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Abstract The brains of many organisms are capable of complicated distributed computation 
underpinned by a highly advanced information processing capacity. Although substantial progress 
has been made towards characterising the information flow component of this capacity in mature 
brains, there is a distinct lack of work characterising its emergence during neural development. This 
lack of progress has been largely driven by the lack of effective estimators of information processing 
operations for spiking data. Here, we leverage recent advances in this estimation task in order to 
quantify the changes in transfer entropy during development. We do so by studying the changes in 
the intrinsic dynamics of the spontaneous activity of developing dissociated neural cell cultures. We 
find that the quantity of information flowing across these networks undergoes a dramatic increase 
across development. Moreover, the spatial structure of these flows exhibits a tendency to lock-in at 
the point when they arise. We also characterise the flow of information during the crucial periods of 
population bursts. We find that, during these bursts, nodes tend to undertake specialised compu-
tational roles as either transmitters, mediators, or receivers of information, with these roles tending 
to align with their average spike ordering. Further, we find that these roles are regularly locked-in 
when the information flows are established. Finally, we compare these results to information flows in 
a model network developing according to a spike-timing-dependent plasticity learning rule. Similar 
temporal patterns in the development of information flows were observed in these networks, hinting 
at the broader generality of these phenomena.

Editor's evaluation
This work analyses how meaningful connections develop in the nervous system. The authors study 
the dissociated neuronal cultures and find that the information processing connections develop after 
5–10 days. The direction of the information flow is influenced by neuronal bursting properties: the 
early bursting neurons emerge as sources and late bursting neurons become sinks in the information 
flow.

Introduction
Throughout development, how do brains gain the ability to perform advanced computation? Given 
that the distributed computations carried out by brains require an intrinsic information processing 
capacity, it is of utmost importance to decipher the nature of the emergence of this capacity during 
development.
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For brains to engage in the computations required for specific tasks, they require a general-purpose 
computational capacity. This capacity is often studied within the framework of information dynamics, 
where it is decomposed into the atomic operations of information storage, transfer, and modification 
(Lizier et al., 2014; Lizier, 2013). We are particularly interested in the information flow component, 
which is measured using the transfer entropy (TE) (Schreiber, 2000; Bossomaier et al., 2016). There 
exists a substantial body of work examining the structure and role of computational capacity in terms 
of these operations in mature brains. This includes the complex, dynamic, structure of information 
transfer revealed by calcium imaging (Orlandi et  al., 2014), fMRI (Mäki-Marttunen et  al., 2013; 
Lizier et al., 2011), MEG (Wibral et al., 2011), and EEG (Shovon et al., 2016; Huang et al., 2015; 
Stramaglia et al., 2012; Marinazzo et al., 2014a), and the role of information storage in representing 
visual stimuli (Wibral et al., 2014a), among others.

Given the established role of information flows in enabling the computations carried out by mature 
brains, we aim to study how they self-organise during neural development. There are a number of 
requirements for such a study. Firstly, it needs to be performed at a fine spatial scale (close to the 
order of individual neurons) to capture the details of development. It also needs to be conducted 
longitudinally in order to track changes over developmental timescales. Finally, the estimation of the 
information flow as measured by TE needs to be performed with a technique which is both accurate 
and able to capture the subtleties of computations performed on both fine and large timescales 
simultaneously.

Considering the first requirement of fine spatial scale, cell cultures plated over multi-electrode 
arrays (MEAs) allow us to record from individual neurons in a single network, providing us with this 
fine spatial resolution. There have been a number of previous studies examining information flows in 
neural cell cultures, for example, Nigam et al., 2016; Shimono and Beggs, 2015; Matsuda et al., 
2013; Timme et al., 2014; Kajiwara et al., 2021; Timme et al., 2016; Wibral et al., 2017. Such work 
has focussed on the directed functional networks implied by the estimated TE values between pairs of 
nodes, which has revealed interesting features of the information flow structure. See section ‘Previous 
application of the discrete-time estimator’ for a more detailed description of this previous work.

However, moving to our second requirement of a longitudinal study, these studies have almost 
exclusively examined only single points in neural development since nearly all of them examined 
recordings from slice cultures of mature networks. By contrast, we aim to study the information flows 
longitudinally by estimating them at different stages in development. Using recordings from devel-
oping cultures of dissociated neurons (Wagenaar et al., 2006b) makes this possible.

In terms of our third requirement of accurate and high-fidelity estimation of TE, we note that all 
previous studies of information flows in neural cell cultures made use of the traditional discrete-time 
estimator of TE. As recently demonstrated (Shorten et al., 2021), the use of this estimator is problem-
atic as it can only capture effects occurring on a single timescale. In contrast, a novel continuous-time 
TE estimator (Shorten et al., 2021) captures effects on multiple scales, avoiding time binning, is data 
efficient, and consistent. See section ‘Transfer entropy estimation’ for a more detailed discussion of 
the differences between the continuous-time and discrete-time estimators.

In this article, we thus examine the development of neural information flows for the first time, 
addressing the above requirements by applying the continuous-time TE estimator to recordings of 
developing dissociated cultures. We find that the amount of information flowing over these cultures 
undergoes a dramatic increase throughout development and that the patterns of these flows tend 
to be established when the flows arise. During bursting periods, we find that nodes often engage 
in specialised computational roles as either transmitters, receivers, or mediators of information flow. 
Moreover, these roles usually correspond with the node’s mean position in the burst propagation, 
with middle bursters tending to be information mediators. This provides positive evidence for the 
pre-existing conjecture that nodes in the middle of the burst propagation play the vital computational 
role of ‘brokers of neuronal communication’ (Schroeter et al., 2015). Intriguingly, the designation of 
computational roles (transmitter, receiver, or mediator) appears to also be determined early when the 
information flows are established. Finally, in order to investigate the generality of these phenomena, 
as well as a putative mechanism for their emergence, we study the dynamics of information flow in a 
model network developing according to a spike-timing-dependent plasticity (STDP) (Caporale and 
Dan, 2008) update rule. We find that the abovementioned phenomena are present in this model 
system, hinting at the broader generality of such patterns of information flow in neural development.

https://doi.org/10.7554/eLife.74651
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Results
Data from overnight recordings of developing cultures of dissociated cortical rat neurons at various 
stages of development (designated by days in vitro [DIV]) was analysed. These recordings are part 
of an open, freely available, dataset (Wagenaar et al., 2006b; Network, 2021). See ‘Materials and 
methods’ (section ‘Cell culture data’) for a summary of the setup that produced the recordings. We 
studied all cultures for which there were overnight recordings. We restricted our analysis to these 
overnight recordings as they provided sufficient data for the estimation of TE. In what follows, we refer 
to the cultures by the same naming convention used in the open dataset: 1-1 through 1-5 and 2-1 
through 2-6. The majority of cultures have recordings at three different time points, three have record-
ings at four points (1-3, 2-2, and 2-5) and one has only two recordings (2-1). The days on which these 
recordings took place vary between the 4th and 33rd DIV. By contrasting the TE values estimated at 
these different recording days, we are able to obtain snapshots of the emergence of these culture’s 
computational capacity.

In the analysis that follows, for space considerations, we show plots for four representative cultures: 
1-1, 1-3, 2-2, and 2-5. The latter three were chosen as they were the only cultures with four recording 
days. Culture 1-1 was selected from the group with three recording days, having the latest final 
recording day that was no more than a week later than the penultimate recording day. Plots for the 
remaining cultures are shown in Appendix 3. We also display certain summary statistics for the results 
of all cultures in the main text. Culture 1-5 is anomalous (among the recordings studied in this work) 
in that on its final day it has ceased to burst regularly, as stated in Figure 3A of Wagenaar et al., 
2006b. This leads to its results being substantially different from those of the other cultures, as will 
be presented below.

The TE between all pairs of electrodes was estimated using a recently introduced continuous-time 
estimator (Shorten et al., 2021; see section ‘Transfer entropy estimation’). This produces a directed 
functional network at each recording day, and we aim to analyse how the connections in this network 
change over development time. Spike sorting was not performed because we would not be able 
to match the resulting neural units across different recordings and could not then fulfil our aim of 
contrasting the information flow between specific source-target pairs at different recording days. 
As such, the activity on each node in the directed functional networks we study is multi-unit activity 
(MUA) (Schroeter et al., 2015) formed of the spikes from all neurons detected by a given electrode, 
with connections representing information flows in the MUA. For more details on data preprocessing 
as well as the parameters used with the estimator, see ‘Materials and methods’.

The dramatic increase in the flow of information during development
We first investigate how the amount of information flowing between the nodes changes over the 
lifespan of the cultures. Table 1 shows the mean TE between all source-target pairs (Appendix 3—
table 1 shows these values for the additional cultures). We observe that this mean value increases 
monotonically with the number of DIV, with only a single exception in the main cultures (a slight 
drop in the mean TE between days 21 and 33 of culture 2-2). We can make the same observation 
for the additional cultures, where the only drop is caused by day 5 of culture 2-4, a day still very 
early in development which had no significant TE values. We performed a two-sided Student’s t-test 

Table 1. Mean transfer entropy (TE) in nats per second between every source-target pair for each 
recording studied.

