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Abstract: Protein kinase C (PKC) isozymes are members of the Serine/Threonine kinase family
regulating cellular events following activation of membrane bound phospholipids. The breakdown
of the downstream signaling pathways of PKC relates to several disease pathogeneses particularly
neurodegeneration. PKC isozymes play a critical role in cell death and survival mechanisms, as well
as autophagy. Numerous studies have reported that neurodegenerative disease formation is caused
by failure of the autophagy mechanism. This review outlines PKC signaling in autophagy and
neurodegenerative disease development and introduces some polyphenols as effectors of PKC
isozymes for disease therapy.
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1. Introduction

Extracellular signaling molecules bind to their specific receptors and alter the intracellular amount
and distribution of the secondary messenger molecules within the cytoplasm. These secondary
reporter molecules act on target proteins, which consequently control the gene expression. The most
common reversible protein phosphorylations involved in the control of gene expression are Serine (Se),
Threonine (Thr) and Tyrosine (Tyr) phosphorylation.

Protein Kinase C (PKC) protein family is a phospholipid-dependent serine/threonine kinase
discovered by Nishizuka and his colleagues in the 1970s. This protein family was initially defined as
PKM due to Mg2+ dependent activation, but later renamed, PKC due to Ca2+ dependent activation [1].
The protein kinase family consists of over 15 subgroups with more than 500 kinases, each of which is
involved in the regulation of gene expression; thereby, the downregulation or upregulation of these
kinases induces severe consequences in the progression of disorders including neurodegenerative
diseases [2–7].

Autophagy is a highly conserved cellular degradation machinery, essential for survival,
differentiation, development, and cellular homeostasis. This mechanism functions under basal
conditions and becomes activated under conditions of cellular stress, such as nutrient limitation,
oxidative stress or abnormal protein accumulation [8]. Autophagic pathway is initiated by the
formation of double or multi-membrane vesicles in the cytoplasm. These vesicles engulf portions of
the cytoplasm containing the cargo and carry them to the lysosome. After the fusion of the autophagic
vesicles with lysosomes, the cargo is degraded, and its constituents are recycled [9]. Autophagy-related
genes (ATG) genetically regulate this pathway and to date, more than 30 ATG genes have been reported.
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The encoded proteins of these genes interact with different signaling pathways and serve a protective
role for organisms against several pathological conditions including neurodegeneration [10–13].

Neurodegeneration is the progressive loss of structure or function of neurons and usually results
in neuronal cell death, which is in fact the main cause of debilitating, incurable neurodegenerative
diseases. The aggregation of abnormal proteins is thought to be a primary reason for the development
of many neurodegenerative diseases. Therefore, autophagic activity is thought to affect disease
progression [14,15]. Moreover, the association between PKC with neuropathological conditions has
been are described in several studies [16–29]. However, the importance of autophagic pathways and
its interaction with PKCs in the development of neurodegenerative diseases is still being debated.
In this review, first, we summarize the molecular mechanisms and the physiological relevance of PKC
and autophagy. Then, we review how autophagy and PKCs are involved in the pathology of certain
neurodegenerative diseases.

2. PKC Superfamily

PKC is a subgroup of the kinase family and comprises ten members. The distinguishing feature of
PKCs is that they include an N-terminal regulatory domain connected to a C- terminal catalytic domain
through a hinge domain [30,31]. Each of the PKC isozymes share common structural characteristics
since they have four conserved domains, C1, C2, C3 and C4, C1 and C2 are located on the N-terminal
regulatory domain while C3 and C4 reside on the C-terminal catalytic domain. The C1 domain structure
shows that it has a hydrophilic ligand binding site enclosed with hydrophobic amino acids. On the
hydrophilic region, there are diacylglycerol (DAG) and phorbol esters binding sites [32]. C2 includes a
secondary messenger, Ca2+, binding site [33]. C3 has an ATP binding site and C4 has protein substrate
binding sites [34]. All PKC isozyme have a pseudosubstrate region that is a substrate-mimicking short
amino acid sequence which binds the substrate-binding cavity in the catalytic domain, rendering the
enzyme inactive [35].

Based on their structural features and activators, PKCs are classified into three categories:
Conventional PKCs, atypical PKCs, and novel PKCs (Figure 1). Conventional PKCs consist of PKCα,
PKCβI, PKCβII, and PKCγ. Conventional PKCs require DAG, phorbol esters (PE), and calcium for
activation. Novel PKCs consist of PKCδ, PKCη, PKCθ, and PKCε. Compared to conventional PKCs,
novel PKCs do not require Ca2+ for activation, but instead they need DAG and PE for the initiation
of signaling cascades. Finally, atypical PKCs consist of PKCζ and PKC ι/λ, which only need DAG
for activation.
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Figure 1. Domain structures of Protein kinase C (PKC) isozymes. C1 domain (pink), C2 domain
(orange), C3 domain (green), Pseudosubstrate (turquoise), C4 domain (blue) and PB 1 (Phox and Bem1)
domain (yellow).
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Due to the regulatory role in cellular activities through interaction of other signaling proteins,
PKCs are highly associated with disease progression.

3. Autophagy

The discovery of lysosomes by C. de Duve in the 1950s brought with it questions about the
crucial cellular system including, what the fate across the regulation of lysosome is and how its
regulation affects the protein-enzyme function [36]. During the investigation of these questions,
another research team, Marilyn Farquhar and her associates focused on electron microscopy images of
cells and discovered the existence of several membrane-covered vesicles. Initially, they described them
as lytic bodies but subsequently, after these vesicles were observed engulfing mitochondria, ER and
ribosomes they were defined as autophagic bodies [37]. Investigations have been accelerating and
so far, autophagosomes, autolysosomes, and even different types of autophagic mechanisms have
been discovered.

Today, there are three main types of autophagy, namely macroautophagy, microautophagy and
chaperone mediated autophagy (CMA) (Figure 2). In macroautophagy, larger molecules such as
long-lived organelles or misfolded protein aggregates that could not be degraded by the proteasomal
system are degraded and recycled. While; smaller molecules are directly transported to the lysosome
for degradation via microautophagy, in chaperone-mediated autophagy, proteins carrying the KFERQ
motif are first recognized by a chaperon protein, Heat Shock Protein 70 (HSP70), directed to lysosome
and further recognized by lysosomal membrane protein 2A (LAMP2A) for engulfment and degradation
by lysosomes [38].
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Figure 2. Illustration of main autophagy pathways. In macroautophagy, cellular contents are
engulfed by double membrane vesicles called as autophagosome and carried to lysosome for
degradation. In microutophagy, cytosolic components are directly taken into lysosome by lysosomal
membrane invagination and degraded. In CMA, chaperon guiding proteins recognize target proteins
and carry them to lysosome for degradation. mTOR: mammalian target of rapamycin protein,
a highly conserved serine/threonine kinase, ULK1: Unc-51 Like Autophagy Activating Kinase 1,
ULK2: Unc-51 Like Autophagy Activating Kinase 2 kinase, FIP200: focal adhesion kinase-family
interacting protein of 200 kDa, PI3K: Complex of class III phosphatidylinositol 3-kinases, PI3P:
Phosphatidylinositol-3-phosphate, AMPK: AMP-activated kinase, LKB1: liver kinase B1, Rheb: Ras-
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related small G protein, TSC2: tuberous sclerosis complex 2, VPS34: vacuolar protein sorting
34, VPS15: vacuolar protein sorting 15, BECN1: Beclin-1, PE: phosphatidylethanolamine, LC3:
microtubule-associated protein light chain 3, WIPI: WD repeat domain phosphoinositide-interacting
protein, DFCP1: Double FYVE-containing protein 1. In the figure, arrows indicate activation, whereas
bars show inhibition.

