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Epithelial ovarian cancer is predominantly diagnosed at advanced stages which creates
significant therapeutic challenges. As a result, the 5-year survival rate is low. Within ovarian
cancer, significant tumor heterogeneity exists, and the tumor microenvironment is diverse.
Tumor heterogeneity leads to diversity in therapy response within the tumor, which can
lead to resistance or recurrence. Advancements in therapy development and tumor
profiling have initiated a shift from a “one-size-fits-all” approach towards precision patient-
based therapies. Here, we review aspects of ovarian tumor heterogeneity that facilitate
tumorigenesis and contribute to treatment failure. These tumor characteristics should be
considered when designing novel therapies or characterizing mechanisms of treatment
resistance. Individual patients vary considerably in terms of age, fertility and contraceptive
use which innately affects the endocrine milieu in the ovary. Similarly, individual tumors
differ significantly in their immune profi le, which can impact the efficacy of
immunotherapies. Tumor size, presence of malignant ascites and vascular density
further alters the tumor microenvironment, creating areas of significant hypoxia that is
notorious for increasing tumorigenesis, resistance to standard of care therapies and
promoting stemness and metastases. We further expand on strategies aimed at
improving oxygenation status in tumors to dampen downstream effects of hypoxia and
set the stage for better response to therapy.
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EPITHELIAL OVARIAN CANCER

Epithelial ovarian cancer (EOC) is the most lethal gynecological
cancer, and it is the fifth leading cause of cancer related deaths in
women (1). A lack of disease-specific symptoms makes early
detection difficult, with most women being diagnosed with EOC
at an advanced stage (2). At diagnosis, most women have a large
primary ovarian tumor, multiple metastatic secondary tumors
and abdominal ascites (3). With the advanced stage at diagnosis,
it is difficult to effectively treat the disease resulting in a 5-year
survival rate for women diagnosed at stages 3 and 4 of 42% and
26% respectively (4).

Ovarian cancer most commonly presents in post-menopausal
women at which point there are other age-related physiologic
changes. Contributing risk factors include a familial history of
EOC, increased lifetime ovulatory events due to nulliparity,
undergoing hormone replacement therapy (HRT) and
comorbidity factors such as diabetes and obesity (5, 6). Many
of these risk factors involve prolonged exposure to steroid
hormones. While post-menopausal women experience a
decrease in hormone production, prolonged and chronic
exposure to these hormones throughout their life contribute to
an increased risk of EOC (7). Similarly, post-menopausal women
on HRT have a further increase in exposure, enhancing the risk
of EOC (8).

Currently, the common treatment protocol for ovarian cancer
includes cytoreductive surgical debulking accompanied with
chemotherapy, typically carboplatin and paclitaxel (9).
Although there is often initial responsiveness to chemotherapy,
most women develop chemoresistance and disease recurrence
(10). As such, novel therapeutic approaches are needed to
prevent chemoresistance and improve treatment success.
THE ENDOCRINE SYSTEM IN OVARIAN
CANCER TUMORIGENESIS

The ovary is surrounded by a single layer of epithelial cells called
the ovarian surface epithelium (OSE). The activity of the OSE is
hormone-dependent; the ovary is a primary endocrine organ
where both peptide and steroid hormones act on the OSE cells to
mediate their activity throughout various reproductive processes.
These hormones have an influential role on proliferation and
differentiation of OSE cells and aberrant endocrine signaling can
inflate the risk of EOC and contribute to its tumorigenesis
(11, 12).

Gonadotropin-releasing hormone (GnRH) is a peptide
hormone secreted by the hypothalamus. Its primary function is
to regulate the production and release of luteinizing hormone
(LH) and follicle stimulating hormone (FSH) from the anterior
pituitary (11). These hormones, with the addition of human
chorionic gonadotrophin (hCG), have been shown to elicit pro-
proliferative effects on EOC cells through activation of
gonadotropin-response genes, increased growth factor
signaling and ovarian production of sex steroids, suggesting an
indirect role of GnRH in EOC tumorigenesis (13–15).
Frontiers in Endocrinology | www.frontiersin.org 2
Additionally, GnRH stimulation of EOC cell-bound GnRH
Type I receptors elicit anti-proliferative and anti-apoptotic
signals through mechanisms involving activation of
phosphotyrosine phosphatase and NFkB, respectively (16, 17).
At the level of the ovary, imbalances of inhibin and activin
expression in tumor cells may further attribute to EOC
tumorigenesis by supporting cell survival and stimulating
proliferation (18). These proteins are secreted by the ovary and
function primarily to regulate FSH production at the level of the
anterior pituitary. Activin directly stimulates FSH from the
anterior pituitary and inhibin suppresses activin signaling by
binding and sequestering it thereby preventing it from binding to
its receptors (11). Additional evidence has suggested paracrine
and/or autocrine functions of these proteins in the ovarian tumor
microenvironment (TME) with further influences on ovarian
steroid synthesis, proliferation and tumor invasion (18–20)
although the mechanisms by which these proteins influence
these processes remain unclear.