Culture 1-1 Day 4 Day 14 Day 20

0 0.060 0.097

Culture 1-3 Day 5 Day 10 Day 16 Day 24

0 2×10–4 0.017 0.098

Culture 2-2 Day 9 Day 15 Day 21 Day 33

0 0.015 0.11 0.057

Culture 2-5 Day 4 Day 10 Day 22 Day 28

0 2×10–3 0.037 0.082

https://doi.org/10.7554/eLife.74651
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for the difference in the mean between all pairs of recordings for each culture. All such differences 
(increases and decreases) were found to be statistically significant at ‍p<0.01‍ with Bonferroni correction 
for multiple comparisons.

Overall, the magnitude of the increase in the mean TE is substantial. All the first recordings for the 
main cultures had a mean estimated TE of ‍0 nats.s−1‍ (with no statistically significant transfer entropies 
measured as per section ‘The emergence of functional information flow networks’). By contrast, all 
recordings beyond 20 DIV had a mean TE greater than ‍0.037 nats.s−1‍.

Figure 1 shows scatter plots of the TE values in each recording laid over box-and-whisker plots 
(Appendix 3—figure 1 shows equivalent plots for the additional cultures). The large increase over 
time in the amount of information flowing over the networks is clearly visible in these plots. However, 
it is interesting to note that certain source-target pairs do have large information flows between them 
on early recording days even while the average remains very low.

Figure 1b shows histograms of the TE values estimated in each recording along with probability 
densities estimated using a Gaussian kernel (Appendix 3—figure 1 shows these for the additional 
runs). The distributions only include the nonzero (statistically significant) estimated TE values. Some 
of these distributions do, qualitatively, appear to be log-normal, in particular for later DIV. More-
over, previous studies have placed an emphasis on the observation of log-normal distributions of TE 
values in in vitro cultures of neurons (Shimono and Beggs, 2015; Nigam et al., 2016). As such, we 
quantitatively analysed the distribution of the nonzero (statistically significant) estimated TE values 
in each individual recording. However, contrary to expectations, we found that these values were 
not well described by a log-normal distribution. It is worth noting that previous work which analysed 
the distribution of TE values in networks of spiking neurons was performed on organotypic cultures, 
as opposed to the dissociated cultures studied in this work. See Appendix 1 for further details and 
discussion.

(a) Scatters and boxplots of TE values. (b) Histograms and kernel density estimates of TE values.

Figure 1. Plots of the distributions of estimated transfer entropy (TE) values in the recordings analysed in this study. (a) Scatters of the TE values are 
overlaid on box plots. The box plots show the quartiles and the median (values greater than 10 SDs from the mean have been removed from both 
the box and scatter plots as outliers). (b) Density estimates of the nonzero (statistically significant) TE distribution on top of a histogram. The densities 
are estimated using a Gaussian kernel. The histogram bin width and kernel histogram are both 10% of the data range. Recordings with fewer than 10 
statistically significant TE values are excluded.

https://doi.org/10.7554/eLife.74651
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The emergence of functional information flow networks
By considering each electrode as a node in a network, we can construct directed functional networks 
of information flow by assigning a directed edge between each source-target pair of electrodes with 
a statistically significant information flow. This results in weighted directed networks, the weight being 
provided by the TE value. Diagrams of these networks for the main cultures are shown in Figure 2, and 
in Appendix 3—figure 3 for the additional cultures. Note that, in all subsequent analysis presented in 
this article, a TE value of zero was assigned to all cases where the TE was not statistically significant.

We are able to notice a number of interesting spatiotemporal patterns in these diagrams. Firstly, 
the density (number of edges) of the networks increases over time. This is quantified in Table 2, which 
shows the number of source-target pairs of electrodes for which a statistically significant nonzero TE 
value was estimated. In all the main cultures studied, the number of such pairs (and, therefore, the 
network density) increased by orders of magnitude over the life of the culture. For instance, in all 
four cultures, no statistically significant TE values are estimated on the first recording day. However, 
over 1000 source-target pairs have significant TE values between them on the final day of recording 
for each culture. Appendix 3—table 2 shows the same values for the additional cultures. With a few 
exceptions (such as the abovementioned anomalous culture 1-5), the same relationship is observed. 
Note that the final recording day for culture 2-4 is relatively early (day 11), and so the low number of 
significant edges on this day is consistent with the other cultures.

We are, therefore, observing the networks moving from a state where no nodes are exchanging 
information, to one in which information is being transferred between a substantial proportion of the 
pairs of nodes (≈30% density of possible directed connections in most networks). Put another way, the 
functional networks are emerging from an unconnected state to a highly connected state containing 
the information flow structure that underpins the computational capacity of the network. This helps to 
explain the overall increase in information flow across the network reported in section ‘The dramatic 
increase in the flow of information during development’.

We observe that the information flow (both incoming and outgoing) is spread somewhat evenly 
over the networks – in the sense that in the later, highly connected, recordings there are very few 
areas with neither incoming nor outgoing flow (the one notable exception to this is culture 2-6). A 
number of clear hubs (with particularly high either outgoing or incoming information flow) do stand 
out against this strong background information flow however. The strongest such hubs (with many 
high-TE edges) are all information sinks: they have low outgoing information flow, but receive high 
flow from a number of other nodes.

One can observe many instances in these diagrams where nodes have either very high incoming 
flow and very low outgoing flow, or very low incoming flow and very high outgoing flow. That is, they 
are taking on the roles of source (information-transmitting) hubs or target (information-receiving) hubs. 
Notable instances of information-receiving hubs include node 49 of day 16 of culture 1-3, node 42 of 
day 22 of culture 2-5, and node 5 of day 15 of culture 2-2 (see Figure 2 for the node numbers used 
here). Notable examples of information transmitting hubs include node 28 of day 10 of culture 1-3 
and nodes 18, 19, 22, and 30 of day 22 of culture 2-5. The specialist computational roles that nodes 
can take on will be studied in more detail quantitatively in section ‘Information flows quantify compu-
tational role of burst position’, with a particular focus on how this relates to the burst propagation.

It is possible to observe some notable instances whereby the information processing properties 
of a node remain remarkably similar across recording days. For example, nodes 55, 50, and 39 of 
culture 2-2 are outgoing hubs (with almost no incoming TE) on all four recording days. This offers 
us a tantalising hint that the information processing structure of these networks might be locked-in 
early in development, being reinforced as time progresses. Section ‘Early lock-in of information flows’ 
performs a quantitative analysis of this hypothesis.

Early lock-in of information flows
In the previous subsection, analysis of the directed functional networks of information flow suggested 
that the structure of the information processing capacity of the developing networks might be deter-
mined early in development and reinforced during the subsequent neuronal maturation.

In order to quantitatively investigate this hypothesis, we examine the relationships in the infor-
mation flow from a given source to a given target between different recording days. That is, we are 
probing whether the amount of information flowing between a source and a target on an early day 

https://doi.org/10.7554/eLife.74651
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(a) Functional networks

(b) Node numbering

Figure 2. Functional networks overlaid on the spatial layout of the electrodes. (a) The directed functional networks implied by the estimated transfer 
entropy (TE) values. Each node represents an electrode in the original experimental setup. The nodes are spatially laid out according to their position in 
the recording array. An edge is present between nodes if there is a statistically significant information flow between them. The edge weight and colour 
are indicative of the amount of information flowing between electrodes (see the legend). The scaling of this weight and colour is done relative to the 

Figure 2 continued on next page

https://doi.org/10.7554/eLife.74651
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of development will be correlated with the amount flowing on a later day of development. This is 
equivalent to studying the correlation in the weights of the edges of the functional networks across 
different recording days. Figure 3 shows scatter plots between the TE values estimated between each 
source-target pair on earlier and later days. Note that, in every case where the null hypothesis of zero 
TE could not be rejected (the TE was not statistically significant), a value of zero was used. Days with 
fewer than 10 nonzero values were excluded from the analysis as they could not lead to meaningful 
insights. By observing the pair scatters in Figure 3a–d (equivalent plots for the additional cultures are 
shown in Appendix 3—figure 4), we see that, in many pairs of days, there appears to be a substan-
tial correlation between the TE values on the edges across days. This is particularly pronounced for 
cultures 1-3 and 1-1, though visual assessment of the trend is complicated by the many zero values 
(where TE is not significant), gaps in the distribution and outliers. As such, Figure 3a–d also display 
the Spearman rank-order correlation (‍ρ‍) for each early-late pair of days for each culture. This correla-
tion is positive and statistically significant at the ‍p<0.01‍ level (after Bonferroni correction for multiple 
comparisons) between all the final pairs of recording days in the analysed cultures (including those 
in the additional cultures). Table 3 summarises the proportions of pairs of recordings (including the 
additional cultures) which had significant positive Spearman correlations between the TE values on 
the edges across days. Whether we focus on either the final pairs of recordings or also include pairs 
that occur after day 15 (by which time the information flow networks have emerged), either all or all 
but one of the pairs of recordings exhibit such correlations. Moreover, the probability of this number 
of correlations arising by chance is found to be very low. This represents a strong tendency for the 
relatively strong information flows between a given source and target on later days to be associated 
with the relatively strong information flow between the same source and target on an earlier day of 
development. Figure 3 displays these Spearman correlations between the early and late TE between 
source-target pairs visually. We notice a trend, whereby the correlation of the TE values seems to be 
higher between closer days (sample point being closer to the diagonal) and where those days are later 
in the development of the cultures (sample points being further to the right).

