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No Influence of Musicianship on the
Effect of Contralateral Stimulation
on Frequency Selectivity

Emilia Tarnowska1, Andrzej Wicher1, and Brian C. J. Moore2

Abstract

The efferent system may control the gain of the cochlea and thereby influence frequency selectivity. This effect can be

assessed using contralateral stimulation (CS) applied to the ear opposite to that used to assess frequency selectivity.

The effect of CS may be stronger for musicians than for nonmusicians. To assess whether this was the case, psychophysical

tuning curves (PTCs) were compared for 12 musicians and 12 nonmusicians. The PTCs were measured with and without a

60-dB sound pressure level (SPL) pink-noise CS, using signal frequencies of 2 and 4 kHz. The sharpness of the PTCs was

quantified using the measure Q10, the signal frequency divided by the PTC bandwidth measured 10 dB above the level at the

tip. Q10 values were lower in the presence of the CS, but this effect did not differ significantly for musicians and non-

musicians. The main effect of group (musicians vs. nonmusicians) on the Q10 values was not significant. Overall, these

results do not support the idea that musicianship enhances contralateral efferent gain control as measured using the effect of

CS on PTCs.
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Musically trained subjects tend to perform better than
nonmusicians on a variety of auditory tasks, especially
pitch-related tasks (Fine & Moore, 1993; Kishon-Rabin
et al., 2001; Micheyl et al., 2006; Soderquist, 1970;
Tarnowska et al., 2019; Zendel & Alain, 2009). This
probably depends at least partly on auditory processing
at relatively high levels in the auditory pathway, espe-
cially the auditory cortex (Bianchi et al., 2017; Ellis et al.,
2012; Herholz & Zatorre, 2012; Schlaug et al., 1995).
However, there is some controversy about the extent
to which musical training can affect aspects of auditory
processing that are assumed to depend on more periph-
eral processes, such as frequency selectivity and efferent
control of cochlear gain (Bidelman et al., 2014, 2016,
2017; Moore et al., 2019; Perrot & Collet, 2014).

The discrimination and detection of auditory stimuli
presented to one ear can be affected by presentation of a
noninformative stimulus to the other ear, that is, by con-
tralateral stimulation (CS; Guinan, 2006, 2018; Perrot &

Collet, 2014). This effect is believed to be mediated by
activation of the medial olivocochlear (MOC) efferent
system (Collet et al., 1990; Guinan, 2006, 2018). CS
can result in suppression of otoacoustic emissions
(OAEs; Kemp, 1978) and can change psychophysical
tuning curves (PTCs) measured in simultaneous masking
(Chistovich, 1957; Moore, 1978), making them slightly
less sharp for signal frequencies of 2 and 4 kHz
(Bidelman et al., 2016; Vinay & Moore, 2008; Wicher,
2013; Wicher & Moore, 2014). The effect is smaller and
varies across studies for a signal frequency of 1 kHz
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(Vinay & Moore, 2008; Wicher, 2013; Wicher & Moore,
2014). However, one study showed an effect of CS on
PTCs measured in forward masking for a signal frequen-
cy of 0.5 kHz but not for a signal frequency of 4 kHz
(Aguilar et al., 2013). Note also that attention may influ-
ence the operation of the MOC system; the suppression
of OAEs by CS is greater for frequencies on which atten-
tion is focussed than for nonattended frequencies
(Maison et al., 2001).

Perrot and Collet (2014) reviewed studies comparing
the effects of CS for musicians and nonmusicians.
Several studies showed that the suppression of transient
OAEs (TOAEs) by CS was greater for musicians than for
nonmusicians (Brashears et al., 2003; Micheyl et al., 1995;
Perrot et al., 1999). Bidelman et al. (2017) compared the
effect of CS on distortion-product OAEs (DPOAEs) for
classical musicians and nonmusicians. They reported that
the CS (a broadband noise) reduced the level of DPOAEs
for both musicians and nonmusicians, but the reduction
was significant only for the musicians. Kumar et al. (2016)
assessed the effect of CS on both TOAEs and DPOAEs
for rock musicians and nonmusicians. For the TOAEs, the
effect of the CS was larger for the musicians than for the
nonmusicians for four out of the five center frequencies
that were assessed. For the DPOAEs, the effect of the CS
was larger for the musicians than for the nonmusicians for
only two out of the five center frequencies, and none of the
differences would have been significant if the significance
level had been adjusted to allow for multiple comparisons.
In any case, interpreting the results for rock musicians is
complicated because the very high sound levels that they
have typically been exposed to (which are higher than for
classical musicians) can adversely affect the functioning of
the cochlea. Overall, data obtained using OAEs broadly
support the idea that the effect of CS is greater for musi-
cians than for nonmusicians.