3.1. Macroautophagy

Macroautophagy is the best characterized type of autophagy [39]. The mammalian target of
rapamycin (mTOR) protein, a highly conserved serine/threonine kinase, negatively regulates the
activation of autophagy. Indeed, there are two different mTOR complexes in mammalian cells:
mTORC1 and mTORC2. mTORC1 is involved in cellular events such as cell growth, proliferation,
and death [40–42], while mTORC2 regulates the cellular skeleton [43–45]. The mTORC1 complex
integrates signals from nutrient sensing and growth factor pathways to regulate cell growth, protein
synthesis and autophagy according to the availability of cellular resources.

The mTORC1 protein cluster, which plays a role in autophagy activation under starvation
conditions, consists of proteins called Raptor, mLST8, PRAS40, and DEPTOR, which bind to mTor.
When nutrient or growth factors are abundant, autophagy protein Ulk1 is phosphorylated by mTOR
and this phosphorylation results in the inactivation of autophagy. The ULK complex contains the
ULK1 or ULK2 kinase, ATG13, FIP200 (a focal adhesion kinase-family interacting protein of 200 kDa)
and ATG101. However, when nutrients and growth factors are limited by the environment or under ER
stress, AMP-Kinase (AMP-activated kinase) activated by LKB1 (liver kinase B1) via the phosphorylation
of the Raptor directly on the mTORC1 cluster. Alternatively, AMP-Kinase inhibits mTORC1 by blocking
of the Rheb (Ras-related small G protein) pathway via TSC2 inhibition in the upregulated signaling
pathway of mTORC1. Thus, the formation of autophagosomes is triggered. When activated, mTORC1
favors cell growth by promoting translation via the phosphorylation of p70S6K (70 kDa polypeptide 1
ribosomal protein S6 kinase) and of 4E-BP1, an inhibitor of translation initiation, therein inactivating
it [46].

Another protein complex needed for the formation of autophagosomes is a complex of class III
phosphatidylinositol 3-kinases (PI3K). The core components of PI3K complex are also responsible
for the catalytic activity of the complex and these are the VPS34 (vacuolar protein sorting 34), VPS15
and Beclin-1 (BECN1) proteins. PI3P plays a crucial role in the clustering of proteins required for
autophagic vesicle formation in vesicle budding regions and provides a fusion platform for many
proteins [47]. Phosphatidylinositol-3-phosphate (PI3P) constitutes an essential membrane component
of the elongating isolation membrane and it is generated by VPS34 [48]. In mammalian cells, PI3P
molecules function as a recruiting point for several autophagy-related proteins to the isolation
membrane such as WIPI1/2 (WD repeat domain phosphoinositide-interacting protein), DFCP1 (double
FYVE-containing protein 1), and Alfy [49]. Additionally, ATG9 is also one of the crucial transmembrane
proteins, as it plays a role in lipid delivery and establishes a platform of recruiting effectors for the
phagophore [50].

The autophagic sac elongation involves two separate protein-protein interactions, which resemble
ubiquitination. The first pathway enables the binding of the ubiquitin-like ATG12 protein to ATG5
and then the ATG5-ATG12 complex recruits ATG16L to form the ATG12-ATG5-ATG16 complex.
Here, the ATG7 and ATG10 proteins, which regulate the addition of ATG12 in a manner similar to
ubiquitination, play the E1 and E2-like role, respectively [51]. The second pathway is the covalent
binding of phosphatidylethanolamine (PE) to the protein LC3. LC3B protein is synthesized as a
precursor and is a critical component of autophagosome formation. During this formation, cysteine
protease ATG4 cleaves LC3 from its C-terminus and a glycine residue is exposed. The cleaved form of
LC3 is activated by ATG7, then transferred to ATG3 through covalent binding and linked to an amino
group of phosphatidylethanolamines (PE). The conjugation of LC3-PE to both sides of the isolation
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membrane enables it to act as a surface receptor for the specific recruitment of other proteins [52].
The autophagosomal closure results in a typical double-membraned vacuole formation.

Apart from AMP-Kinase, PTEN, one of the tumor suppressors, converts PIP3 to PIP2 and inhibits
mTOR via PI3K/Akt/TSC1-2 pathway so that has a role in autophagy regulation. In addition, ERK1/2
and c-Jun N-terminal kinase1 (JNK1) in Ras/MAPK pathway have been found to be inducers of
autophagy [53,54]. Some oncogenes such as Class I PI3K, Akt, TOR, Bcl-2 suppress autophagy.
Studies have shown that p53, one of the most important tumor suppressor genes, plays a dual role in
autophagy [55,56]. A number of studies have shown that p53, particularly in the cell nucleus, induces
autophagy, either dependently or independently of the effect of transcription [57,58]. On the other
hand, some studies suggest that wild and mutant forms of p53 located in the cytoplasm suppress
autophagy [59,60]. In addition, TNF-α (Tumor necrosis factor), which plays a fundamental role in
many disease mechanisms, including cancer, has been shown to activate mTORC1 by phosphorylating
the TSC1 complex (IKKβ) [61].

3.2. Microautophagy

Microautophagy involves direct engulfment of the proteins/cytoplasm into the lysosome
(mammalians) or vacuole (plants and fungi) by invagination. Dynamin-related GTPase Vps1p plays an
active role in regulating the invagination of microautophagic process. Importantly, these invaginations
grow and shrink rapidly, and their frequency depends on nutritional conditions. Starvation induces
the initiation and extension of invagination respectively [62]. During the extension, this formation
specializes into a characteristic tubular shape termed the “autophagic tube”, depending on its unique
structure and autophagy-related function [63].

The soluble substrates of microautophagy can be induced by N-starvation or rapamycin through
the regulatory signaling complexes. The maintenance of organelle size, membrane homeostasis,
and cell survival under N-restriction are considered the main functions of microautophagy [64].

As a basic form of autophagy, the microautophagy-dependent lysosomal/vacuolar degradative
process is either non-selective or selective. The non-selective microautophagy engulfs soluble
intracellular substrates by tubular invagination, while the selective microautophagy sequesters
specific organelles with arm-like protrusions. The non-selective microautophagy is regularly observed
in mammalian cells, while the three forms of selective microautophagy are frequently induced in yeasts
(micropexophagy, piecemeal microautophagy of the nucleus (PMN), micromitophagy).