We also investigated the manner in which a node’s tendency to be an information source hub might 
be bound once information flows are established. Figure 4 shows scatter plots between the outgoing 
TE of each node (averaged across all targets) on different days of development along with the asso-
ciated Spearman correlations (Appendix 3—figure 5 shows these plots for the additional cultures). 
By observing the scatter plots, it is easy to see that there is a strong positive relationship between 
the outgoing information flow from a given node on an earlier day of development and the outgoing 

mean and variance of the information flow in each recording separately. The size and colour of the nodes are assigned relative to the total outgoing and 
incoming information flow on the node, respectively. As with the edge colour and size, this is done relative to the distribution of these values in each 
recording separately. (b) The spatial layout of the nodes. The numbering is identical to that used in the documentation of the open dataset studied in 
this work (Wagenaar et al., 2006b; Network, 2021).

Figure 2 continued

Table 2. The number of source-target pairs of electrodes with a statistically significant transfer 
entropy (TE) value between them for each recording studied.
This corresponds to the number of possible edges in the functional networks shown in Figure 2. As 
the electrode arrays used to record the data had 59 electrodes, the total number of unique ordered 
pairs of electrodes (and, therefore, the number of possible edges) is 3422.

Culture 1-1 Day 4 Day 14 Day 20

0 607 2166

Culture 1-3 Day 5 Day 10 Day 16 Day 24

0 44 999 1902

Culture 2-2 Day 9 Day 15 Day 21 Day 33

0 371 1409 1386

Culture 2-5 Day 4 Day 10 Day 22 Day 28

0 185 975 1263

https://doi.org/10.7554/eLife.74651
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flow from that same node on a later day (when we restrict ourselves to focusing on pairs occurring 
after a substantial number of statistically significant information flows have been established). This is 
not surprising, given the correlation we already established for TE on individual pairs, but does not 
automatically follow from that. As with the TE on the edges, Table 3 summarises the proportions of 
pairs of recordings (including the additional cultures) which had significant positive Spearman correla-
tions between the outgoing TE from each node across days. We see that, whether we focus on just 
the last recordings of each culture or also include those after day 15, a substantial majority of pairs of 
recordings exhibit such correlations and that such a majority would be very unlikely to arise by chance. 
Some of these correlations are particularly strong, and indeed stronger than that observed on the TEs 

(a) Culture 1-3 (b) Culture 2-2

(c) Culture 2-5 (d) Culture 1-1 (e) All Cultures

Figure 3. Plots investigating the relationship between the information flow on a given source-target pair over different days of development. (a–d) 
show scatter plots between all pairs of days for each culture (excluding days with less than 10 significant transfer entropy [TE] values). Specifically, in 
each scatter plot, the ‍x‍ value of a given point is the TE on the associated edge on an earlier day and the ‍y‍ value of that same point is the TE on the 
same edge but on a later day. The days in question are shown on the bottom and sides of the grids of scatter plots. The orange line shows the ordinary 
least-squares regression. The Spearman correlation (‍ρ‍) between the TE values on the two days is displayed in each plot. Values of ‍ρ‍ significant at the 
0.05 level are designated with an asterisk and those significant at the 0.01 level are designated with a double asterisk. Red asterisks are used to denote 
significance after performing a Bonferroni correction for multiple comparisons. (e) shows all recording day pairs for all cultures (where the pairs are 
always from the same culture) and the associated Spearman correlation between the TE on the edges across this pair of recording days. Diamonds 
indicate significance at ‍p<0.05‍, with Bonferroni correction.

https://doi.org/10.7554/eLife.74651
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of individual node pairs. For instance, between days 16 and 24 of culture 1-3 we have that ‍ρ = 0.62‍ 
and between days 14 and 20 of culture 1-1 we have that ‍ρ = 0.71‍. Figure 4 visualises all Spearman 
correlations between the early and late total outgoing TE of a given node. As per the TEs for indi-
vidual node pairs, the correlation is higher between closer days and where those days are later in the 
development of the cultures.

Appendix 2—figure 1 shows similar plots to Figure 4, but for the average inward TE on each 
node (with Appendix 3—figure 6 showing plots for the additional cultures). We observe three cases 
of significant correlations in this value between early and late days, indicating a weaker yet still statis-
tically significant (Table 3) propensity for the average inward TE to also lock-in.

Of course, some pairs involving earlier days of some cultures (such as day 10 of cultures 1-3 and 2-5) 
do not exhibit such lock-in tendencies. However, as displayed in Table 2, there are very few significant 
information flows at this early stage of development (44 and 185, respectively). This represents a point 
in development perhaps too early for any substantial information flow networks to have emerged.

In summary, the data suggests that, in these developing neural cell cultures, the structure of the 
information flows is to a large degree locked-in early in development, around the point at which the 
information dynamics emerge. There is a strong tendency for properties of these flows on later days 
to be correlated with those same properties on earlier days. Specifically, we have looked at the flows 
between source-target pairs, the average outgoing flow from a source, and the average incoming flow 
to a target. The values of these variables on later DIV were found, in the majority of cases, to be posi-
tively correlated with the same values on earlier DIV. Further, there were no cases where a statistically 
significant negative correlation was found.

Information flows quantify computational role of burst position
Developing cultures of dissociated neurons have a tendency to self-organise so as to produce popu-
lation bursts or avalanches (Wagenaar et al., 2006b; Pasquale et al., 2008). Such spike avalanches 
are not only a feature of cell cultures, being a ubiquitous feature of in vivo neural recordings (Priese-
mann et al., 2014; Priesemann et al., 2013; Priesemann et al., 2009). There is a wide body of work 
discussing the potential computational importance of such periods of neuronal activity (Lisman, 1997; 
Krahe and Gabbiani, 2004; Shew et al., 2011; Kinouchi and Copelli, 2006; Haldeman and Beggs, 
2005; Rubinov et al., 2011; Cramer et al., 2020). It has been observed that cultures often follow one 

Table 3. Summary of significance values for the lock-in results.
Each table cell shows the number of relationships that were found to be significant at the ‍p<0.05‍ 
level, out of the total number of relationships tested. Note that relationships were only tested in 
cases where both recordings in the pair had at least 10 significant transfer entropy (TE) values. A 
hypothesis test is conducted against the null hypothesis that the original p-values that produced 
these results were uniformly distributed between 0 and 1 (giving a 0.05 chance of a significant 
result). * indicates that this probability is less than 0.05. ** indicates that the probability of the 
observed number of significant results has probability less than 0.001 under this null hypothesis, with 
a Bonferroni correction for multiple comparisons. The first row summarises the significance values 
for the value of the TE on the edges, shown in Figure 3 and Appendix 3—figure 4. The second and 
third rows summarise the significance values for the mean outward and inward TE on each node, 
shown in Figure 4 and Appendix 3—figure 5 as well as Appendix 2—figure 1 and Appendix 3—
figure 6, respectively. The final row summarises the significance values for the ratio of inward to 
outward burst-local TE, shown in Figure 6 and Appendix 3—figure 9. The columns which restrict 
the analysis to bursting recordings exclude the final recording of culture 1-5, as this culture ceased 
bursting, after having previously been bursty (Wagenaar et al., 2006b).

All cultures, final 
pair

All cultures, final 
pair or post day 15 Bursting, final pair

Bursting, final pair or 
post day 15

Edge 7/7** 8/9** 6/6** 7/8**

Out 5/7** 6/9** 5/6** 6/8**

In 3/7* 3/9* 3/6* 3/8*

Burst-local ratios 5/7** 6/9** 5/6** 6/8**

https://doi.org/10.7554/eLife.74651


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Shorten et al. eLife 2022;11:e74651. DOI: https://​doi.​org/​10.​7554/​eLife.​74651 � 10 of 42

or more ordered patterns of burst propagation (Maeda et al., 1995), with some nodes exhibiting a 
tendency to burst towards the beginning of these patterns and others towards their end (Schroeter 
et al., 2015). More recent work has proposed that the nodes which tend to burst at different points in 
these progressions play different computational roles (Schroeter et al., 2015). This work has placed 
special importance on those nodes which usually burst during the middle of the burst progression, 
conjecturing that they act as the ‘brokers of neuronal communication’.

The framework of information dynamics is uniquely poised to illuminate the computational 
dynamics during population bursting as well as the different roles that might be played by various 
nodes during these bursts. This is due to its ability to analyse information processing locally in time 
(Lizier, 2013; Lizier et al., 2008; Lizier, 2014; Wibral et al., 2014b), as well as directionally between 
information sources and targets via the asymmetry of TE. This allows us to isolate the information 

(a) Culture 1-3 (b) Culture 2-2

(c) Culture 2-5 (d) Culture 1-1 (e) All Cultures

Figure 4. Plots investigating the relationship between the outward information flow from a given node over different days of development. (a–d) show 
scatter plots between all pairs of days for each culture (excluding days with less than 10 significant transfer entropy [TE] values). Specifically, in each 
scatter plot, the ‍x‍ value of a given point is the average outgoing TE from the associated node on an earlier day and the ‍y‍ value of that same point is 
the total outgoing TE from the same node but on a later day. The days in question are shown on the bottom and sides of the grids of scatter plots. The 
orange line shows the ordinary least-squares regression. The Spearman correlation (‍ρ‍) between the outgoing TE values on the two days is displayed 
in each plot. Values of ‍ρ‍ significant at the 0.05 level are designated with an asterisk and those significant at the 0.01 level are designated with a double 
asterisk. Red asterisks are used to denote significance after performing a Bonferroni correction for multiple comparisons. (e) shows all recording day 
pairs for all cultures (where the pairs are always from the same culture) and the associated Spearman correlation between the outward TEs of nodes 
across this pair of recording days. Diamonds indicate significance at ‍p<0.05‍, with Bonferroni correction.

https://doi.org/10.7554/eLife.74651
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processing taking place during population bursting activity. We can then determine the information 
processing roles undertaken by the different nodes and examine how this relates to their average 
position in the burst propagation.

