 48 h prior to the start of experiments
to ensure animals reached a post-absorptive state [20,21].

(b) Intermittent-flow respirometry system set-up
For detailed respirometry methods, see electronic supplementary
material [22]. In short, the system comprised an acrylic
respirometry chamber submerged within a reservoir tank of
flow-through seawater held at constant temperature (17.5°C,
1 µm filtered, UV sterilized). Water was homogenized in the
chamber by a pump drawing water from one end and expelling
into the other, through a PVC tube [23]. A laptop computer, con-
nected to a Firesting oxygen (O2) meter with a contactless sensor
spot (Pyroscience, Aachen, Germany) logged oxygen levels. _MO2

measurement cycles were interspersed with flush cycles to
ensure a high quality of water (per cent O2 range 84–98%).

(c) Video recording set-up
Continuous, infrared illumination and overhead video record-
ings of animal behaviour during the 24 h measurement period
were achieved following the methods detailed in Kelly et al.
[16]. For further details on video recording set-up, see electronic
supplementary material [22].

(d) Experimental protocol
Animals were individually placed into the sealed respirometry
chamber. Automated, intermittent-flow respirometry and video
recordings began a minimum of 48 h later to allow each animal
to acclimate to their new conditions before data collection
began. Each protocol then lasted 24 h under a 12 : 12 light :
dark photoperiod regime.

(e) Data analysis
Custom-written software calculated the gradient of the per cent
O2 decline and the associated residual sum of squares (R2).
_MO2 (mgO2 h

−1) was then calculated from the decline in
oxygen saturation. Metabolic rate and behaviour (eye states, pos-
ture and activity) data were manually scored second-by-second
using the video recordings. Eye states were scored as open or
closed and body postures of inactive sharks were scored as flat
(lying flat on the bottom of the tank) or upright (sitting perched
up on pectoral fins) (figure 1a). Activity states were scored as
swimming, rest (inactive less than 5 min) or sleep (inactive
more than 5 min); the latter has been shown to be associated
with reduced responsiveness, and, therefore, a demonstrated
reflection of sleep [17]. For details on statistical analyses used,
see electronic supplementary material [22].
3. Results and discussion
(a) Sleeping sharks have a lower metabolic rate
Our previous studies showed that draughtsboard sharks
are nocturnal [16,17]. Therefore, and unsurprisingly,
swimming behaviour and mean _MO2 levels of draughts-
board sharks with an R2 > 0.95 (all activity states included)
were significantly higher during the night (t12 = 4.13,
p < 0.01) (figure 1b). However, from these data alone, it
remained unclear whether restful sharks were sleeping
sharks. To address this question, we sampled the _MO2 data
based on activity state (using the criteria of R2 > 0.8 and
bout length of greater than 90 s) to account for varying
bout lengths found within each activity state. Shark mean
_MO2 levels were significantly lower during sleep (i.e. inactive
for at least 5 min) and the highest during swimming
(figure 1c).

These data were then parsed further to include the
expression of each activity state during day and night to
reveal whether sleeping animals consistently showed a
lower metabolic rate while asleep. During the day, sharks
never swam for more than 90 s (with an R2 > 0.8), therefore,
no daytime _MO2 data were available for this state. The
level of _MO2 varied between activity states (swimming, rest
and sleep) and between day and night (table 1), with _MO2

level recordings again highest during night swimming
(figure 1d ). Metabolic rates were low and similar irrespective
of whether sharks slept during the day or night. Variability in
_MO2 during night rest was similar to the variability observed
during night swimming, suggesting that at least some night
rest reflects quiet wakefulness. Accordingly, night rest _MO2

was significantly higher than day rest (Tukey’s post hoc test:
t21 =−5.06, p < 0.01) and during sleep (day: t20 =−7.18, p <
0.01; night: t20 = 4.97, p < 0.01). Conversely, day rest _MO2