The present study assessed whether there were differ-
ences between musicians and nonmusicians in the effect
of CS on a behavioral measure of frequency selectivity,
namely PTCs. To do this, PTCs measured with and
without CS using pink noise were compared for musi-
cians and nonmusicians. The strength of contralateral
efferent suppression was estimated using the change in
sharpness of tuning of the PTCs produced by the CS.

It has been reported that the effect of CS on TOAEs is
greater when the evoking stimulus is presented to the
right ear and the CS is presented to the left ear than
vice versa (Bidelman & Bhagat, 2015; Khalfa et al.,
1998), although such an effect has not always been
found (de Oliveira et al., 2011). The asymmetry, when
present, appears to be similar for musicians and non-
musicians (Perrot et al., 1999), although Brashears
et al. (2003) found a nonsignificant trend for the effect
of the CS to be greater for musicians than for nonmu-
sicians when the CS was presented to the left ear. We are

not aware of any studies assessing the effects of ear of
presentation of the CS on behavioral measures of
frequency selectivity, or assessing whether any asymme-
try differs for musicians and nonmusicians. A second
aim of our study was to assess the effect of ear of pre-
sentation of the CS on PTCs and to compare it for
musicians and nonmusicians.

It has been reported that musicians have sharper
auditory filters than nonmusicians for a center frequency
of 4 kHz, as assessed using PTCs (Bidelman et al., 2014,
2016). However, Moore et al. (2019) did not find any
effect of musicianship on the sharpness of auditory filters
centered at 4 kHz, as measured using three methods,
including PTCs, and other studies have found no effect
of musicianship on the sharpness of the auditory filter
for lower center frequencies (Fine & Moore, 1993;
Oxenham et al., 2003). Given the mixed nature of the
outcomes, a third aim of this study was to compare the
sharpness of PTCs for musicians and nonmusicians,
using signal frequencies of 2 and 4 kHz.

In summary, the aims of this study were (a) to com-
pare the effect of CS on the sharpness of PTCs for musi-
cians and nonmusicians, (b) to assess whether there is
any ear asymmetry in the effect of the CS and whether it
differs for musicians and nonmusicians, and (c) to com-
pare the sharpness of tuning of PTCs for musicians and
nonmusicians.

Method

Selection of Subjects

There were 12 musicians (Group M: 10 female and
2 male) and 12 nonmusicians (Group NM: 6 female and
6 male). Subjects in Group M were students of the Ignacy
Jan Paderewski Academy of Music in Pozna�n (11 sub-
jects) or postgraduates in a music school (1 subject).
Their ages ranged from 19 to 29 years (mean¼ 24.4 years,
standard deviation [SD]¼ 1.7 years). One subject played
the piano, and the rest were violin or/and viola players.
They started formal music education no later than 8 years
of age (mean¼ 6.5 years, SD¼ 0.7 years), and they were
active musicians. The average duration of musical train-
ing was 17.3 years (SD¼ 2.2 years). Subjects in Group
NM had never played any instrument (9 subjects) or
had played as amateurs for less than 3 years, starting
not earlier than 16 years of age and playing no longer
than 2hr per day during the period when they played (3
subjects). Their ages ranged from 19 to 29 years (mean-
¼ 24.6 years, SD¼ 3.4 years). There was no significant
difference in age between the two groups.

Audiometric thresholds were measured using an
Interacoustics (Middelfart, Germany) AC40 clinical
audiometer with Telephonics (Huntington, NY, USA)
TDH 39P headphones, using the method recommended
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by the British Society of Audiology (2011). All subjects

had audiometric thresholds better than 20 dB HL over

the frequency range 500 to 4000Hz. Audiometric thresh-

olds averaged over the range 125 to 8000Hz were 8 dB

HL (SD¼ 6.4 dB) for Group M and 7.2 dB HL

(SD¼ 6.3 dB) for Group NM. The audiometric thresh-

olds did not differ significantly across the two groups. As

a check that cochlear outer hair cell function was

normal, DPOAEs were measured over the frequency

range 1000 to 10000Hz using an Interacoustics Titan

system. The signal-to-noise ratio was greater than 6 dB

for all subjects, indicating normal outer hair cell func-

tion (Robinette & Glattke, 2007). The Titan system was

also used to measure tympanograms. All subjects had

Type A tympanograms, indicating normal middle-ear

function. No subjects reported any history of auditory

processing disorder or other disorders that might affect

auditory processing (e.g., dyslexia, attention deficits).