3.3. Chaperone Mediated Autophagy

Chaperone mediated autophagy (CMA) is a selective form of autophagy and it has a distinctive
way to recognize cargo molecules. In CMA, the well-known chaperone protein heat shock protein
70 (hsp70) recognizes proteins with specific pentapeptide motif KFERQ and translocates them to the
lysosomal lumen for degradation via lysosomal-associated membrane protein 2A (LAMP2A) [65].
CMA activation is crucial for some cellular events such as control of the cell cycle [66], CD4+ T cell
activation [67], protein quality control [68], and as a response to starvation [69]. In addition, a link
between CMA mechanism and neurodegenerative diseases has been reported. It is known that, CMA
contributes to the degradation of misfolded proteins, which are prone to become aggregates.

3.4. Selective Autophagy

For cellular homeostasis, the proper clearance of organelles or specific molecules is critical in living
organisms. In selective autophagy, receptor proteins recognize specific cargo such as mitochondria,
lipid droplets, invading pathogens etc. (Figure 3). These receptor proteins are responsible for carrying
the cargo to the site of autophagosomal engulfment. So far, several specific receptors or adaptor
proteins, that regulate the selective degradation of specific cargo have been identified and partially
characterized. Selective autophagy has drawn the attention of researchers because of its potential
importance in clinical diseases; however, its physiological roles are not yet fully understood.
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3.4.1. Mitophagy

Mitochondria are highly dynamic, double membrane surrounded organelles, which play a major
role in energy production within eukaryotic cells. They are involved in a variety of cellular functions
within eukaryotic cells and have an ancient bacterial origin. Besides energy production, they are
involved in amino acid synthesis, fatty acid production, heme synthesis, innate immunity [70], as well
as programmed cell death processes [71].

Considering all these functions of the mitochondria, the ability to control its balance according to
cellular demand is essential for disease progression. The selective degradation to remove damaged
mitochondria by autophagy is called mitophagy [72]. Parkin and PINK1-dependent mitophagy is
one of the best-studied forms of mitophagy [73,74]. Mainly, mitophagy is maintained by these two
famous genes and their loss-of-function mutations are linked to early-onset Parkinson’s Disease.
PTEN-induced putative kinase 1 (PINK1), encodes for a mitochondrially localized kinase, and PARK2,
encodes a cytosolic E3 ubiquitin ligase [74]. Under normal conditions, after being synthesized as a
precursor in the cytoplasm, PINK1 is imported to the mitochondria through translocase of the outer
membrane (TOM) and translocase of the inner membrane (TIM) complexes. When PINK1 is imported,
it is post-translationally modified within the mitochondria by mitochondrial proteases. PINK1 is first
cleaved through its N-terminal matrix targeting sequence (MTS) by matrix processing peptidases
(MPP) and resulting in cleavage followed by another cleavage by Presenilin-associated rhomboid-like
protease (PARL) in the matrix [75]. PARL-mediated N-terminal cleavage results in the destabilizing of
Phe104 residue and therefore, when retranslocated from mitochondria to cytoplasm it emerges and
degrades by proteasome through recognition of its N-terminus [76]. Under stress conditions, PINK1
import to mitochondria is blocked and PINK1 proteins on OMM are dimerized and this dimerization
is necessary for autophosphorylation events. This accumulated PINK1 phosphorylates various targets,
including ubiquitin, and recruits the cytoplasmic E3 ubiquitin ligase, Parkin protein. From then on,
Parkin acts as an amplifier of the PINK1-generated mitophagy signal [77].
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In addition, AMBRA1 is another key mitophagy regulator that allows proper Parkin-dependent
and independent mitochondrial clearance. It is ubiquitously expressed in the adult midbrain and is
found in complex with Parkin but AMBRA1 has no effect on Parkin recruitment to mitochondria, and it
has been suggested that its activator effect on PI3K is critical for PINK/Parkin-mediated mitophagy [78].

3.4.2. Lipophagy

Lipid droplets (LDs) are specialized organelles composed of lipids essential for cellular energy
(metabolism) and membrane production [79]. LDs consist of a neutral lipid namely triglyceride
(TG) and cholesterol esters and are coated by a phospholipid monolayer and various proteins such
as perilipins (PLINs). Under certain conditions, such as nutrient deprivation, cellular lipids stored
as triglycerides in LDs are hydrolyzed into fatty acids for energy. As expected, the second cellular
response to starvation is the induction of autophagy. Interrelationship between autophagy and lipid
metabolism was shown in mouse hepatocytes for first time in 2009 by Mochida et al. This study
revealed that the inhibition of macroautophagy, pharmacologically or by silencing of the ATG genes,
leads to the accumulation of TGs and LDs in serum-starved hepatocytes. Thus, nutrient limitation
triggers LD degradation by macroautophagy in hepatocytes [80].

Microlipophagy has been detected in yeast in response to nitrogen starvation, glucose depletion,
survival during the stationary phase, and phospholipid imbalance. Under these conditions, LDs are
taken up into the vacuole at sites of vacuolar membrane invagination [81,82].

4. PKC in Autophagy Mechanism

The activation of Protein kinase C isozymes is involved in extensive cellular mechanisms, including
the autophagy pathway. Each isozyme has a diverse role in the pathway due to its phosphorylation
abilities. Various functions of PKCs in main autophagy pathways such as PI3K/Akt /mTOR/Erk have
been reported in several studies [83–86] (Figure 4).

It has been suggested that, PKCα suppresses autophagy by inducing expression of miR-129-2 in
maternal diabetes and provokes neural tube defects [87]. In another study, tetrandrine, a PKCα inhibitor,
was shown to cause autophagy induction in breast cancer cells through the AMPK independent and
mTOR dependent mechanism [88]. On the other hand, Xue et al. showed that the inhibition of PKCα
causes lysosomal dysfunction and abnormalities in autophagosome-lysosome fusion in NRK-49F
cells. Thus, the recovery of autophagic flux by PKCα activation resulted in kidney fibrosis through
TGFβ-1 induction [89]. Cisplatin, a chemotherapeutic agent, plays a role in initiating several signaling
pathways in order to activate cell death. The expression of PKCβ is promoted by cisplatin treatment in
HeLa cells. When PKCβ is silenced, suppression of cisplatin-induced apoptosis was observed while
the formation of cisplatin-induced autophagy was promoted [90]. Another drug, clozapine used in the
treatment of schizophrenia, has a role in autophagy regulation. PKCβ restriction by ruboxistaurin
increases clozapine-induced lipophagy and causes the recycling of lipid accumulation both in vitro and
in vivo [91]. Conventional PKCγ reduces neuron-specific autophagy via phosphorylation of mTOR on
serine 2448 and serine 2481 [92]. It has been reported that cPKCγ provokes the inhibition of ubiquitin
C-terminal hydrolase L1 (UCHL1) and is involved in the ERK-mTOR mediated autophagy during
ischemic neural injury [93].