The involvement of steroid hormones in ovarian cancer
carcinogenesis is supported by both experimental and
epidemiological findings (21, 22). Protective effects of oral
contraceptives, particularly progestin-only formulations, as well
as multiparity suggest an inverse relationship between
progesterone and ovarian cancer risk (23, 24). Experimental
findings on progesterone’s role in EOC are conflicting with both
positive and negative effects on tumor invasiveness and metastasis
(25, 26). Protective effects of breastfeeding and pregnancy suggest
a similar inverse relationship between estrogen levels and EOC
risk (11, 22). Experimental findings support a pro-tumorigenic
role of estrogen and suggests estrogen may elicit EOC cell
proliferation through increases in growth factor receptor
expression, stimulation and/or increased expression of c-myc
(27–29). Elevated risk associated with previous polycystic
ovarian syndrome diagnosis and treatment with Danazol, a
therapy used in the treatment of endometriosis, suggests a pro-
tumorigenic role of androgens in EOC (22, 30). Elevated
levels of dihydrotestosterone and testosterone are correlated
with an increase in tumor volume in EOC and elevated
dihydrotestosterone alone can increase IL-6 mRNA and protein
levels and suppress the anti-proliferative effects of TGF-b1
resulting in EOC cell proliferation (31, 32).

With the growing body of epidemiological and experimental
evidence, an association between the endocrine status of the
patient and ovarian cancer tumorigenesis is well-supported as
summarized in Figure 1. However, the specific mechanisms in
which hormones impart their effects remain unclear. Future
research is needed to elucidate the role of hormonal
stimulation in EOC risk and progression.
THE ROLE OF ANGIOGENESIS IN
OVARIAN CANCER

Angiogenesis is a naturally occurring process to develop new
blood vessels from pre-existing vasculature. Angiogenesis is
involved in a number of homeostatic processes including
November 2021 | Volume 12 | Article 772349
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vascular repair in wound healing (40). In response to an injury,
pro-angiogenetic stimulators including vascular endothelial
growth factor (VEGF), fibroblast growth factor, platelet-
derived growth factors, angiopoietins, hypoxia inducible factor
(HIF) and many more are activated (41–45). When the wound
has been repaired, anti-angiogenic factors including
thrombospondin-1, endostatin and platelet factor 4 (46–48) are
activated to counteract the pro-angiogenic stimulus. This switch
inhibits further angiogenesis and prevents uncontrolled vessel
formation. Although angiogenesis is generally quiescent in the
adult, in the ovary, cyclical angiogenesis occurs and is an
important process that helps regulate ovarian function (49).
Perifollicular vascularization occurs during the ovarian cycle to
support development and function of the growing follicles (50).
Rapid angiogenesis occurs during initial formation of the corpus
luteum (51). LH and prostaglandins can specifically trigger the
activation of angiogenesis following initiation of ovulatory events
to accelerate capillary formation within the follicle and
developing corpus luteum (52). Similarly in ovarian cancer,
hormonal influences play a role in angiogenesis. Both LH and
FSH levels continue to increase in menopausal women and as
such promote disease progression of ovarian cancer due to their
contribution in promoting tumor angiogenesis (53). In ovarian
cancer, elevated levels of LH promote angiogenesis specifically
through the PI3K/Akt-mTOR pathway (54). As previously
mentioned, EOC primarily occurs in post-menopausal women,
and as such some post-menopausal women are on HRT.
Estrogen HRT is known to be a contributing risk factor to the
onset of ovarian cancer. This is partially due to the fact that
estrogen is known to enhance tumor growth as well as drive
Frontiers in Endocrinology | www.frontiersin.org 3
angiogenesis, primarily through the mediation of bone marrow-
derived cells, endothelial cells and directly downregulating
thrombospondin-1 expression (55, 56).