Subjects were paid for their participation.
The study received ethical approval from the Ethical

Committee of Adam Mickiewicz University (Approval

No. 18/2016). All subjects gave written informed consent

to participate.

Choice of the CS

The CS was a broadband (20 to 20000Hz) pink noise

with an overall level of 60 dB SPL. Broadband noise is

more effective in activating the MOC efferent system

than narrowband noise (Lilaonitkul & Guinan, 2009;

Wicher & Moore, 2014). A pink noise was used rather

than a white noise because for center frequencies above

1000Hz, a pink noise produces roughly a constant level

at the output of each auditory filter (Glasberg & Moore,

1990), whereas a white noise produces a level that

increases with increasing center frequency. The level of

the pink noise was chosen to be high enough to excite the

MOC efferent system while not activating the middle-ear

reflex (Liberman & Guinan, 1998). The CS used here has

been shown to have significant effects on DPOAEs and
on PTCs (Wicher & Moore, 2014).

Measurement of PTCs

We chose to use signal frequencies, fs, of 2 and 4 kHz, as

previous research has shown that CS consistently results

in a broadening of simultaneous-masking PTCs for these

signal frequencies, whereas the effects for lower signal

frequencies are absent or less consistent (Vinay &

Moore, 2008; Wicher, 2013; Wicher & Moore, 2014).

Also, Scharf et al. (1997) showed that frequency selec-

tivity measured in simultaneous masking using the

notched-noise method (Patterson, 1976) for a signal fre-

quency of 1 kHz was not markedly different across the

two ears of patients who had had the MOC system

severed on one side to treat severe vertigo, suggesting
that the efferent system does not markedly influence
the frequency selectivity of the auditory system at 1 kHz.

PTCs were measured using the SWPTC software (Sek
& Moore, 2011). This software implements a fast
method employing a narrowband noise masker that is
slowly swept in center frequency from a low to a high
value, or vice versa. Stimuli were generated using a Dell
(Round Rock, TX, USA) Inspiron 7000 series PC with
Conexant (Irvine, CA, USA) SmartAudio sound card
with 16 bit resolution and a sample rate of 44.1 kHz.
Stimuli were presented via Sennheiser (Wedemark,
Germany) HD600 headphones. The signal was a
pulsed sinusoidal tone with 300-ms duration (including
20-ms rise–fall times) and an interval of 200ms between
pulses. The use of a pulsed signal helps the subject to
“know what to listen for.” The signal was presented
15 dB above the absolute threshold estimated using a
forced-choice method. The values of fs were 2 and 4 kHz.

The masker was a continuous narrowband noise with
a bandwidth of 320Hz. The bandwidth was chosen to
reduce the salience of beats as a cue while limiting the
masker bandwidth to be close to or less than the audi-
tory filter bandwidth at the signal frequency (Kluk &
Moore, 2004, 2005). The level of the noise required
just to mask the signal was determined as a function of
the masker center frequency, fc, using a procedure sim-
ilar to that used in B�ek�esy audiometry (von B�ek�esy,
1947). Initially, subjects were presented with several
pulses of the signal without the masker to help them to
“know what to listen for.” After these initial pulses, the
masker was turned on. The starting level of the masker
was 50dB SPL. The subjects were instructed to press the
space bar on the keyboard when the signal was audible
and to release the space bar when the signal was inaudi-
ble. While the space bar was pressed, the level of the noise
increased at a rate of 2 dB/s. While the space bar was
released, the level decreased at the same rate. This rate
was chosen to avoid more variable PTCs that can occur
with higher rates of change in masker level (Sek et al.,
2005). The value of fc was swept logarithmically from
0.5fs to 1.5fs (upward sweep) over a duration of 180 s.