Moreover, the inhibition of PKCδ plays a role in the correction of nephrotoxicity in kidneys by
upregulating autophagy through blockage of cisplatin-induced mTOR, Akt, and ULK1 pathway [94].
Similarly, PKCδwas used to phosphorylate GSK3αβ and suppress autophagy under cadmium-induced
heme oxygenase-1 (HO-1) expression [95]. Inhibition of PI3K/Akt/mTOR pathway through PKCδ results
in the impairment of autophagic flux in neural retina cells [96]. PKCε has a role in lipid metabolism by
participating in hepatocyte autophagy [97]. In reverse, PKCε suppresses autophagy in glioblastoma
cells [98]. Another isozyme, PKCθ, activation in Epstein-Barr virus (EBV)-infected cells causes
phosphorylation of p38/MAPK, where it leads to autophagy induction [99]. Hypoxic-induced autophagy
is enhanced under calcium-dependent PKCθ activation [100]. Interestingly, under pathogenic infection,
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autophagy mechanism is upregulated due to an increase in the pathogen’s phagosomal escape,
and PKCη silencing results in the suppression of ATG7. Even though ATG7 levels decreased in the
absence of PKCη, the number of phagosomes is not changed. Therefore, PKCη in autophagy regulation
may have indirect effects and is suggested for further research [101].

PKCι downregulates autophagic flux by repressing LC3 conversion. Accordingly, PKCι
knockdown resulted in autophagic degradation of Hsc70 through CMA independent mechanism [102].
Also, downregulation of PKCι promotes autophagic degradation of β-catenin, independent of
CMA [103]. In another study, PKCι knockdown induces autophagy via the restriction of
PI3K/Akt/mTOR pathway. Overexpression of mutant PKCι protein induces autophagosome formation
and depletion in p62 protein. Therefore, it has been suggested that overexpression of mutant PKCs
may be used as antagonists of wild type PKCι for the upregulation of autophagy [104].
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Figure 4. Schematic representation of main signaling pathways playing role in autophagy
activation. In the figure, arrows indicate activation, whereas bars show inhibition. Activation
of phosphatidylinositol 3-kinase (PI3K) results in dephosphorylation of phosphatidylinositol
[3,4,5]-trisphosphate (PIP3) and generates phosphatidylinositol (4,5)-bisphosphate (PIP2).
Phospholipase C (PLC) hydrolyses PIP2 and produces inositol-1, 4,5-trisphosphate (IP3) and
diacylglycerol (DAG). IP3 translocates to endoplasmic reticulum (ER) in order to release calcium.
DAG and calcium binding activate protein kinase C (PKC). Activation of PKC stimulates downstream
signaling pathways; mitogen-activated protein kinase (p38/MAPK) and RAS/RAF/MEK/ERK pathways
for autophagy regulation. Also, PI3K mediates initiation of Akt/mammalian target of rapamycin (mTOR)
signaling pathway for inhibition of autophagy by suppressing Unc-51 Like autophagy activating kinase
(ULK) complex. Activation of adenosine monophosphate-activated protein kinase (AMPK) and silence
information regulator 1 (SIRT1) causes activation of autophagy through both suppression of mTOR or
activation of Akt or ULK initiation complex.

5. Autophagy in Neurodegenerative Diseases

5.1. Parkinson’s Disease

Parkinson’s disease (PD) is one of the age-related neurodegenerative disorders that occurs due
to the accumulation of Lewy bodies in dopaminergic neurons. To date, several genes have been
identified as a bridge between Parkinson’s disease and autophagy as a protective mechanism for
the clearance of toxic protein aggregation. In Drosophila models, Parkinson’s specific genes, Fbxo7
and Parkin, involve in the CCCP induced mitophagy. In the absence of Parkin, Fbxo7 does not
change the degradation of mitochondria, while in the presence of Parkin, the degradation occurs.
Therefore, Fbxo7 regulates mitophagy through Parkin dependent manner [105]. Leucine-rich repeat
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kinase 2 (LRRK2), an autosomal dominant gene of PD, has an impact on lysosomal degradation
through p62. p62 has a binding site at the N-terminal region of LRRK2, and overexpression of p62
affects the autophagic degradation of LRRK2 [106]. Comparably similar studies showed that LRRK2
interacts with different targets as leucyl-tRNA synthetase [107], nicotinic acid adenine dinucleotide
phosphate [108], dynamin-like protein 1 [109] and activation of MEK/ERK pathway by MAPK/ERK
kinases phosphorylation [110]. Wild-type α-synuclein protein in Parkinson’s disease is efficiently
degraded by CMA. Yet, pathogenic alpha synucleins accumulate and inhibit CMA activation [111].
DJ-1, a protein encoded by PARK7 gene, regulates autophagy mechanisms in several ways; where its
inhibition causes the activation of the JNK pathway, and the increase in p62 degradation [112]. DJ-1
mutation causes a defect in mitochondria through changing its morphology [113,114] and affects Parkin
dependent autophagy in PD. It has been indicated that, expressed DJ-1 plays a role in α-synuclein
degradation via CMA since α-synuclein aggregation is induced in knockdown DJ-1, both in vitro and
in vivo. Likewise, DJ-1 deficiency causes a decrease in autophagic flux and degradation of α-synuclein
in microglia [115]. The decline in the CMA regulation occurs with the increase in the LAMP2A
degradation in lysosomes under the inhibition of DJ-1. The results are specific solely for LAMP2A
as inhibition of DJ-1 does not change the LAMP1 level [116]. In addition, early stage PD patients
have decreased protein level of LAMP2, which indicates that, CMA dysfunction is an early step of PD
development [117]. 6-hydroxydopamine (6-OHDA) is a synthetic neurotoxin utilized to generate PD
models and its treatment causes the secretion of DJ-1 due to oxidative stress and phosphorylation of
AMPK and activation of AMPK/ULK1 pathway-dependent autophagy [118].

On the other hand, Ivatt et al. studied on a genome-wide RNAi screen in order to discover
possible target genes on autophagy mechanism during Parkinson’s disease progression. They found
20 genes that play a role in Parkin mediated mitophagy and significantly, the suppression of SREBF1,
FBXW7 and GSK3A genes cause direct inhibition of Parkin translocation to mitochondria. In the end,
the absence of translocation resulted in the inhibition of mitophagy [119].

5.2. Alzheimer’s Disease

Alzheimer’s disease, the most common specific form of dementia, is a progressive
neurodegenerative disease characterized by gradual memory fragmentation, impaired cognitive
abilities, disruptions in daily living activities, and psychological and behavioral changes [120].

