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An optimized platform
for efficient siRNA
delivery into human
NK cells

Natural killer (NK) cells are innate lym-
phocytes that participate in immune
responses against virus-infected cells and
tumors [1]. The functions of NK cells
can be therapeutically exploited by adop-
tive transfer, which represents a promising
therapy option against cancer [2, 3]. Our
understanding of how NK cells sense their
surroundings, recognize aberrant cells,
and integrate receptor input has pro-
gressed considerably [4–6]. However, the
molecular networks generating and main-
taining their functional capacity remain
incompletely understood and elucidating
NK cell-intrinsic regulatory networks holds
promise for improving NK cell therapy.

Genetic manipulation of NK cells by
electroporation, lipofection, or viral trans-
duction has been limited by variable
delivery efficiencies and impaired viabil-
ity (reviewed in [7]). Genetic engineer-
ing using CRISPR/Cas9 has been described
for NK cells with varying efficiency, rang-
ing from 24% to 90% [8–10], and such
approaches typically include vigorous acti-
vation in vitro, thereby precluding the
study of genes that are expressed only
prior to activation or dynamically regu-
lated upon activation.

RNA interference-mediated knock-
down of gene expression is a valuable

tool for investigating molecular mecha-
nisms that underlie cellular function and
chemically modified small interfering RNA
(siRNA) allow for passive uptake, provid-
ing an opportunity to study gene functions
in cells that are otherwise challenging to
manipulate.

As a starting point, we exposed puri-
fied NK cells to 6-carboxyfluorescein
(FAM)-labeled siRNA with no homology
to human genes (non-targeting, control
siRNA) for 96 h, which resulted in high
fluorescence signal in NK cells while
maintaining viability (Fig. 1A, Support-
ing Information Fig. S1A). We screened
treatment conditions spanning four siRNA
concentrations and four concentrations of
IL-15 in culture medium or commercially
available siRNA delivery medium (Accell,
Horizon Discovery) and evaluated uptake
(measured as mean fluorescence intensity
[MFI]) as well as viability across all 32
conditions (Fig. 1B). Next, we in-depth
profiled conditions in multiple donors to
examine the protocol’s robustness. We
found that siRNA delivery medium consis-
tently augmented siRNA uptake (Fig. 1C),
that an siRNA concentration of 1.0 μM
resulted in higher signal intensity than
0.25 μM (Fig. 1D), and that addition of
1 ng/mL IL-15 improved cell viability
and recovery in all donors (Fig. 1E).
We thus selected 1 μM siRNA in siRNA
delivery medium supplemented with
1 ng/mL IL-15 as optimized condition for
further evaluation.

Human NK cells can be divided into
sub-populations based on their differenti-
ation stage or expression of inhibitory or
activating receptors [11, 12]. When com-
paring siRNA uptake in sub-populations,
we found that CD56bright CD16– NK cells

displayed slightly increased signal inten-
sities, while no differences were found
between CD57– and CD57+ cells of the
CD56dim CD16+ population (Fig. 1F;
Supporting Information Fig. S1B). Fur-
thermore, uptake did not differ between
CD56dim CD16+ subsets stratified for
inhibitory kill-cell immunoglobulin-like
receptor (KIR) co-expression patterns
(Fig. 1G) or when comparing expres-
sion of other NK cell receptors including
NKG2A, ILT2, Siglec-7, CD161, NKG2C,
CD2, or KIR2DS4 (Fig. 1H; Supporting
Information Fig. S1B).

We tested whether siRNA treatment
alters NK cell functionality by treat-
ing NK cells with culture medium or
siRNA delivery medium containing 1
μM control siRNA (both supplemented
with 1 ng/mL IL-15), followed by co-
culture with K562 leukemia cells or
stimulation with IL-12 and IL-18. We
did not detect consistent changes in
degranulation (as measured by CD107a
mobilization), TNF, or IFN-γ expres-
sion (Supporting Information Fig. S1C
and D).

To assess functional interfer-
ence, we employed non-FAM-labeled
siRNA molecules targeting transcripts
of the beta-2-microglobulin (B2M)
gene. Treatment resulted in clear
down-regulation of β2m protein and
B2M transcripts (Fig. 2A–C). Further-
more, knock-down of B2M resulted in
near complete loss of HLA class I protein
(Fig. 2D), demonstrating disruption of
protein–protein interactions.