Before starting the experiment proper, subjects
received about 30min of practice in performing the
PTC task. For each subject, PTCs were measured for
each ear separately, in the presence and absence of CS.
For each condition (combination of selected ear, signal
frequency, and presence/absence of CS), five PTCs were
obtained within a test session. The different conditions
were tested on different days in random order. The first
PTC determined for each condition was treated as prac-
tice and excluded from analysis. Each of the four
remaining PTCs for a given condition was fitted using
a rounded-exponential function for each side of the PTC
(Patterson & Nimmo-Smith, 1980; Sek & Moore, 2011),
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and the overall sharpness of the PTC was estimated from

the fitted rounded-exponential functions, using the mea-

sure Q10, which is the signal frequency divided by the

bandwidth measured 10 dB above the level at the tip.
Fast PTCs have a jagged shape, reflecting the

increases and decreases in masker level as the subject

releases and presses the space bar. Each PTC was initial-

ly smoothed by calculating the means of two successive

turnpoints in masker level, referred to as the two-point

moving average (TPMA). An initial estimate of the tip

frequency was taken as the frequency at which the

masker level was lowest, fmin, based on the TPMA.

This initial estimate was used to determine which

points fell on the low side and which points fell on the

high side of the PTC. For the lower side of the PTC, the

roex function was fitted to the TPMA over the frequency

range 0.75fmin to fmin. For the upper side of the PTC, the

roex function was fitted to the TPMA over the frequency

range fmin to 1.3fmin. The fitting procedure gave esti-

mates of parameters pl and pu that characterize the

lower and upper slopes of the main passband of the

filter. The Q10 values were calculated approximately

(Hartmann, 1997; Patterson et al., 1982) as Q10¼
pl� pu/[3.9� (plþ pu)].

Results

Example PTCs, together with the roex functions fitted to

each side, are shown in Figure 1. It can be seen that the

roex functions captured the general shapes of the PTCs

around their tips. Note that the roex functions were

fitted over a frequency range that did not include the

low-frequency tails of the PTCs. Note also that the

tips of the PTCs fell slightly above the signal frequency.

This often occurs when fc is swept from a low to a high

frequency (Sek et al., 2005), as was done here. The tips of

the PTCs are usually shifted downward when fc is swept

from a high to a low frequency (Sek et al., 2005).
The four estimates of Q10 for each subject and each

condition had an SD that ranged from 0.18 to 1.55 for

Group M and from 0.13 to 1.41 for Group NM. The

root-mean-square value of the SD across the four values

was 0.30 for both groups. Hence, the typical SD of

the mean of the four Q10 estimates was …0.3¼ 0.21.

This indicates good consistency of the Q10 estimates

within subjects.
The grand mean Q10 value across all conditions and

groups was 4.61. The variance of the Q10 values within

each group for a given condition averaged 0.33 for

Group M and 0.31 for Group NM. This means that a

typical value of the SD across subjects within each group

for a given condition was …0.32¼ 0.57. Given that there

were 12 subjects in each group, for a given condition, we

had a power of 0.8 of detecting a difference between

groups of 0.65, that is, about 14%, at p¼ .05.
Figure 2 shows the means and standard errors of the

Q10 values of the PTCs for each condition and each

group. A mixed analysis of variance was conducted on

Figure 1. Typical Examples of Fast PTCs Together With the Roex Functions Fitted to Each Side. The black circles indicate the signal
frequency and level. The examples on the left are taken from Group M, and those on the right are taken from Group NM. The signal
frequency was 2000Hz for the top row and 4000Hz for the bottom row.
SPL¼ sound pressure level.
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the Q10 values with between-subjects factor group (M or

NM) and within-subjects factors signal frequency (fs),

CS on/off, and ear of presentation of the PTC stimuli
(L or R). The main effect of group was not significant, F

(1, 22)¼ 1.85, p¼ .19. There was a significant effect of fs:

F(1, 22)¼ 30.49, p< .001. The mean Q10 value was

lower for fs¼ 2000Hz (4.33) than for fs¼ 4000Hz
(4.88). There was a significant effect of the presence/

absence of the CS: F(1, 22)¼ 43.83, p< .001. The mean

Q10 value was lower when the CS was on (4.38) than

when it was off (4.84). There was no significant effect of
ear of presentation, F(1, 22)¼ 0.19, p¼ .67, and no inter-

action of ear of presentation with any other factor.
There was a significant interaction of group and fs: F

(1, 22)¼ 6.91, p¼ .015. To illustrate this interaction, the

data were averaged across ear of presentation and plot-

ted separately for each value of fs. For fs¼ 2000Hz

(Figure 3, top), the mean Q10 value was slightly lower
for Group M than for Group NM (4.30 vs. 4.37), while

for fs¼ 4000Hz (Figure 3, bottom), the mean Q10 value

was slightly higher for Group M than for Group NM

(5.10 vs. 4.66). However, the differences between groups
were small and accounted for only 7% of the variance in

the data. No other interactions were significant. In par-

ticular, there was no significant interaction of group and
the presence/absence of the CS, F(1, 22)¼ 0.21, p¼ .65.