The process of angiogenesis is crucial in the development and
progression of solid tumors. Without angiogenesis, tumors
would not be able to grow larger than 1-2mm3 (57). By
initiating angiogenesis, the tumor can stimulate the formation
of blood vessels to supply oxygen and nutrients and to facilitate
metabolic waste removal (58). To stimulate blood vessel
formation, the tumor undergoes an “angiogenic switch” in
which pro-angiogenic factors are over-expressed while
angiogenesis inhibitors are concomitantly suppressed (59).
Angiogenesis does not occur uniformly throughout the solid
tumor and most tumors have a mosaic pattern of blood vessels
(60). This lack of equal distribution of blood vessels contributes
to normoxic regions within the tumor that are highly
vascularized allowing oxygen to diffuse to the tumor cells.
Typically following the angiogenic switch, the pro-angiogenic
stimulus is aggressive, resulting in the rapid formation of tumor
vessels (61). As a result of the rapid vascularization, many tumor
vessels have altered morphology, with blind-ends, constrictions,
shunts and other malformations (62). In addition, tumor vessels
typically lack smooth muscle cell coverage and are considered
immature (63). As a result of these malformations, tumor vessels
are very inefficient in perfusing the tumor, resulting in
widespread hypoxia (64). Hypoxic tumor cells can stimulate
VEGF expression which activates neighbouring endothelial cells,
further increasing angiogenesis within the TME and formation
of dysfunctional tumor vessels (65). This reduced vascular
perfusion represents a significant impediment to cancer
FIGURE 1 | Simplified schematic of endocrine factors involved in epithelial ovarian cancer progression. GnRH secreted from the hypothalamus stimulates release of
FSH from the anterior pituitary. FSH binds to the FSH receptor to activate the PI3K/Akt pathway, stimulating the expression of survivin (33). Survivin activates HIF-1a,
resulting in secretion of VEGF, which inhibits apoptosis, stimulates proliferation and induces angiogenesis in various carcinomas (34). FSH-induced survivin
upregulation is also associated with inhibition of death receptor DR5 and de-activation of an intracellular death-induced silencing complex (33). GnRH binding to the
GnRH-I receptor activates intracellular NFkB, which inhibits ovarian cancer cell apoptosis (17, 35). Estrogen has direct effects by inducing activation of the
proliferative, survival and angiogenic MAPK/ERK signaling pathway (36, 37). Estrogen also has an indirect pro-tumor effect by stimulating subsequent release of
GnRH and FSH (38, 39).
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therapy success as the treatment compounds cannot reach the
interior of the tumor. Hypoperfusion and the resultant hypoxia is
associated with the development of chemoresistance, which is a
major problem in ovarian cancer patients (66, 67). Women with
EOC that develop chemoresistance have demonstrated a specific
angiogenic gene signature which may facilitate therapies targeted
in these patients (68).

Tumor vasculature is also important in facilitating tumor
metastasis (69). Due to the excessive stimulation by pro-
angiogenic factors such as VEGF, tumor vessels are highly
fenestrated, with increased space between endothelial cells (70).
Due to the increased fenestration, tumor cells can more easily
penetrate and enter the vasculature, enhancing metastasis (71).
Excessively fenestrated tumor vessels also contribute to fluid
extravasation and accumulation in the perivascular space which
increases interstitial fluid pressure (IFP) (72). Elevated IFP creates
an additional barrier to therapyuptake due to the elevated pressures
within the tumor (73). High IFP can also cause the collapse of
intratumoral lymphatic vessels, which can obstruct proper
lymphatic drainage (74). A combination of hyperpermeable
vasculature and lack of lymphatic drainage seen in EOC results in
leakage in to the peritoneum through an osmotic effect (75). This
contributes to the accumulation of ascites in the abdomen, and the
release of tumor cells into the ascites increases metastasis (76).
HYPOXIA AS A FEATURE OF OVARIAN
CANCER PROGRESSION

As tumors grow and become less oxygenated and hypoxic,
cancer cells develop mechanisms to survive under lower
oxygen tension (77). The immediate molecular response to low
oxygen is the stabilization of HIFs. HIFs in turn, will activate a
number of survival pathways that promote proliferation,
angiogenesis and invasion while concurrently inhibiting
apoptotic cancer cell death (78, 79). In opposition to this,
normal, non-cancerous cells typically respond to hypoxia by
undergoing senescence, arresting mitosis and dying by apoptosis
if there is DNA damage (80, 81).

