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ABSTRACT
Cancer vaccines have exhibited immense potential in cancer treatment.Through activating the host’s
immune system, vaccines stimulate extensive functional T cells to eliminate cancer. However, the
therapeutic efficacy of cancer vaccines is limited by their inferior lymph node delivery and inadequate
uptake of dendritic cells. Herein, we propose an in situ phase transitional strategy on vaccine manufacturing
to maximally enhance lymph node drainage while ensuring adequate dendritic cell uptake.The phase
transitional vaccines, with dynamic size modulation property, retain a small size (24.4± 3.1 nm) during
lymph node draining then transform into larger particles (483.0± 41.6 nm) on-site by external signal input.
Results show that this strategy induced rapid and robust immune response in a mouse melanoma tumor
model. Furthermore, a stronger humoral immune response was observed in mice when immunized with
MHC-II restricted antigen, which demonstrated that lymph node-targeted cancer vaccine delivery could be
effectively manipulated through dynamic size modulation.
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INTRODUCTION
Vaccines aim to initiate host immunity and acti-
vate antigen-specific adaptive immune responses to
elicit antibodies and expand T cells [1,2]. In re-
cent years, robust antitumor responses mediated
by cancer vaccines have shown enormous potential
for cancer prevention and regression [3–7]. Cancer
vaccines that effectively mobilize immunity against
tumor antigens generally originate from lympho-
cyte priming in lymphoidorgans, especially in lymph
nodes [8,9]. Lymph nodes, as the primary organ for
both innate and adaptive immunity activation, have
been extensively exploited as targets for cancer vac-
cinedelivery andpotential immuneeffects havebeen
achieved [10–15]. More importantly, naive T cells
must be activated by professional antigen present-
ing cells (APCs) in lymphoid organs [16,17]. Effec-
tively delivering cancer vaccines to the lymph nodes
reduces antigen tolerance and improves safety and
biocompatibility [18–21]. Strategies aiming to im-
prove lymph node delivery of cancer vaccines can
be attributed to two major pathways: (1) active tar-

geting through antibodies or recruitment molecules
[9,10,22,23], and (2) passive targeting using charac-
teristics of delivery systems, such as shape and sur-
face charge [24–26]. Despite such advances, cancer
vaccine delivery remains challenging in terms of lim-
ited lymphatic draining and inadequate antigen up-
take by lymph node-resident dendritic cells, failing
to produce a valid antitumor response and weaken-
ing the antitumor efficacy.

Cancer vaccines targeting lymph nodes are criti-
cal to initiate specific antitumor immune responses.
However, their efficacy is substantially limited by
their hydrodynamic size, resulting from the unique
and complex lymphoid structure [27–30]. A size
between 10 and 100 nm would be favorable for
lymphoid draining, with larger sizes tending to be-
come trapped within interstitial matrix and smaller
sizes penetrating into blood circulation [31,32]. Be-
sides the lymphatic draining, size also has an im-
pact on the endocytosis behavior of dendritic cells
in subsequent steps. Dendritic cells can efficiently
take up substances between 50 and 500 nm in a
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size-dependent manner [26,33–35]. In this range,
the larger hydrodynamic size promotes higher in-
ternalization and dendritic cell activation, which is
not favorable for lymphatic draining. As a result,
cancer vaccines with unique sizes that meet the re-
quirements for both enhancing lymphatic draining
and dendritic cell uptake are desirable prospects for
development.