Thus, the effect of the CS did not differ for the two

groups, as can be seen from Figures 2 and 3.

The mean change in Q10 between CS off and CS on

was 0.50 for Group M and 0.43 for Group NM.

Discussion

The Q10 values of the PTCs did not differ significantly

overall for Groups M and NM. There was a significant

interaction between center frequency and group mem-

bership, the mean Q10 value at 4 kHz being slightly

greater for Group M than for Group NM (5.10 and

4.66, respectively). This trend is in the same direction

as reported by Bidelman et al. (2014, 2016). The mean

Q10 values found here at 4 kHz in the absence of CS

(5.37 for Group M and 4.84 for Group NM) are similar

in overall magnitude to those for the fast PTCs obtained

by Bidelman et al. (2014), except that they found a

slightly higher mean value for 10 musicians (about 6.0)

and a slightly lower mean value for 9 nonmusicians

(about 4.5). However, Bidelman et al. (2016) obtained

a markedly higher mean Q10 value of about 10 for 14

musicians, while the mean Q10 for 13 nonmusicians was

about 6. The mean Q10 values reported by Moore et al.

(2019) were similar to those found here, their means

being 5.5 for musicians and 5.3 for nonmusicians.

Bidelman et al. (2016) reported a significant correlation

between Q10 values and years of musical training (their

musically trained subjects had a mean of 14.4 years of

formal instruction on the principal instrument, with an

Figure 2. Means of the Q10 Values of the PTCs for Each Condition and Each Group. Open bars denote results for Group M, and shaded
bars denote results for Group NM. The signal frequency is denoted as fs. Error bars indicate �1 standard error of the mean.
CS¼ contralateral stimulation.
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SD of 3.6 years). For our Group M, there was no sig-

nificant correlation between Q10 values and years of

musical training (r¼ .0276, p¼ .932), but our subjects

had a smaller range of years of musical experience:

mean¼ 17.3 years, SD¼ 2.2 years. Overall, the results

suggest that if there is a difference between musicians

and nonmusicians in the Q10 values of fast PTCs, the

difference is small compared with the variability within

groups. Any small group differences that do exist may

reflect differences in the ability to make optimal use of

the available detection cues, as discussed by Moore et al.

(2019).The mean Q10 of about 10 for musicians

obtained by Bidelman et al. (2016) seems remarkably

high. The highest individual Q10 value found in the

present study was 6.6, and the highest value reported
by Moore et al. (2019) was 7.0.

The origin of the difference across studies is not clear.
All but one of the subjects in our Group M were violin or
viola players. Bidelman et al. (2014, 2016) did not specify
the instruments played by their subjects, but they were
presumably more varied, as indicated by the term princi-
pal instruments. Our subjects overall had more musical
training than theirs (mean¼ 17.3 years for our Group
M, 10.4 years for Bidelman et al., 2014, and 14.4 years
for Bidelman et al., 2016). Thus, the lack of effect of
musicianship found here cannot be attributed to less
musical training of our subjects. It is possible that
musician-advantage effects, when they exist, are dimin-
ished by the deleterious effects of exposure to high-level
sounds (Skoe et al., 2019) and that our subjects had
more exposure because of their longer duration of
musical training. However, if that were the case, the
PTCs should have been broader for the left ear than for
the right ear of our Group M because the sound exposure
of violinists and viola players is greater for the left than
for the right ears (Royster et al., 1991). In fact, there
was no significant effect of ear for Group M, with or
without the CS.