There are two groups in Alzheimer’s disease, Early-Onset Alzheimer’s Disease (familial form)
and Late-Onset Alzheimer’s Disease (sporadic form). Genetic mutations with autosomal dominant
inheritance (APP, PSEN1, and PSEN2) are present in the familial form, while genetic variations and
multifactorial risks (education, quality of life, income, nutrition, etc.) are common in the sporadic form
which accounts for more than 90% of Alzheimer’s disease cases [121–123]. As in Parkinson’s disease,
mitochondrial dysfunction and autophagy have a vital role in disease development. The molecular
pathology of AD is characterized by as neural cell death, the accumulation of amyloid-β (Aβ) and tau
proteins in neurons and microglia. Similar to PD, the mutant tau protein that generates amyloidogenic
products, are not engulfed by lysosomes. Incomplete translocation of mutant tau leads to its partial
cleavage into highly amyloidogenic peptides, which form irreversible oligomers at the lysosomal
membrane [124]. Mitophagy causes the disease to retreat through the increase in the turnover of
protein aggregation and by the adequation of cellular energy metabolism. In the subjects, some of
the mitophagy proteins as phospho-ULK1, phospho-TBK1 and BNIP3L/NIX are lessened so that
the defective mitochondria could not be degraded properly [125]. Accumulation of Aβ causes an
impediment in the axonal transport and results in autophagic stress in axons. The interaction of Aβ
with DIC impacts dynein-snapin complex formation and elevates retrograde transport to increase the
autophagy mechanism in axons [126]. Accumulation of Aβ alters the mTOR signaling and causes a
defect in learning and memory. APP mutant mice as AD model shows high mTOR activity compared to
control however APP/mTOR +/−mutant mice show the reduction in mTOR activity but not complete
blockage. Due to be a negative regulator of autophagy, reduction in mTOR initiates the induction of the
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autophagy mechanism. In APP/mTOR +/−mutant mice, the expression of autophagic proteins is higher
than APP mutant mice so the accumulation of amyloid and other AD-related proteins can be degraded
by mTOR mediated autophagic pathway [127]. SIRT1 activation also affects the tau phosphorylation
and Aβ-induced GSK3β activation, therefore, it can be used as a block in neurodegeneration and
improvement of learning and memory [128]. Amyloid β and APP aggregation can be disposed of
by cilostazol-induced autophagy in neurons. Aβ accumulation causes the decrease in some of the
autophagic proteins as BECN1 and ATG5 however cilostazol treatment reverses the Aβ effect on
autophagy activity through SIRT1 protein [129]. Mutant BECN1 mice show unremitting activation in
autophagy mechanism either under stress or basal conditions. Their AD progression is suppressed by
the inhibition of Beclin and Bcl2 interaction [130].

5.3. Amyotrophic Lateral Sclerosis (ALS)

Amyotrophic lateral sclerosis (ALS) is characterized as a neuromuscular disorder that arises from
defects in the motor neurons. The most causative gene for ALS development is Cu/Zn superoxide
dismutase (SOD1) and mutations in this gene cause the accumulation of impaired mitochondria in
axons as well as damage to the autophagy recycling mechanism. fALS-linked mutant SOD mice
shows lysosomal deficiency in early asymptomatic stage since mutant SOD acts as an antagonist of
dynein during retrograde transport and hinders dynein-snapin complex formation. In fALS-linked
mutant SOD mice, p62 accumulation follows the colocalization of p62 with hSOD1G93A; however,
the protein could not be degraded due to lysosomal deficiency. The dynein-snapin complex has a
pivotal role in the autophagy mechanism in axons, therefore the blockage of the complex results in
the accumulation of abnormal organelles and proteins [131]. ATG7 cKO; SOD1G93A double mutant
mice show a reduction in p62 accumulation and interestingly prolong the lifespan of mice [132].
P2X7 overexpression encourages autophagic protein in SOD1G93A primary microglia and causes
formation of ALS pathogenesis [133]. On the other hand, rilmenidine, disseminates the autophagy
mechanism through the mTOR independent pathway and induces the degradation of SOD1G93A
and p62 aggregates. In SOD1 mutant mice, there is an increase in LAMP2A level and it colocalizes
with SOD1. However, after rilmenidine treatment, LAMP2A colocalization with SOD1 did not occur.
Therefore, rilmenidine may affect autophagy flux via CMA independent manner [134].

5.4. Huntington’s Disease

In Huntington disease (HD), an extension of polyQ (polyglutamine) tract in the N-terminus of
Huntingtin (HTT) protein causes protein aggregation. Accordingly, the accumulation of mutant HTT
protein results in the induction of autophagic flux. In most neurodegenerative diseases, autophagic
activity is suppressed; however, in this aspect, HD follows a different in particular by inducing
selective macroautophagy. Starting within the research of how polyQ tract is related with autophagy,
it has been found that loss of polyQ tract even in wild type HTT proteins causes longer neural
activity in mouse models, suggesting the potential of clinical actionability upon autophagic pathway
upregulation [135]. Through the research on structural similarities and homology studies of HTT
protein, selective autophagy protein Atg11 emerged as a potential partner with common binding
interactions, referring that HTT may typically function as a scaffold for several types of selective
autophagy. Furthermore, central nervous system studies in mouse and Drosophila models showed
protein accumulation in the absence of HTT function [136,137].

In selective autophagy, HTT protein is in charge by physically interacting the autophagy cargo
receptor p62, whereas acts as an inducer by binding to the kinase that initiates autophagy, ULK1 [138].
In HD, cargo trafficking in autophagic flux is impaired based upon a failure of autophagosome motility
regulation, therefore preventing fusion with the lysosome [139]. Besides the projected roles of HTT
protein, HTT protein is also in charge in the regulation of motility during cargo trafficking, starting
from mitochondria to various vesicles [140].
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5.5. Multiple Sclerosis (MS)

Multiple sclerosis (MS) is a clinically diverse autoimmune disease of the central nervous system,
resulting in continual neurological impairments as a subset of the chronic inflammatory demyelinating
disorders. With respect to of autophagy, MS progression strictly links since autophagy mechanism
acts as the maintainer for the structure of mitochondria. Accordingly, the dysfunction prevention of
mitochondria is a critical checkpoint in order to avoid cell death and MS progression. Suppression and
loss of autophagy, which results in higher protein accumulation, is associated with neurodegenerative
diseases in mice models [141]. In the central nervous system, complex and mutual regulation between
inflammatory response and autophagy is present where each element plays as interactors for each
other. For instance, ATG9 acts as an inflammatory response reducer by modulating over type-I IFN
signaling [142].

Another example might show that, Atg16L1 lowers inflammatory immune responses in mice
model [143]. Yet, the autophagic activity becomes a regulator for adaptive immune responses.
For instance, during the development of T-cell MHC-II–peptide repertoires, autophagy favors tolerance
and a wide array of antigens, regardless of certain tissue specificity [144].