Hypoxia is a key inducer of angiogenesis and an activator of
the angiogenic switch during tumor development (82). This
event is a tip in the balance of pro-angiogenic and anti-
angiogenic factors within the TME in response to stimuli,
favouring a transition from angiogenic dormancy to a
vascularized tumor. HIF-1 is a heterodimer, consisting of a
constitutively expressed HIF-1b subunit and a regulatory HIF-
1a subunit (83). In response to tissue hypoxia, HIF-1a stabilizes,
accumulates and translocates to the nucleus. Once translocated
to the nucleus, HIF-1a binds to conserved hypoxia response
elements to activate hypoxia-sensitive genes such as VEGF by
binding to their promoter regions (84). Culture of ovarian cancer
cells under hypoxic conditions results in a concomitant increase
in expression of HIF-1a and VEGF (85) and inhibition of HIF-
1a results in a significant decrease in VEGF production and
tumor angiogenesis (86). HIF-1a also targets and upregulates
the stanniocalcin (STC) gene, known for being an anti-
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hypercalcemic glycoprotein hormone, although not much
research has been focused on STC in ovarian cancer
tumorigenesis (87). STC1 overexpression has been linked with
increased proliferation, migration and colony formation in
human ovarian cancer cell lines as well as increased expression
of cell cycle regulation proteins and increased expression of anti-
apoptotic proteins, hindering apoptosis (88). Under hypoxic
conditions, HIF-1a regulates increased STC2 expression to
facilitate increased ovarian cancer tumor cell proliferation (89).
Both STC1 and STC2 promote epithelial to mesenchymal
transition in hypoxic ovarian cancer cells and contribute to
their invasion and metastasis as well (90, 91). Additionally,
estrogen and progestin can directly regulate HIF-1a through
the PI3K/Akt-mTOR signaling pathway and contribute to tumor
metastasis in ovarian cancer (92). In EOC, HIF-1a expression is
upregulated and its increased expression is linked to poor
survival (93). HIF-2a on the other hand dimerizes with HIF-
1b and binds to hypoxia response elements similarly to HIF-1a.
In EOC, women with advanced disease, either stage 3 or 4, have a
specific HIF profile characteristic of elevated nuclear expression
of HIF-1a and elevated cytoplasmic HIF-2a expression, and this
specific profile is associated with a poor prognostic outcome (94).

Several hypoxia-mediated changes within the TME may
explain the link between poor prognosis and HIF-1a
expression. Hypoxia contributes to the selection and activation
of an ovarian cancer stem cell niche and cancer stem cells (CSCs)
appear to favour hypoxic sites within tumors (95). CSCs are
undifferentiated, or less-differentiated cells that drive
tumorigenesis and give rise to the large population of cells that
comprise majority of the tumor (96). CSCs can create a
significant therapeutic challenge as they can evade and resist
chemotherapy due to their stem cell qualities. CSCs are
quiescent, or very slowly cycling, which renders them resistant
to therapies that target rapidly dividing cells (97). CSCs also
upregulate survival signaling pathways, making them harder to
kill with conventional cytotoxic therapy (98). CSCs act as a cell
reservoir, and can be a major contributor to cancer recurrence
(99), including that seen in ovarian cancer (100). It has been
suggested that the correlationofpoor patient outcomewithhypoxia
may be related to the enhanced presence of CSCs (101). TheNotch,
Wnt and Hedgehog pathways are important in the maintenance,
self-renewal and resistance of CSCs (102, 103). In ovarian cancer,
HIF-1a activates Notch1 signaling, which increases the activity of
the Sox2 promoter, creating a CSC phenotype and drives drug
resistance in ovarian cancer stem cells (104). In ovarian cancer cells,
exposure to hypoxia increases expression of CD44, CD133, Oct3/4
and Sox2, which are known markers of ovarian CSCs (105). The
other isoform of HIF, HIF-2a, also targets Notch, Oct4 and Sox2
(106), suggesting that HIF-2a is also important in maintaining
stemness in the hypoxic TME. HIF-1a also upregulates the
expression of Sirtuin type 1, which is known to promote CSC-like
features in ovarian cancer cells (107).

A unique feature of peritoneal tumors, including ovarian
cancer, is the presence of ascites fluid. This complex mixture of
soluble factors accumulates due to leaky tumor vasculature as
well as disrupted lymphatic patency (108). Given that ascites
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worsens tumor access to oxygen, ascites accumulation promotes
the negative responses of the tumor to low oxygen (109). In
addition, the flow of ascites fluid current dictates the direction of
EOC secondary tumor dissemination within the abdominal
cavity (108). Malignant ascites also contains factors which
induce immunosuppression and enhance survival – creating an
ideal environment for tumor dissemination to other abdominal
organs by evading the immune system.
HYPOXIA ALTERS THE IMMUNE
ENVIRONMENT IN OVARIAN CANCER