One possible reason for the difference across studies is
related to the method of estimating Q10 values from the
PTCs. We estimated Q10 values by fitting a rounded-
exponential function to each side of the PTCs, after
smoothing with a TPMA. This method took into
account the shape of the PTC over a fairly wide frequen-
cy range, from 0.75fmin to fmin for the low side and from
fmin to 1.3fmin for the high side, but excluding the low-
frequency tail region of the PTCs. Thus, our method was
relatively unaffected by minor irregularities in the PTCs.
Also, our method captured the finding that individual
differences in PTCs are usually somewhat greater for
values of fc somewhat below and above the signal fre-
quency than they are for values of fc close to the signal
frequency. Bidelman et al. (2014, 2016) also used a
TPMA to smooth the PTCs, but they did not specify
exactly how the Q10 values were estimated. It seems
likely that they simply estimated the width of the
smoothed PTCs for a masker level 10 dB above the
level at the tip and used this to calculate Q10. If so,
their results would have been more affected than ours
by minor irregularities in the PTCs.

Consider next the effects of CS on the PTCs. It should
be noted that the ipsilateral efferent system was probably
activated by the masker when its level was relatively
high, that is, when fc was well above or below the
signal frequency. This in itself might have led to a broad-
ening of the PTCs, although it would be expected to
have little effect around the tips of the PTCs, where
both the signal level and masker level were low.
The activation of the efferent system by the masker

Figure 3. Means of the Q10 Values of the PTCs. The results
were averaged across ear of presentation for the signal frequencies
of 2000Hz (top) and 4000Hz (bottom).
CS¼ contralateral stimulation.

6 Trends in Hearing



might also have reduced the effect of the CS. Also, in our
study and most previous studies of the effects of CS on
PTCs, the masker and signal were presented simulta-
neously, so the results may have been affected by sup-
pression of the signal by the masker (Delgutte, 1990;
Moore & Vickers, 1997). Hence, the effects of the CS
may have been influenced by an effect of the CS on the
suppression process. We are not aware of any studies
that have assessed the effect of CS on suppression of a
signal by a masker. Despite these complications, previ-
ous work using the same method has shown significant
effects of CS on the sharpness of PTCs (Bidelman et al.,
2017; Wicher, 2013), and our results also showed signif-
icant effects.

While the Q10 values of the PTCs were lower, that is,
the PTCs were broader, in the presence than in the
absence of the CS, there was no significant interaction
between the presence/absence of the CS and group mem-
bership. In other words, the effect of the CS on the Q10
values did not differ for Groups M and NM. Thus, our
results do not support the idea that the strength of the
MOC reflex differed for Groups M and NM. This finding
contrasts with the finding in several studies of an effect of
musicianship on the strength of the efferent system as
measured by the contralateral suppression of OAEs, as
reviewed in the Introduction section. It may be the case
that there is a difference in the strength of efferent sup-
pression between musicians and nonmusicians, but the
effect is too small to give measurable effects on the sharp-
ness of PTCs. It is also possible that there was no effect of
musicianship on the effect of the CS because the strength
of the MOC reflex depends partly on attentional control
(Maison et al., 2001). Attentional control may be greater
for musicians than for nonmusicians, and this may offset
any effect of greater MOC activation by CS.

Our results showed no significant effect of the ear of
presentation of the CS on the change in sharpness of the
PTCs produced by the CS. As described in the
Introduction section, some studies showed a greater
effect of CS on TOAEs when the CS was presented to
the left ear than when it was presented to the right ear
(Khalfa et al., 1998; Perrot et al., 1999), but such an
asymmetry has not always been found (de Oliveira
et al., 2011). Brashears et al. (2003) found a nonsignifi-
cant trend for the effect of the CS to be greater for
musicians than for nonmusicians when the CS was pre-
sented to the left ear, but our results revealed no such
trend. Overall, it appears that if there is any ear asym-
metry in the effect of a CS, it is weak and does not differ
markedly for nonmusicians and musicians.

Summary and Conclusions

The effects of CS on the sharpness of PTCs determined
using signal frequencies of 2000 and 4000Hz were

compared for musicians and non musicians. The effect

of ear of presentation was also assessed. The Q10 values

of the PTCs were lower in the presence of the CS, but

this effect did not differ significantly for musicians and

nonmusicians. The main effect of group (musicians vs.

nonmusicians) on the Q10 values of the PTCs was not

significant. Overall, these results do not support the idea

that musicianship enhances contralateral efferent gain

control measured using PTCs.
The Q10 values of the PTCs did not show any effect

of ear of presentation or any interaction with the pres-

ence/absence of the CS or with musicianship. Thus, our

results do not support the idea that the strength of the

MOC reflex depends on the ear of presentation.
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