Besides the immune responses, autophagy is linked to MS in the processes of demyelination
and remyelination. For instance, under rapamycin influence, a potent autophagy inducer, autophagy
reduces PMP22 aggregates, therefore improving myelination in TrJ mice [145,146].

6. Roles of PKC Isozymes in Neurodegenerative Disease Progression via Autophagy Mechanism

Presently, we have demonstrated the PKC-dependent autophagy in the course of
neurodegenerative diseases. PKCα has a crucial role in neural tube defects (NTD) in embryonic mouse
models. It induces miR-129-2 and inhibits peroxisome proliferator-activated receptor c coactivator 1
(PGC-1) expression. The inhibition of PGC-1 impairs autophagy and causes NTD formation. In diabetic
pregnancies, the overexpression of PKCα causes impairment in the autophagy mechanism through
PGC-1 and results in NTD [87]. Also, PGC-1 overexpression protects neurons from mitochondrial
dysfunction under oxidative stress in Parkinson’s disease [147].

Another study shows that inhibition of PKCα induces autophagic activity through activation
of TGFβ-1, therefore promoting the differentiation and growth of axons by the phosphorylation of
Par6 [148]. PKCs have ability to enhance phosphorylation of Par6 and TGFβ and then induce cell
migration of neurons [149]. Par6 phosphorylation is an important event in cell polarization and
embryonic inactivation. Accordingly, polarization causes severe conditions such as, the imbalance
in neural development. The Par3-Par6-aPKC complex has an evolutionary conserved mechanism to
maintain embryonic development in eukaryotic organisms. Also, it plays a fundamental role in axon
expansion and multiple axon formation [150]. mTOR controls cell survival under growth-promoting
factors and it has the ability to phosphorylate cPKC and Akt in order to establish protein stability [151].
The inhibition of ubiquitin C-terminal hydrolase L1 (UCHL1) by cPKCγ restricts autophagy through
the activation of ERK-mTOR pathway and reduces ischemic neural injury [93].

Tetramethylpyrazine (TMP) induces the phosphorylation of Erk, Akt and PKCζ and promotes
the migration of neural precursor cells (NPC). Inhibition of PKC by Myr-ψPKC causes the blockade
of TMP mediated NPC migration [139]. Nagai studied milk phospholipids’ (mPL) effects on the
endoplasmic reticulum (ER) stress-mediated autophagy in Neuro2A cells, and according to theirresults,
the activation of PKC isozymes by mPL induces the protective effect of neurons under ER stress
conditions with the increase in the autophagy mechanism [152]. The protective impact of PKCγ on
hypoxia/ischemia [153] and the PKCγmediated neural autophagy through Akt/mTOR pathway under
ischemic stroke were studied [154]. Mitochondrial neurotoxin MMP+ promotes autophagic cell death
and both JNK and Akt/mTOR signaling pathways are activated. When apoptosis specific JNK protein
increased, cellular survival proteins, Akt and mTOR, levels diminished under dose dependent MMP+

treatment. However, when the cells treated with PKC agonist TPA, the destructive effect of MMP+

eliminated [155].
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Autophagic flux tightly intertwines with innate and adaptive immune systems. Since autophagy
is a crucial player for the fate of a cell in mitochondrial dysfunction, it acts upon in MS progression [156].
Increasing points of evidence in MS pathogenesis comprise that cortical demyelination is a consequence
of the production of reactive oxygen species (ROS). In this aspect, PKC has a role in populating ROS by
particularly activating NADPH oxidase. Resulting nitrative and oxidative stress will potentially lead
to cell death [157]. Furthermore, PKC-β serine phosphorylates p66, which will eventually contribute
to targeting isomerase Pin1 to oxidize cytochrome c in the mitochondrial intermembrane space [158].
Accordingly, reduced oxygen into ROS will cause cell death through permeability transition pore (PTP)
opening [159].

It has been shown that PKC-λ/ι enhances the production of brainβ-secretase, Aβ1, and phospho-tau
and cause hyperinsulinemia in Alzheimer’s disease. Importantly, the inhibition of brain αPKC restores
the increase in the β-secretase and Aβ production and also repairs the impairment in memory function
due to high fat diet in mice [30,160].

Most neurodegenerative disorders are linked with misfolded protein aggregation and impaired
degradation mechanisms are highly present. Besides autophagy, there are several other degradation
mechanisms in the cell, and they have specific reporters in order to label target proteins for recycling.
One of reporters is named as small ubiquitin-like modifier (SUMO) and its activation induces
SUMOylation [161]. PKCα induces SUMOylation of metabotropic glutamate receptor subtype 7
(mGluR7) via phosphorylation at Ser862 and improves its stability on cell membrane therefore causes a
decrease in the receptor endocytosis. Phosphorylation of mGluR7 by PKC provokes synaptic plasticity
in neurons [162,163].

Activation of mGluR7 improves the cell viability, proliferation and differentiation of neural stem
cells (NSCs). mGluR7 activation via phosphorylation regulates the survival of NSCs and the (PI3K)/Akt
signaling pathway takes part in the activation. PKC is an intermediate agent between mGluR7 and
(PI3K)/Akt and therefore it may have a critical role in the proliferation and differentiation of neural
stem cells [164].

7. Polyphenols Act as Neuroprotective Agent During PKC and Autophagy Regulation

Phenolic and flavonoid compounds are secondary metabolites of plants and have been heavily
used in alternative and complementary medicine for decades [165]. Extraction and analysis of
these compounds have shown that at the optimum doses they could act as neuroprotective agents,
while overdosages cause damage in neurons [166,167]. There are several studies which indicate that
different polyphenols and small compounds alter the PKC regulation by phosphorylation and result in
disease protection. Here, we noted the small compounds’ role in both PKC and autophagy signaling
on neurodegenerative disease pathogenesis (Table 1). Also, we screened current therapeutic agents
used in neurodegenerative diseases linked with PKC signaling (Table 2).

Epigallocatechin 3-gallate (EGCG), which is one of the phenolic compounds of green tea, has been
reported as a protective agent [168–171]. EGCG influences autophagy to maintain cell survival under
ER stress [172] and decrease the prion accumulation mediated neurodegenerative disease formation by
stimulating autophagic flux through SIRT1 activation [173]. EGCG also acts as a neuroprotective agent
by inhibiting mitochondrial dysfunction and recovery of impaired autophagy under subarachnoid
hemorrhage stroke [174]. EGCG treatment in neuroblastoma cells causes phosphorylation of PKC and
activation of the nonamyloidogenic α-secretase pathway of APP against Aβ neurotoxicity [175] and
EGCG dependent PKC activation induced neuroprotection under 6-OHDA exposure in cells [176].
Moreover, it has been reported that EGCG protects neuron cells under stress-induced brain impairment
by promoting PKCα and ERK1/2 signal pathways [177].