was similar to _MO2 during both day sleep (t21 = 1.39, p =
0.73) and night sleep (t22 =−0.36, p = 0.99), which might
indicate that sharks fell asleep quicker during the day than
during the night (to the effect that at least some day rest
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Figure 1. (a) Drawings of upright (i) and flat (ii) body postures, and open (iii) and closed (iv) eyes used to score behavioural data from video recordings. (b) Box
plot of day and night residual _MO2 values (i.e. controlling for body mass) from intermittent-flow respirometry measure periods (all activity states included) over a
24 h period (L : D 12 : 12). (c) Box plot of residual _MO2 values across three activity states (irrespective of photoperiod) using subsampled data points from all
measure periods with an applied criteria of an R2 > 0.8 and a length of greater than 90 s. (d ) Box plot of the residual _MO2 values in (c), but partitioned by
photoperiod (day, night). (e) Regression of subsampled residual _MO2 values against subsample duration (blue indicates sleep; grey denotes rest); all data fit
the criteria of an R2 > 0.8 and a length of greater than 90 s; vertical line indicates 5 min of inactivity. For (b,c,d ), solid black lines indicate means; dotted
lines denote medians; edges of boxes represent quartiles; whiskers reflect maximum and minimum values; grey circles represent individual samples (random
x-axis dispersal); significant pairwise contrasts are denoted by the letters a, b and c.
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should actually be considered to be day sleep). Cube-root
transformed residual _MO2 values did not vary with changes
in measured rest or sleep duration (figure 1e). However, for a
given measurement period, the cube-root of residual _MO2

during sleep was between 0.19 and 1.07 less than that
observed during rest. These data, therefore, reinforce the
results found by Kelly et al. [17] that sharks restful for at
least 5 min were asleep. Thus, not only do sleeping sharks
have reduced responsiveness to stimulation, they also have
a lower metabolic rate.
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Figure 2. (a) Box plot of the per cent time animals were observed with open and closed eyes, and (b) in flat and upright postures between sleeping and rest states.
(c) Box plot showing the per cent of time animals were observed with closed eyes and (d ) a flat body posture during sleeping and resting states throughout the
(12 h) day and night. (e) Comparative boxplots of residual _MO2 values across (left) activity states and (right) posture, partitioned by photoperiod, using subsampled
data points from all measure periods. For all panels, solid black lines indicate means; dotted lines denote median; edges of boxes represent quartiles; whiskers reflect
maximum and minimum values. For (a–d ), significant pairwise contrasts are denoted by asterisks. For (e), grey circles represent individual samples (random x-axis
dispersal); letters a and b denote pairwise contrasts.
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(b) Recumbent posture is a better indicator of sleep
than eye closure

While swimming, sharks always had their eyes open. When
resting, the eyes were also more likely to be open (z6,13 =
161.40, p < 0.01) (figure 2a). Conversely, during sleep, the
eyes were most often closed (z6,13 = 353.30, p < 0.01). Postural
changes were also associated with sleep as sleeping animals
adopted a flat body posture (z6,13 = 456.60, p < 0.01)
(figure 2b) whereas resting animals sat upright (z6,13 =
158.50, p < 0.01). This might, at first, suggest that closed
eyes and a flat posture reflect sleep, and both are behaviours
commonly associated with mammalian sleep [24]. However,
upon separating states by photoperiod, we found that eye
closure was more common during day sleep (z6,12 = 241.74,
p < 0.01) and day rest (z6,11 = 121.09, p < 0.01) (figure 2c), a
behavioural pattern that has also been observed in the
large-spotted dogfish (Scyliorhinus stellaris) [25]. However,
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animals that were inactive for more than 5 min (i.e. asleep)
during the night had eyes open in approximately 38% of all
cases. Taken together, this suggests that eye closure is more
likely associated with an external factor, such as the presence
of light rather than sleep. Similarly, the proportion of flat
body posture was significantly higher during rest (z6,11 =
122.49, p < 0.01) and sleep states (z6,12 = 83.33, p < 0.01)
throughout the day (figure 2d ). This supports our _MO2

data that animals inactive for at least 5 min are sleeping.
The fact that animals engaged in rest (inactive less than
5 min) during the day spent more time flat also supports
the idea that some daytime rest might represent sleep. This
might suggest that animals fell asleep faster during the day.
It is important to note that night and day _MO2 data parti-
tioned by posture showed a similar pattern to the data
partitioned by activity (figure 2e). This suggests that both
the amount of time spent inactive and body posture are
good predictors for sleep in this species.
0210259
4. Conclusion
The collection of metabolic data via intermittent-flow respiro-
metry in marine fishes, including sharks, is well explored
[23,26–31]. Until now, however, no work had directly investi-
gated the metabolic rates of sleeping fishes per se. This study
highlights that, like in many vertebrates [1], sleep in sharks is
associated with reduced metabolic rate. Thus, the hypothesis
that sleep is important for energy conservation [3,4] is sup-
ported by this study in a primitive vertebrate. By doing so,
we have provided the first physiological evidence of sleep in
sharks and find support for our published (behavioural)
report on sleep in draughtsboard sharks [17]. Sleep is largely
unstudied in this diverse group of cartilaginous fishes and
future research should focus on other physiological indicators
of sleep, such as changes in brain activity, for a more complete
portrait of sleep in these vertebrates.
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