We analyse the information flowing between nodes during population bursts by estimating the 
burst-local TE between nodes in each recording (i.e. averaging the TE rates only during bursting 
periods, using probability distribution functions estimated over the whole recordings; see section 
‘Estimation of burst-local TE’). We also measure the mean position of each node within bursts (with 
earlier bursting nodes having a lower numerical position; see section ‘Analysis of population bursts’). 
Note that, although there is variability of the burst position across bursts, certain nodes have much 
lower or higher mean burst positions, indicating a strong tendency to burst earlier or later within the 
propagation.

Figure 5a and b show plots of the mean burst position plotted against the total inward (Figure 5a) 
and outward (Figure 5b) burst-local TE of each node. Appendix 3—figure 7 shows these plots for the 
additional cultures. Plots are only shown for days where there were at least 10 statistically significant 
burst-local TE values. The Spearman correlation (‍ρ‍) between these variables is also displayed on the 
plots.

We see from Figure  5 that, particularly for the final recording days, in most cases there is a 
positive correlation between the mean burst position of the node and the total inward burst-local 
TE. In some cases, this correlation is particularly strong. For instance, on the 24th DIV of culture 
1-3, we observe a Spearman correlation of ‍ρ = 0.84‍. In other words, we observe that nodes which 
tend to burst later have higher incoming information flows. Table 4 summarises the proportions of 
recordings (including the additional cultures) which had significant positive Spearman correlations 
between the mean burst position of the node and the total inward burst-local TE. By focussing on 
recordings that have reached a state of established information dynamics, by either selecting all 
final recordings or all that were performed post day 15, we see that in all cases a clear majority of 
cases had a statistically significant positive Spearman correlation. Moreover, the probability of this 
number of correlations arising by chance is found to be very low. These relationships suggest that 
there is a tendency for the late bursters to occupy the specialised computational role of information 
receivers.

Conversely, as shown in Figure 5, there is a tendency for the mean burst position of the nodes to 
be negatively correlated with the outward burst-local TE. Again, this correlation is particularly strong 
in many cases. For example, on the 24th DIV of culture 1-3, we observe a Spearman correlation of 

‍ρ = −0.80‍. In other words, we observe that nodes which tend to burst earlier have higher outward 
information flows. Table 4 summarises the proportions of recordings (including the additional cultures) 
which had significant negative Spearman correlations between the mean burst position of the node 
and the total outward burst-local TE. We see that a clear majority of either all final recording days 
or all recordings performed post day 15 had a statistically significant negative Spearman correlation. 
Moreover, the probability of this number of correlations arising by chance is found to be very low. 
These relationships suggest that there is a tendency for the early bursters to occupy the specialised 
computational role of information receivers.

Figure 5 plots the total incoming burst-local TE on each node against the total outgoing burst-
local TE, with points coloured according to the node’s mean burst position (Appendix 3—figure 8 
shows these plots for the additional cultures). We see a very clear pattern in these plots, which is 
remarkably clear on some later recording days: nodes which often fire at the beginning of the burst 
progression have high outgoing information flows with lower incoming flows, whereas those which 
tend to sit at the end of the progression have high incoming flows with lower outgoing flows. By 
contrast, those nodes which, on average, occupy the middle of the burst progression have a balance 
between outgoing and incoming information transfer. These nodes within the middle of the burst 
propagation are, therefore, occupying the suggested role of mediators of information flow.

Early lock-in of specialised computational roles
Given that we have seen in section ‘Information flows quantify computational role of burst position’ 
that nodes tend to occupy specialised computational roles based on their average position in the 
burst propagation and that we have seen in section ‘Early lock-in of information flows’ that informa-
tion processing properties can lock-in early in development, it is worth asking whether the specialised 

https://doi.org/10.7554/eLife.74651
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(a) Burst position vs TE in (b) Burst position vs TE out

(c) Burst position relative to outgoing and incoming TE.

Figure 5. The relationship between the amount of incoming and outgoing local (in burst) transfer entropy (TE) on a given node and its average burst 
position. (a) and (b) show the burst position of each node on the ‍x‍ axis of each plot, plotted against either the total incoming (a) or outgoing (b) TE on 
the node. The Spearman correlation (‍ρ‍) between the mean burst position and the incoming or outgoing TE values is displayed in each plot. Values of ‍ρ‍ 
significant at the 0.05 level are designated with an asterisk and those significant at the 0.01 level are designated with a double asterisk. Red asterisks are 
used to denote significance after performing a Bonferroni correction for multiple comparisons. (e) plots the outgoing TE on the ‍x‍ axis and the incoming 
TE on the ‍y‍ axis with the points coloured according to the mean burst position of the node: late bursters are coloured yellow and early bursters are 
purple.

https://doi.org/10.7554/eLife.74651
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computational roles that nodes occupy during population bursts lock-in during the earlier stages of 
neuronal development.

In order to investigate this question, we quantified the computational role occupied by a node by 
measuring the proportion of its total incoming and outgoing burst-local TE that was made up by its 
outgoing burst-local TE. Scatters of these proportions between earlier and later DIV are plotted in 
Figure 6 for the main cultures (the additional cultures are shown in Appendix 3—figure 9). They also 
display the Spearman rank-order correlations (‍ρ‍) between the ratios on different days. We see that, 
in many cases, there are strong, significant, correlations in this ratio between earlier and later DIV. 
Table 3 summarises the proportions of pairs of recordings (including the additional cultures) which 
had significant positive Spearman correlations between this ratio on each node across days. We see 
that, whether we focus on just the last recordings of each culture or also include those after day 15, a 
clear majority of pairs of recordings exhibit such correlations and that such a majority would be very 
unlikely to arise by chance. Figure 6 visualises all these Spearman correlations between the early and 
late day pairs.

These results suggest that, if a node is an information transmitter during population bursts at the 
point at which the information flows are established, it has a tendency to maintain this specialised role 
later in development. Similarly, being an information receiver earlier in development increases the 
probability that the node will occupy this same role later.

Information flows in an STDP model of development
In order to investigate the generality of the phenomena revealed in this article, we reimplemented a 
model network (Khoshkhou and Montakhab, 2019) of Izhikevich neurons (Izhikevich, 2003) devel-
oping according to an STDP (Caporale and Dan, 2008) update rule as described in section ‘Network 
of Izhikevich neurons’. For the low value of the synaptic time constant which we used (see section 
‘Network of Izhikevich neurons’), these networks developed from a state where each neuron under-
went independent tonic spiking at a regular firing rate to one in which the dynamics were dominated 
by periodic population bursts (Zeraati et al., 2021; Khoshkhou and Montakhab, 2019). It is worth 
noting that these population bursts are significantly more regular than those in the biological data 
used in this article. Small modifications were made to the original model in order that the develop-
ment occurred over a greater length of time. The greater length of development allowed us to extract 
time windows which were short relative to the timescale of development (resulting in the dynamics 
being approximately stationary in these windows) yet still long enough to sample enough spikes 
for reliable TE rate estimation. The windows which we used resulted in a median of 5170 spikes per 
neuron per window compared with a median of 17,399 spikes per electrode in the biological data. 
See section ‘Network of Izhikevich neurons’ for more details on the modifications made. A single 
simulation was run. The dynamics of the model are very consistent across independent runs. Three 
windows were extracted, extending between the simulation timepoints of 200 and 250 seconds, 400 
and 450 seconds, and 500 and 550 seconds. These time windows were labelled ‘early’, ‘mid’, and 

Table 4. Summary of significance values for the results relating to computational roles.
Each table cell shows the number of relationships that were found to be significant at the ‍p<0.05‍ 
level, out of the total number of relationships tested. A hypothesis test is conducted against the 
null hypothesis that the original p-values that produced these results were uniformly distributed 
between 0 and 1 (giving a 0.05 chance of a significant result). ** indicates that the probability of the 
observed number of significant results has probability less than 0.001 under this null hypothesis, 
with a Bonferroni correction for multiple comparisons. The first row summarises the significance 
values for the relationships between inward burst-local TE and burst position, as shown in Figure 5 
and Appendix 3—figure 7. The second row summarises the significance values for the relationships 
between outward burst-local TE and burst position, as shown in Figure 5 and Appendix 3—figure 
7.

All cultures, final day All cultures post day 15 Bursting, final day Bursting, post day 15

In 7/11** 10/15** 7/10** 10/14**

Out 7/11** 11/15** 7/10** 11/14**

https://doi.org/10.7554/eLife.74651
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‘late’, respectively. The early window was chosen such that it had a nonzero number of significant TE 
values, but such that this number was of the same (order of magnitude in) proportion as observed in 
the first recording days of the cell cultures (refer to Table 2). The mid period was set at the point where 
population bursting begun to emerge, and the late period was set at the point where all neurons were 
bursting approximately synchronously in a pronounced manner.