Next, we targeted TGFBR2, which
is crucial for TGF-β signaling [13],
and functionally evaluated its effect by
exposing NK cells to TGF-β, followed by
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Figure 1. Delivery of siRNA into human NK cells. (A) Purified NK cells were left untreated or treated with fluorescently labeled siRNA and ana-
lyzed by flow cytometry. Uptake of siRNA as frequency and MFI of single viable CD3– CD56+ NK cells. (B-E) NK cells were exposed to different
concentrations of fluorescently labeled siRNA and IL-15 in culture medium or Accell siRNA delivery medium. (B) Screening matrix with bubble
area indicating frequency of viable cells and bubble color indicating siRNA uptake as MFI. (C) Uptake of siRNA by NK cells treated with 1.0 μM
siRNA in culture medium or Accell siRNA delivery medium (both containing 1 ng/mL IL-15). Left: frequency, right: MFI. (D) Uptake of siRNA by NK
cells treated with 0.25 μM siRNA or 1.0 μM siRNA (both in Accell siRNA delivery medium containing 1 ng/mL IL-15). (E) Survival of NK cells treated
with 1.0 μM siRNA in Accell siRNA delivery medium alone or containing 1 ng/mL IL-15. Left: frequency of viable NK cells, right: absolute count of
recovered viable NK cells (input before treatment: 1 × 105 NK cells). (F-H) NK cells were treated with fluorescently labeled siRNA. Uptake of siRNA by
NK cell sub-populations based on (F) differentiation stages (G) KIR co-expression pattern or (H) stratified for expression of activating or inhibitory
NK cell receptors. Data are displayed as mean (B) or mean and individual datapoints (C-H) and representative of n = 12 donors in four independent
experiments (A) or pooled of n = 2 donors in one experiment (B), n = 10 donors in three independent experiments (C–E), n = 8 donors in three
independent experiments (F, H), and n = 6 donors in three independent experiments (G). Symbols represent individual donors (C–H). Statistical
significance was tested using Wilcoxon test (C–F, H). *p < 0.05, **p < 0.01.

stimulation with IL-12 and IL-18 (Fig. 2E).
We observed a fourfold reduction of
TGFBR2 transcripts (Supporting Infor-
mation Fig. S2A) and TGF-β exposure
reduced IFN-γ expression in control-
treated NK cells, while NK cells treated
with TGFBR2-targeting siRNA were almost
completely resistant to TGF-β-mediated
suppression (Fig. 2F and G). Moreover,
using varying siRNA concentrations,
IFN-γ responses were recovered in a

dose-dependent manner (Supporting
Information Fig. S2B and C).

Finally, we investigated whether treat-
ment with multiple siRNA molecules could
enable simultaneous knock-downs. To this
end, we treated NK cells with combi-
nations of siRNA targeting CXCR1 and
CX3CR1 (Fig. 2H) and found that com-
bined treatment markedly reduced expres-
sion of both chemokine receptors, similar
to the effects observed in single targeting

(Fig. 2I and J; Supporting Information Fig.
S2D–F).

In summary, we present an experimen-
tal workflow that allows for rapid analyses
of gene functions in human NK cells under
near-resting conditions (step-by-step pro-
tocol in the Supporting Information).

Rigorous validation of putative targets
with complementary techniques remains
required to exclude off-target effects [14,
15] and variable knock-down efficiencies
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Figure 2. Functional gene analyses in human NK cells. (A–D) NK cells were treated with control siRNA or B2M siRNA. (A) Representative β2m and
HLA class I protein expression determined by flow cytometry after the indicated treatments. (B) Summary of B2M mRNA expression relative to
GAPDH as determined by RT-qPCR. (C) Summary of β2m protein expression as MFI measured by flow cytometry. (D) Summary of HLA class I protein
expression as MFI measured by flow cytometry. (E–G) NK cells were treated with control siRNA or TGFBR2 siRNA, exposed or not to TGF-β, and
stimulated with IL-12 and IL-18. (E) Experimental setup. (F) Representative IFN-γ expression after the indicated treatments as determined by flow
cytometry. (G) Summary of IFN-γ expression. (H–J) NK cells were treated with control siRNA or with the indicated combinations of control siRNA,
CXCR1 siRNA, and CX3CR1 siRNA and protein expression was analyzed by flow cytometry. (H) Treatment setup. (I) Summaries of CXCR1 expression.
Left: frequency. Right: MFI. (J) Summaries of CX3CR1 expression. Left: frequency. Right: MFI. Data are displayed as mean and individual datapoints
(B-D, G, I, J) and representative of n = 6 donors in three independent experiments (A) and n = 8 donors in three independent experiments (F) or
pooled from n = 6 donors in two independent experiments (B–D) and n = 8 donors in three independent experiments (G, I, J). Symbols represent
individual donors (B–D, G, I, J). Statistical significance was tested using Wilcoxon test (B–D) or Friedman test with Dunn’s test (G, I, J). *p < 0.05,
**p < 0.01, ***p < 0.001.

across different targets, such as CXCR1
and CX3CR1 in the examples above, need
to be considered during implementation.

Given the clinical potential of NK
cell therapy, improved understanding of
gene circuits regulating NK cell func-
tions has important implications and
identifying genes that control anti-tumor
responses may advance next-generation
immunotherapy.
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