In the current study, we propose an in situ phase
transitional strategy employing an antigen-linked
thermoresponsive polymer to simultaneously en-
hance lymphatic drainage and lymph node-resident
dendritic cells uptake, and stimulate more effective
activation of T cells. Previously, it was reported that
thermoresponsive poly(N-isopropylacrylamide)
(PNIPAM) exhibited a significant size change after
stimulation and the transition process is sensitive
and controllable, indicating that PNIPAM is an ideal
stimuli-responsive carrier material [36–39]. There-
fore, we utilized the unique features of PNIPAM
and fabricated a phase transitional cancer vaccine
with dynamic size modulation property. The phase
transitional cancer vaccine is composed of three
parts: a thermoresponsive polymer backbone to
control the size responsive to temperature changes;
a photothermal conversion molecule (cyanine) to
convert light into heat and also for in vivo tracing;
and an antigen peptide (OVA257–264) covalently
linked to the polymer backbone to estimate specific
antitumor immunity (Fig. 1a). We chose a safe
phase transition temperature between 37◦C and
41◦C to ensure the cancer vaccines retained a
smaller size during lymph node draining and to
reduce the availability of non-specific uptake. Al-
though the phase transition temperature is slightly
higher than normothermia, it will not significantly
impact the body [40]. Once arrival at the lymph
nodes, the vaccine undergoes a sharp collapse with
an enlarged size formation under laser-induced
photothermal conversion of cyanine. The increased
hydrodynamic size assures efficient endocytosis
by lymph node-resident dendritic cells, ultimately
achieving rapid and sufficient antitumor effects.
As vaccine adjuvants are broadly defined by their
ability to enhance the specific immune response of
antigens [41], manipulating cancer vaccines with
our strategy resulted in improved antitumor efficacy
as a result of the reinforced lymph node draining
and higher engulfment of antigens by dendritic
cells, giving this strategy promising adjuvant effects.
Collectively, we demonstrated that employing
this in situ phase transitional strategy in vaccine
manipulation could activate dendritic cells and
enhance specific T cell activation by enhancing both
lymphnode draining and dendritic cells engulfment,
finally contributing to tumor control and promising
therapeutic efficacy.

RESULTS AND DISCUSSION
Synthesis and characterization of phase
transitional cancer vaccines
We synthesized the thermoresponsive vaccine back-
bone by classical reversible addition-fragmentation
chain transfer (RAFT) polymerization, in which
antigen peptide OVA257–264 (SIINFEKL) and
photothermal conversion molecule cyanine dye
were covalently conjugated to the thermore-
sponsive polymer backbone (Figs S1–S4). By
regulating themolar ratio of hydrophobic monomer
N-isopropylacrylamide (NIPAM) and hydrophilic
N-(2-hydroxyethyl)acrylamide monomer (HEAM)
in PP1 (NIPAM :HEAM = 5 : 1), we successfully
obtained a thermoresponsive polymer with an
ideal low critical solution temperature (LCST)
of 40 ± 0.3◦C (Fig. 1b). This polymer maintains
coil status at physiological temperature, which is
lower than its LCST. As shown in Fig. 1b, PP1 also
exhibited a narrow responsive temperature range
(2.0–2.5◦C). This sharp responsive temperature
ensured the biological application possibility for
the precisely controlled size changes during vaccine
delivery. We also synthesized control groups PP2
and PP3 (Figs 1b and S5–S8) with different LCST.
The LCST of PP2 is 31 ± 0.1◦C, which maintains
a condensate structure with large hydrodynamic
size at physiological conditions, and PP3, which is
unchanged in the range 25–50◦C, implying that
PP3 exhibits coil status with small hydrodynamic
size between 37–41◦C. The structural difference
among PP1, PP2 and PP3 was their thermorespon-
sive backbone. We chose PP3 and PP2 to serve
as controls because (i) their hydrodynamic sizes
correspond to the initial (small size) and final states
(large size) of PP1, respectively; and (ii) to exclude
other factors that may influence lymph node drain-
ing, such as surface charge. Next, we used dynamic
light scattering (DLS) to study and validate the
hydrodynamic sizes of PP1, PP2 and PP3 (Fig. 1c).
The LCST of PP1 is higher than physiological
temperature, therefore, the hydrodynamic size of
PP1 was maintained at 24.4 ± 3.1 nm at temper-
atures <37◦C and increased to 483.0 ± 41.6 nm
at 41◦C. Obviously, The hydrodynamic size at
T < LCST stayed within the range 10–30 nm
regardless of concentration. Combined with neg-
ative results in the critical micelle concentration
(CMC) experiments and morphology by TEM,
it was indicated that PP1 exhibits multiple coil
status without formed micelles structure when
T< LCST (Figs S9 and S11a).The PP1 solution in
turbidity changed from clear to murky on heating
(Fig. 1c, inset), indicating that PP1 retained its coil
status at 37◦C, then transformed into large particles
after phase transition at temperatures > LCST.
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Figure 1. In situ phase transitional cancer vaccines. (a) Illustration of in situ phase transitional cancer vaccines that enter
lymphatic vessels with small hydrodynamic size and transform into larger particles at the lymph node after laser irradiation
to improve cancer vaccine efficacy. (b) UV-Vis absorbance of PP1, PP2 and PP3 at 25–50◦C. (c) Size distribution of PP1 at
25◦C, 37◦C and 41◦C by DLS. Inset, representative images of the turbidity changes. (d) The transition process of PP1 detected
by UV-Vis. τ 1/2 was defined as the time at which a half-maximal absorbance was detected. (e) Laser-induced temperature
increase of PP1 in PBS under different concentrations and laser intensities. The inserted box means appropriate range for
temperature increase.