TE values between all pairs of model neurons were estimated, as described in section ‘Transfer 
entropy estimation’. These estimates were then subjected to the same statistical analysis as the cell 
culture data, the results of which are presented in the preceding subsections of this section. The plots 
of this analysis are displayed in Figures 7 and 8.

(a) Culture 1-3 (b) Culture 2-2

(c) Culture 2-5 (d) Culture 1-1 (e) All Cultures

Figure 6. Plots investigating the relationship between the ratio of outward to total burst-local information flow from a given node over different days 
of development. (a–d) show scatter plots between all pairs of days for each culture (excluding days with less than 10 significant burst-local transfer 
entropy [TE] values). Specifically, in each scatter plot, the ‍x‍ value of a given point is the ratio of total outgoing burst-local TE on the associated node 
to the total burst-local TE on the same node on one day and the ‍y‍ value of that same point is this same ratio on the same node but on a different day. 
The days in question are shown on the bottom and sides of the grids of scatter plots. The orange line shows the ordinary least-squares regression. The 
Spearman correlation (‍ρ‍) between the TE values on the two days is displayed in each plot. Values of ‍ρ‍ significant at the 0.05 level are designated with 
an asterisk and those significant at the 0.01 level are designated with a double asterisk. Red asterisks are used to denote significance after performing 
a Bonferroni correction for multiple comparisons. (e) shows all recording day pairs for all cultures (where the pairs are always from the same culture) and 
the associated Spearman correlation between the outward TE of the nodes across this pair of recording days. Diamonds indicate significance at ‍p<0.05‍, 
with Bonferroni correction.

https://doi.org/10.7554/eLife.74651
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Scatters and box plots of the TE values estimated in each developmental window are shown in 
Figure 7. We observe a large, monotonic, increase in these values over development. This mirrors the 
finding in cell cultures, as described in section ‘The dramatic increase in the flow of information during 
development’.

We also observe a similar lock-in phenomenon of information processing as was found in the cell 
cultures (described in section ‘Early lock-in of information flows’). Figure 7a–d show the correlation in 
information flow between different stages of development. Specifically, Figure 7a plots the correla-
tion in TE values between each ordered pair of neurons between early and later windows. Figure 7d 
plots this same correlation, but for the total incoming TE on each neuron, and Figure 7c does this for 
the total outgoing TE. In all six of the plots for the relationships between the TE on each edge and for 
the total outgoing TE, we observe a substantial statistically significant positive correlation between 
values on earlier and later days (significant at the ‍p<0.01‍ level, with Bonferroni correction). We observe 
smaller positive correlations in these values for the total incoming TE on each node, although these 
correlations are not significant, which aligns somewhat with the weaker effect observed for incoming 
TE in the cultures. As with the cell cultures, some of the observed correlations are particularly strong, 
such as the Spearman correlation of ‍ρ = 0.62‍ between the total outgoing TE on each node in the 
mid window and this same value in the late window. This implies that the spatial structure of the 

(a) TE values

(b) Temporal correlations in edge TE (c) Temporal correlations in outgoing
TE by node

(d) Temporal correlations in inwards
TE by node

Figure 7. Equivalent plots to those shown in Figures 1, 3 and 4 and Appendix 2—figure 1, but for the simulated spiking network developing under 
spike-timing-dependent plasticity (STDP). (a) shows scatters of the transfer entropy (TE) values overlaid on box plots. The box plots show the quartiles 
and the median (values greater than 10 SDs from the mean have been removed from both the box and scatter plots as outliers). It corresponds 
to Figure 1. (b –d) show scatter plots investigating the relationship between TE values (or derived summary statistics) over different stages of 
development. Specifically, in each scatter plot, the ‍x‍ value of a given point is a TE value or derived statistic at an earlier simulation stage and the ‍y‍ value 
of that same point is a TE value (or derived statistic) on the corresponding edge or node, but later in the simulation. The orange line shows the ordinary 
least-squares regression. The Spearman correlation (‍ρ‍) between the TE values on the two days is displayed in each plot. Values of ‍ρ‍ significant at the 
0.05 level are designated with an asterisk and those significant at the 0.01 level are designated with a double asterisk. Red asterisks are used to denote 
significance after performing a Bonferroni correction for multiple comparisons. (b) corresponds to the scatter plots in Figure 3, (c) corresponds to the 
scatter plots in Figure 4, and (d) corresponds to the scatter plots in Appendix 2—figure 1.

https://doi.org/10.7554/eLife.74651
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information flow has a tendency to be determined in the earlier stages of development, after which 
they are locked-in – in a similar fashion to what was observed in the biological experiments in earlier 
sections.

We also performed the same analysis on computational roles as presented in section ‘Information 
flows quantify computational role of burst position’. This analysis, the results of which are presented 
in Figure 8, only looked at the mid and late windows. The early window was ignored due to its lack 
of bursting activity. In the mid recording window, we observe a strong relationship between the mean 
burst position of the neuron and its computational role. Figure 8 shows that there is a significant 
(at the ‍p<0.01‍ level) positive correlation between the mean burst position of a neuron and its total 
incoming burst-local TE (see section ‘Estimation of burst-local TE’ for more details on the burst-local 
TE). There is also a negative correlation between the mean burst position and the total outgoing 
burst-local TE, as shown in Figure  8. However, this relationship is not significant after Bonferroni 
correction. These same figures also display these relationships for the late window. Here, we observe 
the same directions of relationships. This relationship is incredibly strong between incoming TE and 
burst position (‍ρ = 0.81‍). The relationship between the outgoing TE and burst position is still negative, 
although it is not as strong as in the mid window and is no longer significant. Inspection of Figure 8 
reveals that there is still a very clear negative relationship between burst position and outgoing TE 
after a burst position of about 20. Indeed, if we condition on the burst position being greater than 
20, then we find a Spearman correlation of ‍ρ = 0.80‍, which is significant at the ‍p<0.01‍ with Bonferroni 
correction. Inspection of the spike rasters of these simulations suggests that the anomalous results 
for the earliest bursters may be due to their spiking a very substantial distance ahead of the rest of 
the population in these simulations. These differing burst dynamics mean that the earliest bursters are 
then less able to reduce the uncertainty in the spike times of the majority of the neurons which begin 
spiking significantly later.

This implies that, midway through development, we are observing the same specialisation into 
computational roles based on burst position as was observed in the cell cultures: early bursters display 

(a) Burst position vs TE in (b) Burst position vs TE out

(c) Burst position relative to outgoing and incoming TE.

Figure 8. Equivalent plots to those shown in Figure 5, but for the simulated spiking network developing under spike-timing-dependent plasticity 
(STDP). Plots show the relationship between the amount of incoming and outgoing local (in burst) transfer entropy (TE) on a given node and its average 
burst position. (a) and (b) show the burst position of each node on the ‍x‍ axis of each plot, plotted against either (a) the total incoming or (b) outgoing 
TE on the node. The Spearman correlation (‍ρ‍) between the mean burst position and the incoming or outgoing TE values is displayed in each plot. 
Values of ‍ρ‍ significant at the 0.05 level are designated with an asterisk and those significant at the 0.01 level are designated with a double asterisk. Red 
asterisks are used to denote significance after performing a Bonferroni correction for multiple comparisons. (c) plots the outgoing TE on the ‍x‍ axis and 
the incoming TE on the ‍y‍ axis with the points coloured according to the mean burst position of the node: late bursters are coloured yellow and early 
bursters are purple.

https://doi.org/10.7554/eLife.74651
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a tendency to be information transmitters, late bursters operate as receivers, and middle bursters 
exhibit a balance of the two. Later on in development, we do, however, observe a slight departure 
from the roles we observed in the cell cultures. The computational roles are shifted further down the 
burst propagation and the earliest bursters here are less strongly driving the rest of the population.

It is worth noting that the estimated TE values in the model are substantially higher than in the 
biological dataset. The median estimated TE in the late window of the model was around ‍40 nats.s−1‍ 
(Figure 7). Conversely, it was less than ‍0.2 nats.s−1‍ for every last recording day of the cell cultures 
(Figure 1). This is due to the much higher spike rate of the model implying that the dynamics are 
operating on different timescales. Indeed, if we compare the magnitude of the burst-local TE – which 
is measured in nats per spike (see section ‘Estimation of burst-local TE’) – between the model and the 
biological data (Figures 8 and 5, respectively), we find values of similar magnitude.

In summary, in a network model of Izhikevich neurons developing according to STDP towards a 
state of population bursts, we observe a similar developmental information processing phenomena as 
in the cell cultures. Namely, the amount of information flowing across the network increases dramati-
cally, the spatial structure of this flow locks in early, and the neurons take on specialised computational 
roles based on their burst position.

Discussion
Biological neural networks are imbued with an incredible capacity for computation, which is deployed 
in a flexible manner in order to achieve required tasks. Despite the importance of this capacity to the 
function of organisms, how it emerges during development has remained largely a mystery. Informa-
tion dynamics (Lizier, 2013; Lizier et al., 2014; Lizier et al., 2008; Lizier et al., 2010; Lizier et al., 
2012) provides a framework for studying such computational capacity by measuring the degree to 
which the fundamental information processing operations of information storage, transfer, and modi-
fication occur within an observed system.