The tumor immune microenvironment (TIME), which
encompasses not only malignant transformed cells, but also
normal cells such as epithelial cells, fibroblasts, endothelial cells,
muscle cells and immune cells in EOChas been described as ‘highly
permissive’ to tumor growth, metastasis and therapy resistance
(110–112). While tumor subtypes such as melanoma and lung
cancerpresentwithhigh levelsof interferonandTcell infiltratesand
are thus excellent candidates for immunotherapy, the TIME in
ovarian tumors contains a distinct suppressive phenotype
populated by immature myeloid cells, anergic T cells and T
regulatory (Treg) cells (113). As previously discussed, ascites fluid
is rich in immunosuppressive cytokines and therefore drives
production of these suppressive cells and acts as an ideal conduit
in the spread of tumor nodules to other organs (114). Ascites also
contains significantly higher proportions of T cells expressing
checkpoints such as LAG‐3+, PD‐1+, TIM+ and CTLA‐4+
compared to peripheral blood (115).

Lowoxygenpartial pressurewithin the tumor activates hypoxia-
dependent signaling, where HIFs are stabilized. HIF-1 maintains
elevated myeloid-derived suppressor cell levels and regulates their
function and maturation (116). Myeloid-derived suppressor
cells in turn lead to the production of immunosuppressive
cytokines, of which TGF-b, IL-6 and IL-8 contribute to high
immunosuppression in advanced ovarian cancer (117). Hypoxic
areas also attract and polarize M2 type tumor-associated
macrophages (118). The function of this subtype of macrophages
is to promote tissue repair, which involves immune tolerance and
modulation (119). M2 macrophages are present in higher
proportions in advanced stages of ovarian cancer compared to
early stages of the disease (120), indicating that they may be linked
to disease progression. In addition, a higher M2/M1 tumor-
associated macrophage ratio is an indicator of positive prognosis
in EOC and has been reliable in predicting patient survival time in
other cancers (121). Hypoxia also upregulates CCL28, a chemokine
for Treg cells, in a HIF-dependent manner (122). Tregs in turn
challenge anti-tumor immune responses by downregulating
effector T cells (123). A high CD8+/Treg ratio is a significant
predictor of prognosis in ovarian cancer (124). As the most
potent antigen-presenting cell, dendritic cells (DCs) play a major
role in tumor immunosurveillance. Prolonged exposure of DCs to
hypoxia leads to cell death of these antigen presenting cells – a
process that can be prevented by inhibiting HIF-1a (125).
Additionally, expression of HIF-1a diminishes the ability of DCs
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to produce IL-12 – an important cytokine for the development of
cytotoxic T cells (126). STC1 has been shown to interact with and
decrease membrane exposure of calreticulin, impairing phagocytic
responses of antigen presenting cells, including DCs and
macrophages, to ultimately inhibit antigen presentation to
facilitate T cell activation (127). Additionally, STC1 inhibits
macrophage infiltration, further hindering an immune response
against the tumor (128). Altogether, while malignant cells thrive in
the absence of oxygen, immune cells which would ideally produce
an anti-tumor response against tumor associated antigens,
frequently become anergic or die in response to this environment
(129). This system imbalance creates a pro-tumorigenic
environment and hinders patient response to immunotherapies.

The fundamental basis of successful immunotherapy to treat
cancer is positive immunogenicity of the specific tumor subtype,
which considers presence of tumor associated antigens and
effective presentation of these antigens. The immunosuppressive
TIME as well as low mutation rate, which impairs neo-antigen
formation, challenges the use of immune-based therapies in
ovarian cancer (130–132). Findings have demonstrated that
ovarian tumors are typically “cold” meaning that they lack
cytotoxic T cell infiltration. Goode et al. demonstrated a distinct
dose-response relationship between the number of CD8+
infiltrates and patient survival time in high-grade serous ovarian
cancer (133). The prognostic impact of tumor infiltrating
lymphocytes (TILs) trafficking suggests that the factors which
regulate TIL infiltration are vital when improving current
therapies or seeking new targets. In EOC, T cells face physical
barriers such as vascular access, which impede their access to
tumor cells. Abnormal vasculature within EOC tumors leads to
downstream hypoxia, which has been named a common biological
determinant of immune suppression in solid tumors (134).
Indeed, mono-immunotherapy in ovarian cancer has yielded
modest results (135, 136). Battaglia et al. found that assessment
of immune status prior to treatment with a CA-125 targeted
monoclonal antibody may predict treatment sensitivity (137).
EOC patients vary with respect to levels of TILs and individual
tumor samples have pronounced heterogeneity in immune profile
(138, 139). In light of these findings, more recent studies into EOC
immunotherapy focus on personalized and combination
strategies. The anti-angiogenic compound Avastin has shown
promising results in combination with immunotherapy in light
of reducing molecules such as VEGF, thereby enhancing
inflammation. Between patients, previous exposure to
chemotherapy, disease histotype and ascites profile are each
indicators of immune therapy success (133, 140, 141). These
findings illustrate that immunotherapy may be a successful
treatment strategy for EOC in the future, although the tumor
microenvironment must be considered in therapy design.
THE IMPACT OF HYPOXIA ON
THERAPY RESISTANCE