Considering that concentrations may influence size
change behavior, we further analyzed the particle
size of PP1 at different concentrations (Fig. S10).
PP1 can phase transit at a concentration as low
as 0.005 mg/mL (Fig. S9a). The aggregate size is
unchangedwhen the concentration is<1.0mg/mL.
Also, we observed the morphology of PP1 through
TEM and scanning electron microscopy (SEM).
PP1 presented undefined coiled morphology at
room temperature and collapsed in spherical-like
particle morphology at temperatures higher than its
LCST (Fig. S11). Next, we further investigated the
phase transitional sensitivity and stability features
of PP1. It was shown that it could collapse within
1 minute, and that it exhibited good recyclability
(Fig. 1d). To ensure the phase transition of PP1 by
cyanine-induced temperature modulation, we next
investigated the photothermal conversion effect of
cyanine in PP1 in phosphate buffer saline (PBS)
solution. We monitored the real-time temperature
changes using forward looking infra-red (FLIR)
with 808 nm near-infrared laser irradiation (Figs 1e
and S12). PP1 successfully converted light into
heat, and the solution temperature was gradually
increased along with upregulating the PP1 con-

centration and radiation intensity (Fig. 1e). To
ensure the phase transition process could happen
and is safe for the body, we chose a concentration
of 0.5 mg/mL at 1.4 W/cm2 in the subsequent
experiments. Under these conditions, PP1-induced
cell cytotoxicity and light-induced toxicity were
negligible (Fig. S13).

Phase transitional cancer vaccines
increase uptake of dendritic cells
Efficient endocytosis by antigen presenting cells is
crucial for adequate adaptive immune response ac-
tivation.Thus, we next investigated endocytosis effi-
cacy at various hydrodynamic sizes (Fig. 2a). Firstly,
we incubated DC2.4 cells with vaccines at differ-
ent temperatures for 30 minutes to ensure the size
increase of PP1 induced by phase transition. Next,
dendritic cell uptake was investigated visually by
confocal laser scanning microscopy (CLSM) and
quantified with flow cytometry (FACS). Enhanced
uptake of PP1was directly observed after phase tran-
sition, whereas uptake of vaccines with small hydro-
dynamic size was inadequate (Fig. 2b). However,
as we controlled particle size through temperature
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Figure 2. Phase transitional cancer vaccines increase dendritic cell uptake.
(a) Schematic illustration of dendritic cell uptake process. (b) Representative uptake
images of DC2.4 after incubation with PPs for 30 minutes at 37◦C or 41◦C. Scale bar:
5μm. Data analysis of PPs uptake in DC2.4 by (c) flow cytometry and (d) quantification
(n = 3). Data were performed as mean ± S.D. (n = 3) and were analyzed by student’s
t-test. ∗∗∗P< 0.001; ns, not significant.

modulation, to exclude the possibility that increas-
ing temperature may impact the endocytosis effi-
cacy, we simultaneously tested the control groups,
PP2 and PP3, at 37◦C and 41◦C (Fig. 2b). The
results confirmed that the differences in endocy-
tosis are largely caused by the size increase rather
than temperature-induced endocytosis. Moreover,
the FACS results further quantitatively confirmed
that the phase transition-induced size increase di-
rectly improved endocytosis of PP1 (Fig. 2c and d).
Exploration of the endocytosis mechanisms found
that the uptake was dependent on energy and
clathrin (Fig. S14). We concluded that employing
the phase transitional strategy in vaccines by increas-
ing the hydrodynamic size could lead to higher en-
docytosis in dendritic cells, which may benefit for
dendritic cells activation and subsequent immune
response.