Previous work on the information flow component of computational capacity in neural cell cultures 
(Nigam et al., 2016; Shimono and Beggs, 2015; Matsuda et al., 2013; Timme et al., 2014; Kaji-
wara et al., 2021; Timme et al., 2016; Wibral et al., 2017) has focussed on the static structure of 
information flow networks at single points in time. This has mostly taken the form of elucidating prop-
erties of the functional networks implied by the information flows. However, such work leaves open 
questions concerning how these structures are formed. We address this gap here.

An initial goal in addressing how computational capacity emerges was to determine when the infor-
mation flow component arrived. It is plausible that this capacity could have been present shortly after 
plating or that it could have arrived suddenly at a later point in maturation. What we see, however, 
is that the capacity for information transmission is either not present or only minimally present in 
the early DIV. This can be seen by looking at the very low mean TE values in the first column of 
Table 1. However, over the course of development we see that the TE values increase progressively, 
reaching values orders of magnitude larger. This implies that information transmission is a capacity 
which is developed enormously during neuronal development and that its gain is spread consistently 
throughout the observed period.

The information processing operations of a system tend to be distributed over it in a heteroge-
neous fashion. For example, it has been found in models of whole-brain networks (Li et al., 2019; 
Marinazzo et al., 2012; Marinazzo et al., 2014b), abstract network models (Ceguerra et al., 2011; 
Novelli et al., 2020; Goodman and Porfiri, 2020), and even energy networks (Lizier et al., 2009) 
that nodes with high indegrees tend to also have high outgoing information flows. Section ‘The emer-
gence of functional information flow networks’ examined the emergent information flow networks, 
formed by connecting nodes with a statistically significant TE value between them. In accordance with 
this previous work – and indeed the large variation in shared, unique and synergistic information flow 
components observed on the same dataset (albeit with the discrete-time estimator) (Wibral et al., 
2017) – these networks exhibited a high degree of heterogeneity. Notably, as shown in Figure 2a, 
they have prominent hubs of inward flow (sinks) along with less pronounced hubs of outgoing flow 
(sources). Moreover, along with heterogeneity within individual networks, large structural differences 
are easily observed between the different networks shown in Figure 2a.

Keeping with our goal of uncovering how features of mature information flow networks self-
organise, we examined how this heterogeneity at both the intra-network and inter-network levels 
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emerged. It was found in section ‘Early lock-in of information flows’ that the key features of the infor-
mation flow structure are locked-in early in development, around the point at which the information 
flows emerge. This effect was identified for the outgoing TE from each node, for example, where we 
found strong correlations over the different days of development. It is worth further noting that this 
lock-in phenomenon occurs remarkably early in development. Specifically, in very many cases, we 
observe strong correlations between quantities estimated on the first recording days with nonzero 
TE and the same quantities estimated on later days. This early lock-in provides us with a mechanism 
for how the high heterogeneity exhibited in the inflow and outflow hubs emerges. Small differences 
between networks on early DIV will be magnified on subsequent days. This leads to the high levels of 
inter-network heterogeneity that we observe. A similar phenomenon has been observed with STDP, 
which can lead to symmetry breaking in network structure (Gilson et al., 2009; Kunkel et al., 2011), 
whereby small fluctuations in early development can set the trajectory of the synaptic weights on a 
specific path with a strong history dependence. In order to confirm a hypothesis that this observed 
lock-in of information flows could be induced by STDP, in section ‘Information flows in an STDP model 
of development’ we studied the information dynamics of a model network of Izhikevich neurons 
developing according to an STDP (Caporale and Dan, 2008) update rule from a state of independent 
tonic firing to population bursting. The lock-in of key features of the information flow structure was 
evident over the period where the network developed from independent firing to approximately 
synchronous bursting (i.e., bursts occurring at approximately the same point in time). This indicates 
a plausible mechanism for our observations and suggests a broader generality of these phenomena.

An interesting difference between the results for the model and the biological data is that the 
lock-in effect was stronger for outward TE as well as the TE on the edges than in the biological data. 
The reasons for this difference require further investigation; however, it might be due to the multi-unit 
nature of the biological data. A possible direction of future work is to modify the model such that the 
activity on neurons is sub-sampled and aggregated in order to model the effect of placing electrodes 
in a culture. However, this will detract from the simplicity of the model in its current form.

It has been hypothesised that different neural units take on specialised computational roles (Schro-
eter et al., 2015; Frost and Goebel, 2012; Cohen and D’Esposito, 2016). In section ‘Information 
flows quantify computational role of burst position’, we investigated the information flows occurring 
during the critical bursting periods of the cultures’ dynamics. Specifically, we studied the burst-local 
TE in order to measure the information being transferred between nodes during these periods. The 
plots shown in Figure 5 show a clear tendency for the nodes to take on specialised computational 
roles as development progresses. Moreover, these computational roles were tightly coupled to the 
position the node tended to burst within in the burst propagation. Nodes that tended to initiate the 
bursts had a tendency to have high outgoing information transfer combined with low incoming infor-
mation flow, implying their role as information transmitters. The opposite relationship is observed for 
typically late bursters, indicating their role as information receivers. By contrast, nodes that usually 
burst during the middle of the progression have a balance between outward and inward flows. This 
indicates that they are the crucial links between the transmitters and receivers of information. Neurons 
bursting in the middle of the burst progression of dissociated cell cultures have received special atten-
tion in past work using undirected measures, where it was conjectured that they act as the ‘brokers of 
neuronal communication’ (Schroeter et al., 2015). In this work, we have provided novel supporting 
evidence for this conjecture by specifically identifying the directed information flows into and out of 
these nodes. Moreover, in section ‘Information flows in an STDP model of development’, we observed 
that this same specialisation of neurons into computational roles based on average burst position 
occurred in a model network of Izhikevich neurons which had developed via an STDP learning rule to 
a state of population bursting. This suggests that this phenomenon might exist more generally than 
the specific cell cultures studied. It is also worth noting that some of these relationships, notably those 
shown in Figure 7b and d, are much stronger than what was observed in the cell culture. It is likely that 
this is due to the fact that in the model we estimated TE between individual model neurons, whereas 
in the cultures we estimated TE between the MUA on each electrode. A possible direction for future 
work will be to study how the estimated information flow changes when we aggregate the spikes from 
multiple model neurons into simulated MUA.

It is worth reflecting on the fact that the observed correlations between burst-local informa-
tion transfer and average burst position will not occur in all neuronal populations. For instance, in 
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populations with strictly periodic bursts, each node’s behaviour will be well explained by its own 
history, resulting in very low burst-local TE’s, regardless of burst position. Furthermore, neuronal 
populations develop bursty dynamics to different extents and such quantities (let alone their correla-
tion) are simply less meaningful in the absence of burstiness (e.g. for the final day of culture 1-5 as 
stated in Figure 3A of Wagenaar et al., 2006b).

Returning once more to our focus on investigating the emergence of information flows, we have 
demonstrated, in section ‘Early lock-in of specialised computational roles’, that these specialist compu-
tational roles have a tendency to lock-in early. There we looked at the ratio of outgoing burst-local TE 
to the total burst-local TE on each node. It was found that there is a strong tendency for this ratio to 
be correlated between early and late days of development. This suggests that the computational role 
that a node performs during population bursts is determined to a large degree early in development.

Insights into development aside, a fundamental technical difference between the work presented 
here and previous studies of TE in neural cultures is that here we use a recently developed continuous-
time estimator of TE (Shorten et  al., 2021). This estimator was demonstrated to have far higher 
accuracy in estimating information flows than the traditional discrete-time estimator. The principal 
challenge which is faced when using the discrete-time estimator is that the curse of dimensionality 
limits the number of previous time bins that can be used to estimate the history-dependent spike 
rates. All applications of this estimator to spiking data from cell cultures of which the authors are 
aware (Nigam et al., 2016; Shimono and Beggs, 2015; Matsuda et al., 2013; Timme et al., 2014; 
Kajiwara et al., 2021; Timme et al., 2016) made use of only a single previous bin in the estimation 
of these rates. This makes it impossible to simultaneously achieve high time precision and capture the 
dependence of the spike rate on spikes occurring further back in time. Conversely, by operating on 
the interspike intervals, the continuous-time estimator can capture the dependence of the spike rate 
on events occurring relatively far back in time, while maintaining the time precision of the raw data. 
Looking at a specific representative example, our target history embeddings made use of the previous 
four interspike intervals (section ‘Selection of embedding lengths’). For the recording on day 24 of 
culture 1-3, the mean interspike interval was 0.71 s. This implies that the target history embeddings on 
average extended over a period of 2.84 s. The raw data was collected with a sampling rate of ‍25 kHz‍ 
(Wagenaar et al., 2006b). In order to lose no time precision, the discrete-time estimator would thus 
have to use bins of 40 s, and then in order to extend over 2.84 s, the target history embeddings would 
therefore need to consist of around 70,000 bins which is empirically not possible to sample well.

It is worth noting that, as we were performing a longitudinal analysis where each studied recording 
was separated by days or weeks, we did not perform spike sorting as we would have been unable to 
match the different units on an electrode across different recordings. We would then not have been 
able to compare the TE values on a given unit over the course of development. Instead, we analysed 
the spikes on each electrode without sorting. As such, this work studies MUA (Schroeter et al., 2015). 
Spike sorting applied to data collected from a near-identical recording setup found an average of four 
neurons per electrode (Wagenaar et al., 2006a). This situates this work at a spatial scale slightly larger 
than spike-sorted neural data, but still orders of magnitude finer than fMRI, EEG, or MEG (Bassett 
and Sporns, 2017).