Hypoxia has been associated with the development of
chemoresistance through a variety of mechanisms. One of the
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mechanisms by which hypoxia induces chemoresistance is
through alteration of cancer cell metabolism. In response to
hypoxia, ovarian cancer cells undergo a metabolic switch, with
changes in the glycolytic pathway that promotes resistance to
carboplatin (142–144). As ovarian tumors become hypoxic, there
is an upregulation of glycolytic enzymes to metabolize glucose,
resulting in the formation of lactate (145). The reduction in pH
from lactate accumulation inhibits the efficacy of chemotherapy
agents (144). HIF-1a appears to be a central regulator of cellular
metabolism. HIF-1a regulates many of the enzymes involved in
glucose catabolism and regulates lactate production through
activation of lactate dehydrogenase A and the lactate
transporter MCT4 (146). As HIF-1a drives cells toward
anaerobic glycolysis, it supports the metabolic switch seen in
ovarian cancer cells. Inhibition of HIF-1a is a strategy that has
been employed to redirect cells to oxidative phosphorylation,
resulting in the production of cytotoxic levels of reactive oxygen
species and cancer cell apoptosis (147). Specifically targeting
HIF-1a through antisense as an anti-cancer strategy has shown
efficacy in xenograft models of ovarian cancer (148). HIF-1a also
contributes to the development of platinum resistance through
induction of cancer cell autophagy (149). Autophagy is a process
that assists in maintaining cell viability during times of stress.
Under stressful conditions, autophagy is rapidly activated to
reduce cellular growth and increase catabolic lysis of unnecessary
proteins and organelles. However, persistent or excessive
autophagy can lead to the induction of cell death (150).
Activation of autophagy in ovarian cancer is associated with
the development of chemoresistance through the induction of
the MAPK/ERK survival pathways (151). HIF-1a initiates
autophagy in ovarian cancer cells exposed to hypoxia, and
these cells develop resistance to cisplatin-induced apoptosis
(149). In the challenging, hypoxic and nutrient-poor TME,
autophagy may be an important mechanism employed by
tumor cells to survive and develop chemotherapy resistance.
HIF-1a has also been found to directly induce expression of the
STC1 gene, producing STC in human ovarian cancer cell lines
(152). STC has been shown to regulate a number of oncogenic
effects in different tumor subtypes such as triggering
angiogenesis through upregulation of VEGF in gastric cancer
(153), as well as exacerbating chemoresistance, invasion and
metastasis in breast cancer (154–156). Although the mechanistic
details behind STC in ovarian cancer have not been heavily
studied, its expression is highest in the ovaries, particularly
during pregnancy and lactation (157). In addition,
dysregulated levels of STC have been linked to poor outcome
in patients, lending merit to further investigations into its
functions (88).

Hypoxia also regulates the expression and function of a
multitude of microRNAs (miRNAs). MiRNAs are small,
approximately 19-25 nucleotides endogenous non-coding
RNAs that regulate gene expression (158) in humans, as well
as a wide array of organisms (159, 160). MiRNAs have been
implicated in the onset, progression and therapy resistance in
ovarian cancer (161). Hypoxia is known to regulate the
expression of several miRNAs in ovarian cancer. Hypoxia in
Frontiers in Endocrinology | www.frontiersin.org 6
ovarian cancer is associated with altered levels of circulating
miRNAs and these expression profiles are associated with the
risk of developing ovarian cancer. In one study, 36 miRNAs were
overexpressed, and 101 miRNAs were downregulated in women
at high-risk of ovarian cancer, compared to those with low risk
(162). HIF-1a hypoxia-induced overexpression of miR-210 in
EOC has been shown to promote proliferation and migration
while inhibiting apoptosis of EOC in vitro (163, 164).
Interestingly, deletion of miR-210 is also associated with
dysregulated cell cycle and progression of ovarian cancer (165),
suggesting that miRNA effects may be context-specific. In
addition to regulating tumorigenic processes, hypoxia-induced
miRNA expression has been implicated in the acquisition of drug
resistance in ovarian cancer. Under hypoxic conditions, the HIF-
1a pathway increases expression of miR-27a and is associated
with the development of paclitaxel resistance through
downregulation of the apoptosis-related protein APAF1 (166).
Hypoxia has also been implicated in drug resistance in patients
with high HIF-1a expression through upregulation of expression
of miR-223 and activation of the PTEN-PI3K/Akt-mTOR
pathway, resulting in multi-drug resistance and disease
recurrence (167). MiRNA expression in response to hypoxia in
EOC appears to regulate numerous important tumorigenic
processes and response to therapy, although the mechanisms
involved are still largely unclear.
REVERSAL OF HYPOXIA AS AN
APPROACH TO PERSONALIZED
THERAPY