Phase transitional cancer vaccines
initiate specific antitumor immunity
To identify that enhanced immune response acti-
vation resulted from efficient uptake by antigen-
presenting cells, bonemarrow-derived dendritic cell
(BMDC) activation and maturation were measured
by treatment with PPs (Fig. 3a), including changes

in expression of co-stimulatory factors (CD80 and
CD86) on dendritic cells and cytokine secretion, as
well as presentation of the antigen-specific MHC
I complex (H-2Kb-SIINFEKL). Firstly, we ob-
served that both CD80 and CD86 were highly
expressed under PP1 treatment at temperatures
>LCST (Figs 3b and S15), which implied that
phase transitional PP1 conversion to larger size con-
tributed to higher uptake and stronger activation
of dendritic cells. Similar to PP1 after phase tran-
sition, PP2, which stays collapsed at large size, also
enabled activation of dendritic cells. However, PP3
did not stimulate dendritic cells effectively because
of its smaller size and insufficient uptake (Fig. 3b).
It is believed that the unique phase transitional
property of PP1, which leads to higher dendritic
cell uptake, directly contributes to higher expres-
sion of co-stimulatory molecules, instead of tem-
perature changes. The pro-inflammatory cytokine
TNF-α, which is crucial for enhancing cellular im-
mune response, was also examined by enzyme-
linked immunosorbent assay (ELISA). The phase
transitional vaccine promoted robust secretion of
TNF-α by BMDCs, indicating the capability of ac-
tivating higher immune response (Fig. 3c). We fur-
ther measured the expression of antigen-specific
MHC I molecules by FACS to analyze antigen pre-
sentation. It was confirmed that the phase transi-
tional cancer vaccines induced prominent specific
antigen presentation (Figs 3d and S16). The mean
fluorescence intensity exhibited significant enhance-
ment in H-2Kb-SIINFEKL presentation (Fig. S17).
This indicated that the intrinsic antigen process
by proteasome or enzymes and cross presentation
subsequently led to successful H-2Kb-SIINFEKL
presentation. Significant differences in antigen pre-
sentation may be caused by the stark contrast of en-
docytosis. Above all, these results displayed that the
phase transitional vaccine was capable of enhancing
the uptake behavior of dendritic cells, which subse-
quently induced theirmaturation andhigher antigen
presentation.

To identify that phase transitional vaccines are
able to expand specific antitumor T cells, we ex-
plored cytotoxic T cell proliferation stimulated by
mature dendritic cells. T cells from an OT-I mouse
were previously labeledwith carboxyfluorescein suc-
cinimidyl amino ester (CFSE) and co-incubated
with BMDCs pre-stimulated with phase transitional
vaccine for 5 days to evaluate the T cell prolifera-
tion [42]. As shown in Fig. 3e, BMDCs pre-treated
with phase transitional cancer vaccine can induce
significant T cell proliferation. Quantitatively ana-
lyzing the proliferation index, this was about five
times higher than for the control group (Figs 3f and
S18). Taken together, the phase transition-induced
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Figure 3. Specific antitumor immunity initiation. (a) Schematic illustration of BMDC maturation and T cell proliferation.
(b) CD80 and CD86 expression on BMDCs after treatment with PPs. T > CLST were investigated at 41◦C while T < LCST
were analyzed at 37◦C. (c) TNF-α secretion from BMDC supernatants after incubation with PPs. (d) Flow cytometry analysis
of antigen presentation in BMDCs. (e) Representative histogram of T cell proliferation and (f) proliferation index after co-
incubating T cells with BMDCs treated with PPs. ConA, concanavalin A at 2 μg/mL.

size increase can enhance cancer vaccine uptake by
dendritic cells, which is beneficial to induce higher
BMDCmaturation, antigen presentation and subse-
quent T cell proliferation.