Functional and effective networks arising from the publicly available dataset used in this article 
(Wagenaar et al., 2006b) have been studied by other authors. For instance, it was shown that the 
functional networks were small world (Downes et al., 2012) and that more connected nodes exhib-
ited stronger signatures of nonlinearity (Minati et al., 2019). Work has also been conducted analysing 
the burst propagation of these cultures, finding that there are ‘leader’ nodes which consistently burst 
before the rest of the population (Eckmann et al., 2008). These are the information transmitters that 
we have observed in this work here.

An exciting direction for future work will be to move beyond directed functional networks to 
examine the information flow provided by higher-order multivariate TEs in an effective network struc-
ture (Novelli and Lizier, 2021; Novelli et al., 2019). The networks inferred by such higher-order TEs 
are able to better reflect the networks’ underlying structural features (Novelli and Lizier, 2021). As 
was the case with bivariate TEs prior to this work, there is an absence of work investigating how the 
networks of multivariate information flow emerge during neural development. Moreover, moving to 
higher-order measures will allow us to more fully characterise the multifaceted specialised computa-
tional roles undertaken by neurons.

https://doi.org/10.7554/eLife.74651
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Materials and methods
Cell culture data
The spike train recordings used in this study were collected by Wagenaar et al., 2006b and are freely 
available online (Network, 2021). The details of the methodology used in these recordings can be 
found in the original publication (Wagenaar et al., 2006b). A short summary of their methodology 
follows.

Dissociated cultures of rat cortical neurons had their activity recorded. This was achieved by plating 
8 × 8 MEAs, operating at a sampling frequency of 25 kHz with neurons obtained from the cortices of 
rat embryos. The spacing between the electrodes was 200 m centre-to-centre. The MEAs did not have 
electrodes on their corners and one electrode was used as ground, resulting in recordings from 59 
electrodes. In all recordings, electrodes with less than 100 spikes were removed from the analysis. This 
resulted in electrodes 37 and 43 (see Figure 2 for the position of these electrodes) being removed 
from every recording as no spikes were recorded on them. The spatial layout of the electrodes is 
available from the website associated with the dataset (Network, 2021), allowing us to overlay the 
functional networks onto this spatial layout as is done in Figure 2a.

30  min recordings were conducted on most days, starting from 3 to 4 DIV. The end point of 
recording varied between 25 and 39 DIV. Longer overnight recordings were also conducted on some 
cultures at sparser intervals. As the accurate estimation of information-theoretic quantities requires 
substantial amounts of data (Shorten et al., 2021; Kraskov et al., 2004), in this work we make use 

Table 5. File numbers used for each culture on each day.
These correspond to the file numbering used in the freely available dataset used in this study, 
provided by Wagenaar et al., 2006b; Network, 2021.

Culture 1-1 Day 4 Day 14 Day 20

2 2 2

Culture 1-2 Day 6 Day 11 Day 17

2 2 2

Culture 1-3 Day 5 Day 10 Day 16 Day 24

2 2 2 2

Culture 1-4 Day 8 Day 13 Day 19

2 2 2

Culture 1-5 Day 7 Day 12 Day 18

2 2 2

Culture 2-1 Day 14 Day 32

2 2

Culture 2-2 Day 9 Day 15 Day 21 Day 33

2 2 2 2

Culture 2-3 Day 6 Day 12 Day 24

2 2 2

Culture 2-4 Day 3 Day 5 Day 11

1 1 1

Culture 2-5 Day 4 Day 10 Day 22 Day 28

1 1 2 1

Culture 2-6 Day 7 Day 13 Day 31

1 1 1

https://doi.org/10.7554/eLife.74651
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of these longer overnight recordings. These recordings were split into multiple files. The specific files 
used, along with the names of the cultures and days of the recordings, are listed in Table 5.

The original study plated the electrodes with varying densities of cortical cells. However, overnight 
recordings were only performed on the ‘dense’ cultures, plated with a density of ‍2500 cells/L‍.

The original study performed threshold-based spike detection by determining that a spike was 
present in the case of an upward or downward excursion beyond 4.5 times the estimated RMS noise 
of the recorded potential on a given electrode. The analysis presented in this article makes use of 
these detected spike times. No spike sorting was performed, and, as such, we are studying MUA 
(Schroeter et al., 2015).

Network of Izhikevich neurons
The model spiking network used to generate the data analysed in section ‘Information flows in an 
STDP model of development’ is identical to that presented in Khoshkhou and Montakhab, 2019, 
with a few minor alterations. This model consists of Izhikevich neurons (Izhikevich, 2003) developing 
according to an STDP (Caporale and Dan, 2008) update rule. At the beginning of the simulation, 
each neuron performs independent tonic spiking; however, the network develops towards population 
bursts.

The specific model settings used were based on those used to produce Figure 5A in Khoshkhou 
and Montakhab, 2019. That is, the proportion of inhibitory neurons (‍α‍) and the synapse time delay 
(‍τij‍) were both set to 0. The first change made was to use 59 neurons, as opposed to the 500 used in 
Khoshkhou and Montakhab, 2019, in order to correspond to the number of electrodes used in the 
cell culture recordings. The maximum connection strength (‍gmax‍) was also increased from 0.6 to 10 in 
order to compensate for this reduction in the network size.

The only remaining change was made in order to slow the rate of development of the population. 
The reasoning behind this was to allow for the extraction of windows which were much shorter than 
the timescale of development, resulting in the dynamics within these windows being approximately 
stationary (and including enough samples for estimation of the TE rates). Specifically, this change was 
to greatly reduce the values of the maximum synaptic potentiation and depression (‍A+‍ and ‍A−‍). These 
values were reduced from ‍5  ×  10−2‍ to ‍4  ×  10−4‍.

Data preprocessing
As the data was sampled at 25 kHz, uniform noise distributed between –20 s and 20 s was added 
to each spike time. This is to prevent the TE estimator from exploiting the fact that, in the raw data, 
interspike intervals are always an integer multiple of 40 s.

Transfer entropy estimation
The (bivariate) TE (Schreiber, 2000; Bossomaier et al., 2016) was estimated between each pair of 
electrodes in each of the recordings listed in Table 5. TE is the mutual information between the past 
state of a source process and the present state of a target process, conditioned on the past state of 
the target. More specifically (in discrete time), the TE rate is
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The TE above is being measured from a source ‍Y ‍ to a target ‍X ‍, ‍I( · ; · | · )‍ is the conditional mutual 
information (MacKay and Kay, 2003), xt is the current state of the target, ‍x<t‍ is the history of the 
target, ‍y<t‍ is the history of the source, ‍∆t‍ is the bin width (in time units), ‍τ ‍ is the length of the 
processes, and ‍NT = τ /∆t‍ is the number of time samples (bins). The histories ‍x<t‍ and ‍y<t‍ are usually 
captured via embedding vectors, for example, ‍x<t = xt−m:t−1 = {xt−m, xt−m+1, . . . , xt−1}‍.

Previous application of the discrete-time estimator
Previous applications of TE to spiking data from neural cell cultures (Nigam et al., 2016; Shimono 
and Beggs, 2015; Matsuda et al., 2013; Timme et al., 2014; Kajiwara et al., 2021; Timme et al., 
2016; Wibral et al., 2017) made use of this discrete-time formulation of TE. This work was primarily 
focussed on the directed functional networks implied by the estimated TE values between pairs of 
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nodes which has revealed interesting features of the information flow structure. Shimono and Beggs, 
2015 found that these networks exhibited a highly non-random structure and contained a long-tailed 
degree distribution. This work was expanded by Nigam et al., 2016, where it was found that the 
functional networks contained a rich-club topology. Conversely, Timme et al., 2014 found that the 
hubs of these networks were localised to certain timescales. Other work (Timme et al., 2016; Wibral 
et al., 2017) has instead focussed on how the components of information flows in cell cultures can be 
decomposed into unique, redundant, and synergistic components.

Continuous-time estimation
It has, relatively recently, been shown that, for event-based data such as spike trains, in the limit of 
small bin size, the TE is given by the following expression (Spinney and Lizier, 2018):
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Here, ‍λx|x<t,y<t
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‍ is the instantaneous firing rate of the target conditioned on the histories of 

the target ‍x<xi‍ and source ‍y<xi‍ at the time points xi of the spike events in the target process. ‍λx|x<t

[
x<xi

]
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is the instantaneous firing rate of the target conditioned on its history alone, ignoring the history of 
the source. It is important to note that the sum is being taken over the ‍NX ‍ spikes of the target, thereby 
evaluating log ratios of the expected spike rates of the target given source and target histories versus 
target histories alone, when the target does spike. As this expression allows us to ignore the ‘empty 
space’ between events, it presented clear potential for allowing for more efficient estimation of TE 
on spike trains.