HIF-1 expression alone is not an indicative prognostic marker
onRESA the disease progression in ovarian cancer, however,
overexpression of HIF-1 in combination with the presence of
non-functional p53 is associated with a more aggressive
phenotype and a poorer prognosis (168). A gain-of-function
mutation of the p53 gene is characteristic of the most common
subtype of EOC, high-grade serous ovarian cancer (169),
therefore ovarian cancer patients with a high HIF-1 expression
profile may benefit from therapies directly targeting HIF-1.
There are many novel therapeutic agents targeting HIF-1
activity that are currently in clinical trials. These therapeutic
agents are designed to directly inhibit HIF-1 activity through a
multitude of various targets including mTOR (170), COX2 (171),
epidermal growth factor receptor EGFR (172), heat shock
protein 90 (173), topoisomerase I (174) or at the post-
transcriptional level (175). Herceptin is a monoclonal antibody
that specifically targets human epidermal growth factor receptor
2 (HER2) and is currently an FDA approved therapy for the
treatment of early and late stage breast cancer patients with
HER2 overexpression (176). The mechanisms of action of
Herceptin are not fully understood, however, many outcomes
of treatment with Herceptin have been observed. Herceptin
prevents HER2 and Src tyrosine kinase from clustering,
inhibiting activation of PI3K/Akt-mTOR and MAPK/ERK
signaling pathways (177). Herceptin also induces tumor cell
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apoptosis and cell cycle G1 arrest (178, 179). Overexpression of
HER2 in tumor cells is known to be affiliated with increased
VEGF expression and increased angiogenesis (180). Herceptin
decreases expression of pro-angiogenic factors and subsequently
increases expression of anti-angiogenic factors (181) as well as
reduces endothelial cell migration (182). In ovarian cancer,
HER2 is expressed in up to 66% of EOC cases and is
associated with a poorer prognosis (183, 184). While not much
research has been focused on the use of Herceptin in treating
ovarian cancer, there may be a subset of ovarian cancer patients
with HER2 overexpression that may benefit from Herceptin
incorporated into their treatment plan, but this needs to be
explored in greater detail. Alternatively, targeting downstream
effects of HIF-1a are also potential therapeutic avenues. STC1
and STC2 are upregulated and promote tumorigenesis and
disease progression in a HIF dependent manner as previously
discussed and may be a future target of interest. Recent studies
targeting STC1 with a vector expressing a suicide gene under a
STC promoter inhibited and arrested cell growth in lung cancer
cell lines (185) although further research is still required before
its potential clinical use.

Hypoxia-activated prodrugs were designed to specifically target
the hypoxic tumor cells within a solid tumor. Their mechanism of
actionwork by their enzymatic reduction to reactive oxygen species
underhypoxic conditions,with capacity to re-oxidize inoxygenated
environments. In pre-clinical and clinical settings, hypoxia
activated prodrugs have shown promising efficacy in successfully
attacking hypoxic cells of solid tumors (186–188). This approach
has beenmore efficacious when combined with chemotherapy and
radiotherapy (189, 190), as well as anti-angiogenic therapies (191–
193).Many solid tumor cancers, including EOC, are known to have
overexpressed folate receptors on the tumor cell surfaces (194).
Folate-based redox-responsive nanoparticles (NPs) anddesigned to
target and bind to the folate receptor with high affinity. NPs are
capable of releasing therapies solely in the presence of hypoxia due
to their design of being cleaved only in the absence of oxygen (195).
Folate acid-taggedNPs can be loadedwith cancer therapies, such as
chemotherapy and immunotherapy and rapidly release these drugs
under hypoxic conditions compared to normoxic regions (195–
198). Anti-angiogenic application of NPs are also being employed
throughuseof gold, silver and silicate-basedNPs.Theirmechanism
of action work to inhibit VEGF and other pro-angiogenic factors as
well as induce production of reactive oxygen species causing vessel
constriction and thereby inhibiting proliferation and migration of
endothelial cells, which ultimately halts tumor cell growth
(199–202).