Phase transitional cancer vaccines
promote rapid lymph node drainage
and dendritic cell maturation in vivo
Based on the positive effects of phase transitional
vaccines on adaptive immunity stimulation in vitro,
we attempted to identify whether the phase transi-

tional vaccines can improve lymph node drainage
and dendritic cell uptake in vivo. We first subcu-
taneously injected cancer vaccines into mice foot-
pad and observed lymph node drainage by fluores-
cence imaging at various time points. As seen in
Fig. 4a and b, the cancer vaccines with small hydro-
dynamic size (PP1 and PP3) exhibited rapid and ef-
ficient lymph node drainage at 0.5 hours and accu-
mulated in lymph nodes until 24 hours compared
with the PP2 group, which were mostly trapped at
the footpad because of their relatively larger size
(483.0± 41.6 nm). Although PP2 exhibited limited
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lymph node drainage, their accumulation in lymph
nodes gradually increased, possibly caused by the
peripheral uptake of dendritic cells and then mi-
grated into lymphnodes. Except for rapid andhigher
lymph node drainage, which is related to appropri-
ately small size, long-term accumulation was asso-
ciated with higher endocytosis potential by lymph
node-resident dendritic cells. Therefore, we further
evaluated the lymph node-resident dendritic cell up-
take and maturation in vivo with our phase transi-
tional vaccines. To verify whether the phase tran-
sitional cancer vaccines could transform into large
particles at lymph nodes in vivo, we input near-
infrared laser irradiation at inguinal lymph nodes
after 30 minutes of phase transitional cancer vac-
cine injection (Fig. S19) and confirmed the tem-
perature would increase rapidly around the LCST
of PP1, which ensured that PP1 could collapse into
larger size at lymph nodes in vivo after laser irradia-

tion. The minimal aggregated concentration in vivo
was quantified at∼0.79mg/mL (Fig. S20), which is
much higher than in in vitro studies (Fig. S10). Sub-
sequently, we dissected the inguinal lymph nodes to
assess cancer vaccine endocytosis at 2 hours and an-
alyze dendritic cell maturation in vivo after 24 hours
(Fig. 4c). The fluorescence intensity of the transi-
tional group (PP1 with laser) that could form large
particles was significantly enhanced compared with
other groups (Fig. 4d). Analyzing the phase tran-
sitional vaccine in lymph node-resident dendritic
cells, almost 40% of vaccines were taken up within
2 hours (Fig. 4e). Compared with cell-mediated
antigen trafficking and other directed lymph node-
targeting vaccines, the phase transitional cancer
vaccines have more rapid and higher level up-
take in lymph nodes [43]. Co-stimulatory factors
CD80 and CD86 in dendritic cells showed limited
expression at smaller size without phase transitional
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Figure 5. Enhanced anti-tumor immune response of phase transitional cancer vaccines (a) Schematic illustration of anti-
tumor therapy. (b) Representative flow dot plots of CD8+ T cells in tumor tissue and quantified by flow cytometry in (d).
(c) Representative immunofluorescence images of tumor tissues under various treatments. Scale bar: 100μm; blue, nucleus;
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ability groups (PP1 without laser and PP3) and in
the PP2 group, which, in large part, was trapped
at the injected site because of poor lymph node
draining (Fig. 4f). On the contrary, the phase transi-
tional group of PP1with laser irradiation showed in-
creased CD80 and CD86 expression and improved
the quantity of CD11c+ dendritic cells in lymph
nodes (Figs 4f and S21). Taken together, the re-
sults indicate that increasing lymph node drainage
and promoting lymph node-resident dendritic cell
activation can be achieved by cancer vaccines with
our phase transitional strategy, achieving a more ef-
fective and rapid adaptive immune response. More-
over, enhanced humoral immunity against antigen
peptide OVA323–339 was conducted, which further

proved the efficacy and applicability of our strategy
(Fig. S22).