The grape polyphenolic compound resveratrol is another neuroprotective agent against Aβ
induced neuronal toxicity [178,179]. Resveratrol plays a role in the reduction of Aβ toxicity by inducing
autophagy mechanism via AMPK/SIRT1 pathway in neuroblastoma cells [180] and acts as a protective
factor against cerebral ischemia through stimulation of AMPK dependent autophagy pathway [181].
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It has been reported that resveratrol has direct interaction with the mTOR complex and the inhibition
of mTOR results in the initiation of autophagy [182]. It promotes PKC phosphorylation and reduces
Aβ toxicity in hippocampal cells [183]. Resveratrol binding to the C1 domain of PKCα results in
PKC inactivation. As PKCα, Munc13-1, one of the presynaptic proteins regulating neurotransmitter
release, has a resveratrol binding region on C1 domain [184]. Both bindings of resveratrol on PKCα
and Munc13-1 inhibits neurotoxicity.

Quercetin treatment plays a neuroprotective role in brain injuries by inducing neuronal autophagy
and inhibiting cell death through PI3K/Akt signaling pathway [185]. Quercetin also has a role in
rotenone-induced neurotoxicity in PD. Moreover, quercetin treatment reverses impaired autophagic
activity and results in the protection of the brain against oxidative stress [186]. Furthermore, quercetin
reduces PKCε/p38MAPK mediated ROS production through the activation of the ERK1/2 pathway
to protect neurons from oxidative stress [187] and it is indicated that GSK-β and p38 inhibition or
PKC activation results in Nrf2 phosphorylation under quercetin treatment [188]. Suppression of PKCε
and TRPV1 in the spinal cord by quercetin has the potential for the treatment of acute neuropathic
pain [189]. Also, PAR2/TRPV1 signaling inhibition by quercetin causes a decrease in PKCγ expression
as well as depletion in inflammatory markers in bone cancer models [190].

Another natural compound, curcumin, decreases neuronal cell death under oxidative stress
by inducing autophagy and inhibiting ROS production [191]. On the contrary, curcumin
has neuroprotective effects on cerebral ischemia-reperfusion through reducing autophagy via
PI3K/Akt/mTOR pathway [192]. It has been reported that the inhibition of calcium channels by
curcumin treatment is connected with PKCθ signaling and promotes neuroprotection in brain ischemia
against an increase in intracellular calcium concentration [193].

Table 1. Natural compounds’ effects on protein kinase C isozymes and autophagy.

PKC Isozymes Compound Function

PKCα
PKCε

Epigallocatechin 3-gallate
(EGCG) [169–177]

Neuroprotection against Aβ toxicity
Promoting autophagy

PKCδ
PKCα Resveratrol [182–184]

Attenuating cellular toxicity
Inducing autophagy mechanism via AMPK/SIRT1
and mTOR

PKCε
PKCδ
PKCγ

Quercetin [185–189]
Inducing neuronal autophagy and inhibiting cell
death through PI3K/Akt signaling
Decreases neuropathic pain

PKCθ Curcumin [191–193]
Increase autophagy in neuroblastoma
Decrease autophagy under cerebral ischemia-
reperfusion via PI3K/Akt/mTOR
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Table 2. Small molecule modulators and their targets involved in neurological diseases with respect to Protein kinase C (PKC) isozymes.

Disease Molecule Class/SubClass Target Mode of
Action

Targeted
Pathway

Affected PKCs
Isozyme PKC Related Action Clinical

Trial Status

Parkinson’s

Levodopa [194]
Carboxylic
acids—Amino acids,
peptides

Dopamine D1, D2, D3, D4, D5
receptors Agonist Dopaminergic

synapse
PKC-α, PKC-β,
PKC-γ

Induced
phosphatidylinositol
signaling

FDA
Approved
2008

Rasagiline [195] Benzenoids—Indanes Amine oxidase (flavin-containing)
B, Apoptosis regulator Bcl-2 Inhibitor Serotonergic

synapse
PKC-α, PKC-β,
PKC-γ

Neuroprotection by
inhibiting Caspase 3

FDA
Approved
2006

Bromocriptine
[196]

Ergoline—Lysergic
acids D2 dopamine receptor Agonist

Neuroactive
ligand-receptor
interaction

PKC-α, PKC-β,
PKC-γ, PKC-ε

Enhanced MAPK
phosphorylation and
PKC activity

FDA
Approved
2004

Pramipexole
[197]

Organonitrogen—
Amines Dopamine D2, D3, D4 receptors Agonist Dopaminergic

synapse
PKC-α, PKC-β,
PKC-γ

PKC/MAPK pathways
interference

FDA
Approved
1997

Quetiapine
[198]

Benzothiazepines—
Dibenzothiazepines

D2 dopamine receptor,
5-hydroxytryptamine receptor 2A Antagonist

Neuroactive
ligand-receptor
interaction

PKC-α, PKC-β,
PKC-γ

PKC activation through
cAMP and calcium
pathways

Phase IV
Completed

Isradipine [199] Benzoxadiazoles Calcium voltage-gated channel
subunit alpha1 C Inhibitor GABAergic

synapse
PKC-α, PKC-β,
PKC-γ Increased PKC activity Phase III

Completed

Pimavanserin
[200] Phenol ethers D2 dopamine receptor,

5-hydroxytryptamine receptor 2A
Inverse
Agonist

Neuroactive
ligand-receptor
interaction

PKC-α, PKC-β,
PKC-γ

PKC activation and
phosphatidylinositol
signaling

Phase III
Completed

Alzheimer’s

Memantine
[201]

Organonitrogen—
Amines

Glutamate ionotropic receptor
NMDA type subunit 3A Antagonist

Neuroactive
ligand-receptor
interaction

PKC-α, PKC-β,
PKC-γ

Reduced
depolarization-induced
phosphorylation of PKC

FDA
Approved
2003

Galantamine
[202]

Piperidines—
Benzylpiperidines Acetylcholinesterase Inhibitor Cholinergic

synapse
PKC-α, PKC-β,
PKC-γ

Calmodulin-dependent
PKC activation

FDA
Approved
2001

Rivastigmine
[203]

Benzene— Phenoxy
compounds Acetylcholinesterase Inhibitor Cholinergic

synapse
PKC-α, PKC-β,
PKC-γ

Stimulation of sAPPα
increases PKC activity

FDA
Approved
2000

Rosiglitazone
[204] Phenol ethers Peroxisome proliferator-activated

receptor gamma Agonist PPAR signaling
pathway

PKC-α, PKC-β,
PKC-γ

Downstream modulation
of PKC through adenylyl
cyclase

FDA
Approved
1999

Donepezil [205] Piperidines—
Benzylpiperidines Acetylcholinesterase Modulator Cholinergic

synapse
PKC-α, PKC-β,
PKC-γ

Activation of
phospholipase C / PKC

FDA
Approved
1996

Aripiprazole
[206]

Diazinanes—
Piperazines

D2 dopamine receptor,
5-hydroxytryptamine receptor 2A Antagonist Dopaminergic

synapse
PKC-α, PKC-β,
PKC-γ

Reduced
phosphorylation of DRD2

Phase IV
Completed
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Table 2. Cont.