Anti-angiogenic therapies can normalize tumor vasculature,
uniformly increase oxygen delivery and reverse the hypoxic areas
of the tumor. This allows for better uptake and distribution of
therapeutic drugs to the tumor (203). Many anti-angiogenic
therapies work by inhibiting VEGF, either by directly binding to
VEGF or inhibiting the VEGF receptor. By inhibiting only
angiogenesis, these therapies do not interfere with normal pre-
existing vasculature in patients. The anti-angiogenic therapy
Avastin is an FDA approved monoclonal antibody used in
combination with chemotherapy primarily when recurrence of
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EOC occurs (204). This includes patients that are both platinum-
sensitive and platinum-resistant (205). Avastinworks by binding to
VEGF with high specificity and therefore prevents it from binding
to the VEGF receptor. Combination of Avastin with chemotherapy
at the first onset of platinum resistance in ovarian cancer patients
demonstrates the greatest outcome for overall patient survival,
compared to Avastin or chemotherapy alone (206). Additionally,
anti-angiogenic therapies when combined with NPs in platinum
resistant patients are also being investigated for clinical safety and
their potential efficacy (207). Other anti-angiogenic therapies
targeting the VEGF receptor show similar efficacy, especially
when used in combination with other cancer therapies, including
chemotherapy (208, 209) and immune checkpoint inhibitors (210).
More recently, the combination of Avastin and the poly (ADP-
ribose) polymerase (PARP) inhibitor, olaparib, have been FDA
approved for combination use in patients who responded to
chemotherapy or in patients that carry a BRCA1 or BRCA2
mutation (211). Due to the nature of its use, rapid tumor
resistance to Avastin often occurs due to upregulation and
reliance on pathways other than VEGF by the tumor (212, 213).
As such other new anti-angiogenic therapies are being developed to
overcome this issue and demonstrate promising potential.
Treatment with 3TSR, a novel compound derived from the anti-
angiogenic regions of thrombospondin-1, has demonstrated its
ability to reduce primary ovarian tumor size, occurrence of
metastatic tumors and decrease abdominal ascites accumulation
in a murine EOC model when used in combination with
chemotherapy (214) and oncolytic viruses (215). Neferine, a
bisbenzylisoquinoline alkaloid derivative from lotus seed
embryos, demonstrates anti-angiogenic properties in
chemoresistant EOC by inducing autophagy and inhibiting
macrophage maturation (216).

Estrogen receptors are specifically located on smooth muscle
pericytes within blood vessels and estrogen is known to inhibit
proliferation of vascular smooth muscle cells (217, 218).
Additionally, estrogen is known to be anti-inflammatory and
vasoprotective in young women compared to its pro-inflammatory
and vasotoxic effects in older women, partially due to altered
estrogen signaling pathways with age (219). Tamoxifen, a
selective estrogen receptor modulator hormonal therapy, is known
to exhibit its anti-angiogenic properties by inhibiting platelet
activation (220). Although this hasn’t been studied much in
relation to cancer, the presence of estrogen receptors on pericytes
and the hormonal status of a woman (menopausal with or without
HRT) may result in some patients being less responsive to anti-
angiogenic vessel normalization therapies. The addition of HRT
may aid in increased efficacy of anti-angiogenic therapies, and this
should be taken into consideration when designing a treatment
plan for patients with hormone-dependent cancers.

Reversinghypoxiawithin theTMEwill notdirectly contribute to
tumor cell death, however, we can utilize this as an advantage to
create more personalized combinational therapeutic approaches.
The presence of hypoxia and poor tumor vasculature is
characteristic to many solid tumors including EOC (221). In light
of this, women with ovarian cancer may benefit from initial
therapies that normalize the tumor vasculature and reverse a
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hypoxia followedby administrationof amore specific therapy, such
as chemotherapy, a PARP inhibitor or oncolytic virus, based on a
patient-by-patientbasis. Bynormalizing the tumorvasculaturefirst,
we may be able to increase uptake of these therapies by the tumor,
have better distribution of therapies throughout the tumor cells and
ultimately reduce chemoresistance and increase apoptotic cell death
of the entire tumor. This will ultimately lead to more efficacious
treatments and increased patient survival.
CONCLUSION

Hypoxia-induced changes in the endocrine environment and
immune status of the tumor play an influential role in promoting
Frontiers in Endocrinology | www.frontiersin.org 8
tumorigenesis in ovarian cancer. By understanding the changes
that occur in the ovarian TME, we can develop novel therapies
that target these changes to improve efficacy and reduce therapy
resistance. An approach to personalized treatment strategies on a
patient-by-patient basis may ultimately improve the way we treat
women with ovarian cancer.
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