Phase transitional cancer vaccine
increases CD8+ T cell response
and inhibits tumor growth
Finally, we evaluated the therapeutic efficacy of the
cancer vaccine with our phase transition strategy
(Fig. 5a). C57BL/6 mice were subcutaneously in-
oculated with B16-F10-OVA tumor cells on their
right flank. On day 5, themice were immunized sub-
cutaneously at the footpad with two doses (1 day
apart) of vaccine followed by laser irradiation at the
inguinal lymph node site three times for 30minutes.
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Onday8,we analyzed the frequencyofCD8+ Tcells
in tumor tissue (Fig. 5b and c; Fig. S23). The PP1
without a laser irradiation group and the PP3 group
showed minimal induction of CD8+ T cell infiltra-
tion in tumor tissue because of their non-phase tran-
sition capability. This blunted immune response ac-
tivation, while the PP2 group exhibited only slightly
higher CD8+ T cell infiltration, which resulted from
uptake by peripheral dendritic cells and migration
into the lymph nodes. However, this was still lower
than the phase transitional group (PP1 with laser
irradiation), which generated strong CD8+ T cell
infiltration (4.3-fold greater than the PBS group,
P= 0.0004 and 1.8-fold greater than the PP2 group,
P= 0.0053, Fig. 5d). To assess the tumor-infiltrated
T cell function, wemeasured IFN-γ secretion in the
tumor tissue. PP1 with the laser group led to signif-
icantly higher IFN-γ secretion compared with the
control groups (P< 0.0001 compared with the PBS
group, P = 0.0003 compared with the PP1 group,
P=0.0336 comparedwith thePP2group) (Fig. 5e).
Finally, we monitored tumor growth to evaluate the
therapeutic efficacy (Fig. 5f and g). The phase tran-
sitional cancer vaccine group (PP1 with laser) re-
tarded the tumor growth compared with larger size
PP2 (P = 0.0263) and with the PP1 group without
phase transition (P = 0.0279). It also significantly
prolonged the survival time of mice (P = 0.0271).
Moreover, we did not observe any weight loss or
major organ toxicity after treatment with vaccines
(Fig. S24), which demonstrated the biocompatibil-
ity and biosafety of PPs. Taken together, the can-
cer vaccines based on this in situ phase transitional
strategy exhibited promising therapeutic efficacy in
inhibiting tumor progression. The results demon-
strated that cancer vaccines with improved lymph
node draining and antigen utilization mediated by
this strategy were highly beneficial for inducing an
adequate antigen-specific immune response.

CONCLUSION
Preclinical studies of nano/biomaterials have indi-
cated their potential in tumor-targeting or immune
organ-targeting strategies, and achieved promising
therapeutic outcomes while reducing toxicities/side
effects [44]. Lymph nodes are the most widely
investigated target for therapeutic cancer vaccines
and other immunotherapeutics. Antigen immuno-
genicity could be enhanced significantly by increas-
ing antigen utilization and decreasing off-target
immune responses. The unique structure of the
lymphatic system and the size-restricted nature of
lymph node drainage has directed design of vari-
ous nano/biomaterials. In thiswork, we fully utilized

the thermoresponsive and size change of PNIPAM
polymer, and developed in situ phase-transitional
strategy manufacturing cancer vaccines with im-
proved lymphnodedraining efficacy andhigherden-
dritic cell uptake, which represent two prerequi-
sites for adaptive immune response initiation. Our
previous work has proved this phase transitional
vaccine backbone has excellent responsive perfor-
mance and satisfactory biocompatibility [38].More-
over, in situ manipulation of dendritic cells has also
achieved promising therapeutic efficacy in solid can-
cer [45,46]. In this work, we investigated the pos-
sibility of vaccine size dynamic control in guidance
of the phase transitional strategy in the tumormodel
bymodulating the physiochemical properties of vac-
cine composition, which generated promising ther-
apeutic efficacy in suppressing tumor growth. Basi-
cally, adjuvants themselves exert an immunostimu-
lation effect through pathogen-associated molecu-
lar patterns (PAMPs) receptors such as Toll-like re-
ceptors (TLRs). The phase transitional nanoparti-
cles as exogenous components can be recognized by
thehost immune system.Meanwhile, the phase tran-
sitional feature favors desired endocytosis and accu-
mulation in host immune cells, which amplify the
specific response of antigens. Moreover, it also fits
for antigen proteins or antigen proteins with adju-
vant delivery through interaction with a functional
group, or combined with other immunotherapies
such as checkpoint blockade, which may indicate
high potential for further immunotherapy combina-
tions and clinical translation.

METHODS AND MATERIALS
The experimental details are given in the Supple-
mentary data.
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