Disease Molecule Class/SubClass Target Mode of
Action

Targeted
Pathway

Affected PKCs
Isozyme PKC Related Action Clinical

Trial Status

TRx0237 [207] Benzothiazines Microtubule-associated protein tau Aggregation
Inhibitor

MAPK signaling
pathway

PKC-α, PKC-β,
PKC-γ

Decreased activity of PKC
through tau inhibition

Phase III
Completed

Nilvadipine
[208]

Pyridines—
Hydropyridines

Voltage-dependent L-type calcium
channel subunit alpha-1C Inhibitor GABAergic

synapse
PKC-α, PKC-β,
PKC-γ

Reduced activation via
PKC

Phase III
Completed

Intepirdine
[209]

Diazinanes—
Piperazines 5-hydroxytryptamine receptor 4 Antagonist

Neuroactive
ligand-receptor
interaction

PKC-δ
Decreased activity of
PKCδ through c-src
kinase

Phase III
Completed

Idalopirdine
[210] Indoles—Tryptamines 5-hydroxytryptamine receptor 2A Antagonist

Neuroactive
ligand-receptor
interaction

PKC-α, PKC-β,
PKC-γ

Reduced calmodulin
mediated
phosphorylation

Phase III
Completed

Brexpiprazole
[211]

Diazinanes—
Piperazines

5-hydroxytryptamine receptor 1A,
D2 dopamine receptor

Agonist/
Partial
agonist

Neuroactive
ligand-receptor
interaction

PKC-α, PKC-β,
PKC-γ

Increased
phosphorylation activity

Phase III
Completed

Atorvastatin
[212]

Pyrroles—
Substituted pyrroles

3-hydroxy-3-methylglutaryl-
coenzyme A reductase Inhibitor AMPK signaling

pathway
PKC-α, PKC-β,
PKC-γ

Reduced
phosphorylation of
HMGCR

Phase III
Completed

Multiple
Sclerosis

Fingolimod
[213]

Organonitrogen—
Amimes

Sphingosine 1-phosphate
receptor 5 Modulator

Neuroactive
ligand-receptor
interaction

PKC-βII Increased PKC activity
FDA
Approved
2010

Cannabidiol
[214]

Prenol lipids—
Monoterpenoids Cannabinoid receptors Agonist

Neuroactive
ligand-receptor
interaction

PKC-α, PKC-β,
PKC-γ

Hippocampal
PKC/neurogranin
signaling

Phase IV
Completed

Teriflunomide
[215]

Benzene—
TrifluoromethylbenzenesDihydroorotate dehydrogenase Inhibitor Metabolic

pathways PKC-δ
PI3-kinase/PKC-δ and
nuclear factor-kappa B
signaling

Phase IV
Completed

Ponesimod
[216] Phenol ethers Sphingosine-1-phosphate

receptor 1 Modulator
Neuroactive
ligand-receptor
interaction

PKC-α, PKC-β,
PKC-γ Inhibited PKC signaling Phase III

Completed

Ozanimod [217] Azoles—Oxadiazoles Sphingosine-1-phosphate
receptor 5 Modulator

Neuroactive
ligand-receptor
interaction

PKC-ε Increased PKC-ε activity Phase III
Completed

Duloxetine [218] Naphthalenes Sodium-dependent dopamine
transporter Inhibitor Dopaminergic

synapse PKC-ε PKC-ε activity through
cytokines release

Phase III
Completed

Arbaclofen [219]
Carboxylic acids—
Amino acids,
peptides

GABA type A receptor associated
protein like 1 Inhibitor GABAergic

synapse
PKC-α, PKC-β,
PKC-γ

Reduced PKC
phosphorylation

Phase III
Completed
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Table 2. Cont.

Disease Molecule Class/SubClass Target Mode of
Action

Targeted
Pathway

Affected PKCs
Isozyme PKC Related Action Clinical

Trial Status

Huntington’s

Deutetrabenazine
[220] Tetrahydroisoquinolines Solute carrier family 18

member A2 Inhibitor Dopaminergic
synapse

PKC-α, PKC-β,
PKC-γ

Reduced PKC
phosphorylation

FDA
Approved
2017

Tetrabenazine
[221] Tetrahydroisoquinolines D2 dopamine receptor Inhibitor Dopaminergic

synapse PKC-β Reduced dopaminergic
signaling

FDA
Approved
2015

Riluzole [222] Benzothiazoles Glutamate metabotropic receptor 1 Inhibitor
Neuroactive
ligand-receptor
interaction

PKC-α, PKC-β,
PKC-γ Inhibited PKC signaling Phase III

Completed

Tiapride [221] Benzene—
Benzenesulfonyl D2 dopamine receptor Inhibitor Dopaminergic

synapse PKC-β Reduced dopaminergic
signaling

Phase III
Completed

Pridopidine
[223]

Piperidines—
Phenylpiperidines Superoxide Dismutase-1 Modulator

Neuroactive
ligand-receptor
interaction

PKC-α, PKC-β,
PKC-γ

Stimulation of PKC
activity

Phase III
Completed

Minocycline
[224] Tetracyclines Caspase-3 Inhibitor Serotonergic

synapse PKC-α, PKC-βII Downregulated MHC II
through PKC Inhibition

Phase III
Completed

Olanzapine
[225] Benzodiazepines D2 dopamine receptor Agonist Dopaminergic

synapse
PKC-α, PKC-β,
PKC-γ Enhanced PKC activity Phase III

Completed

ALS Edaravone [226] Azolines—Pyrazolines Peroxyl radicals Inhibitor
ROS-Triggered
Intracellular
Signaling

PKC-α, PKC-β,
PKC-γ Enhanced PKC activity

FDA
Approved
2017

Riluzole [222] Benzothiazoles Glutamate metabotropic receptor 1 Inhibitor
Neuroactive
ligand-receptor
interaction

PKC-α, PKC-β,
PKC-γ Inhibited PKC signaling

FDA
Approved
1995

Mexiletine [227] Phenol ethers Sodium channel protein type 5
subunit alpha Inhibitor

Adrenergic
signaling in
cardiomyocytes

PKC-α, PKC-βI Enhanced PKC activity Phase IV
Completed
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8. Conclusions

In this review, we discussed how autophagic pathways and their interaction with PKCs play
a role in the development of neurodegenerative diseases. Today, it is known that different types
of autophagic pathways potentially play a great role in the maintenance and ultimately the fate of
cell. Similarly, some of the PKC isozymes are known as intermediate modulators or agents for the
autophagic pathway/neuronal fate while some remain mysterious.

The role of PKCs in autophagy signaling during neurodegenerative disease development may
constitute a triangle. Considering the complex workings of the brain and its astounding ability to
adapt and overcome disability, the interaction of these pathways may have promising therapeutic
potential for the treatment of neurodegenerative diseases in the future.
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