This potential was recently realised in a new continuous-time estimator of TE presented in Shorten 
et al., 2021 (and utilised in Mijatovic et al., 2021), and all TE estimates in this article were performed 
using this new estimator. In Shorten et al., 2021 it is demonstrated that this continuous-time esti-
mator is far superior to the traditional discrete-time approach to TE estimation on spike trains. For 
a start, unlike the discrete-time estimator, it is consistent. That is, in the limit of infinite data, it will 
converge to the true value of the TE. It was also shown to have much preferable bias and convergence 
properties. Most significantly, perhaps, this new estimator utilises the interspike intervals to efficiently 
represent the history embeddings ‍x<xi‍ and ‍y<xi‍ in estimating the relevant conditional spike rates in 
(Lizier, 2013). This then allows for the application of the highly effective nearest-neighbour family of 
information-theoretic estimators (Kozachenko and Leonenko, 1987; Kraskov et al., 2004), which 
bring estimation efficiency, bias correction, and together with their application to interspike intervals 
enable capture of long timescale dependencies.

This is in contrast to the traditional discrete-time estimator which uses the presence or absence of 
spikes in time bins as its history embeddings (it sometimes also uses the number of spikes occurring 
in a bin). In order to avoid the dimensionality of the estimation problem becoming sufficiently large 
so as to render estimation infeasible, only a small number of bins can be used in these embeddings. 
Indeed, to the best of the authors’ knowledge, all previous applications of the discrete-time TE esti-
mator to spiking data from cell cultures used only a single bin in their history embeddings. The bin 
widths used in those studies were 40 s (Nigam et al., 2016), 0.3 ms (Garofalo et al., 2009), and 1 ms 
(Shimono and Beggs, 2015; Kajiwara et al., 2020). Some studies chose to examine the TE values 
produced by multiple different bin widths, specifically, 0.6 ms and 100 ms (Matsuda et al., 2013), 1.6 
ms and 3.5 ms (Timme et al., 2016), and 10 different widths ranging from 1 ms to 750 ms (Timme 
et al., 2014). Specifically those studies demonstrated the unfortunate high sensitivity of the discrete-
time TE estimator to the bin width parameter. In the instances where narrow (<5 ms) bins were used, 
only a very narrow slice of history is being considered in the estimation of the history-conditional 
spike rate. This is problematic as it is known that correlations in spike trains exist over distances of 
(at least) hundreds of milliseconds (Aldridge and Gilman, 1991; Rudelt et al., 2021). Conversely, in 
the instances where broad (>5 ms) bins were used, relationships occurring on fine timescales will be 
completely missed. This is significant given that it is established that correlations at the millisecond 
and sub-millisecond scale play a role in neural function (Nemenman et al., 2008; Kayser et al., 2010; 
Sober et al., 2018; Garcia-Lazaro et al., 2013). In other words, previous applications of TE to elec-
trophysiological data from cell cultures either captured some correlations occurring with fine temporal 
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precision or they captured relationships occurring over larger intervals, but never both simultaneously. 
This can be contrasted with the interspike interval history representation used in this study. To take 
a concrete example, for the recording on day 24 of culture 1-3, the average interspike interval was 
0.71  s. This implies that the target history embeddings (composed of four interspike intervals) on 
average extended over a period of 2.84 s and the source history embeddings (composed of two inter-
spike intervals) on average extended over a period of 1.42 s. This is despite the fact that our history 
representations retain the precision of the raw data (40 s) and the ability to measure relationships on 
this scale where they are relevant (via the underlying nearest-neighbour estimators).

The parameters used with this estimator are shown in Table 6. The values of ‍kglobal‍ and ‍kperm‍ were 
chosen because, in previous work (Shorten et al., 2021), similar values were found to facilitate stable 
performance of the estimator. The high values of ‍NU ‍ and ‍NU,surrogates‍ were chosen so that histories 
during bursting periods could be adequately sampled. These two parameters refer to sample points 
placed randomly in the spike train, at which history embeddings are sampled. As the periods of 
bursting comprise a relatively small fraction of the total recording time, many samples need to be 
placed in order to achieve a good sample of histories potentially observed during these periods. The 
choice of embedding lengths is discussed in the section ‘Selection of embedding lengths’, and the 
choice of ‍Nsurrogates‍ is discussed in the section ‘Significance testing of TE values’.

Instead of selecting a single number of target spikes ‍NX ‍ to include in the analysis, we chose to 
include all the spikes that occurred within the first hour of recording time. The reason for doing this 
was that the spike rates varied by orders of magnitude between the electrodes. This meant that fixing 
the number of target spikes would result in the source spikes being severely undersampled in cases 
where the target spike rate was much higher than the source spike rate. When using 1 hr of recording 
time, among the main cultures the smallest number of spikes per electrode was 481, the maximum 
was 69,627, and the median was 17,399.

Selection of embedding lengths
The target embedding lengths were determined by adapting the technique (Erten et  al., 2017; 
Novelli et al., 2019) extending (Garland et al., 2016) of maximising the bias-corrected active infor-
mation storage (AIS) (Lizier et al., 2012) over different target embedding lengths for a given target. 
Our adaptations sought to select a consensus embedding parameter for all targets on all trials to 
avoid different bias properties due to different parameters across targets and trials, in a similar fashion 
to Hansen et  al., 2021. As such, our approach determines a target embedding length ‍lX‍ which 
maximises the average bias-corrected AIS across all electrodes using one representative recording 

Table 6. The parameter values used in the continuous-time transfer entropy (TE) estimator.
A complete description of these parameters, along with analysis and discussion of their effects, can 
be found in Shorten et al., 2021.

Parameter Description Value

‍NX ‍ Number of spikes in the target spike train Varied (see text)

‍lX ‍
Number of interspike intervals in target history 
embeddings 4

‍lY ‍
Number of interspike intervals in source history 
embeddings 2

‍kglobal‍
Number of nearest neighbours to find in the initial 
search 10

‍kperm‍
Number of nearest neighbours to consider during 
surrogate generation 10

‍NU ‍
Number of random samples of histories at non-
spiking points in time ‍50NX ‍

‍NU,surrogates‍
Number of random samples of histories at non-
spiking points in time used for surrogate generation ‍10NX ‍

‍Nsurrogates‍
Number of surrogates to generate for each node 
pair 100
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(selected as day 23 of culture 1-3). To estimate AIS within the continuous-time framework (Spinney 
and Lizier, 2018) for this purpose, we estimated the difference between the second KL divergence of 
Equation 10 of Shorten et al., 2021 and the mean firing rate of the target. These estimates contain 
inherent bias correction as per the TE estimator itself. Moreover, the mean of surrogate values was 
subtracted to further reduce the bias. The embedding length ‍lX‍ was continuously increased so long 
as each subsequent embedding produced a statistically significant (at the ‍p<0.05‍ level) increase in the 
average AIS across the electrodes. The resulting mean AIS values (along with standard deviations) 
and p-values are shown in Table 7. We found that every increase in ‍lX‍ up to 4 produced a statistically 
significant increase in the mean AIS. The increase from 4 to 5 produced a non-significant decrease in 
the mean AIS and so ‍lX‍ was set to 4.

With the target embedding length determined, we set about similarly determining a consensus 
source embedding length ‍lY ‍ by estimating the TE between all directed electrode pairs on the same 
representative recording for different values of ‍lY ‍. Each estimate also had the mean of the surrogate 
population subtracted to reduce its bias (see section ‘Significance testing of TE values’).

The embedding length was continuously increased so long as each subsequent embedding 
produced a statistically significant (at the ‍p<0.05‍ level) increase in the average TE across all elec-
trode pairs. The resulting mean TE values (along with standard deviations) and p-values are shown 
in Table 8. We found that increasing ‍lY ‍ from 1 to 2 produced a statistically significant increase in the 
mean TE. However, increasing ‍lY ‍ from 2 to 3 produced a non-significant decrease in the mean TE. As 
such, we set ‍lY ‍ to 2.

Significance testing of TE values
In constructing the directed functional networks displayed in Figure 2a, we tested whether the esti-
mated TE between each source-target pair was statistically different from the distribution of TEs 
under the null hypothesis of conditional independence of the target from the source (i.e. TE consis-
tent with zero). Significance testing for TE in this way is performed by constructing a population of 
surrogate time-series or history embeddings that conform to the null hypothesis of zero TE (Novelli 
et al., 2019; Wollstadt et al., 2019; Novelli and Lizier, 2021). We then estimate the TE on each of 

Table 7. Summary statistics for the active information storage (AIS) values estimated at different 
target embedding lengths ‍lX‍.
These were estimated across all electrodes of a representative recording (day 23 of culture 1-3). The 
p-values shown in the fourth column are associated with the null hypothesis that the mean AIS at the 
given ‍lX‍ is equal to the mean AIS at ‍lX − 1‍.

‍lX ‍ Mean AIS SD p-Value

1 7.73 4.71 –

2 8.27 4.97 3.0×10–19

3 8.41 5.08 5.8×10–8

4 8.44 5.11 2.7×10–4

5 8.43 5.12 0.85

Table 8. Summary statistics for the transfer entropy (TE) values estimated at different source 
embedding lengths ‍lY ‍.
These were estimated between all electrodes of a representative recording (day 23 of culture 1–-3). 
The p-values shown in the fourth column are associated with the null hypothesis that the mean TE at 
the given ‍lY ‍ is equal to the mean TE at ‍lY − 1‍.

‍lY ‍ Mean TE SD p-Value

1 0.031 0.043 –

2 0.058 0.056 0.0

3 0.057 0.069 0.84
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these surrogates to generate a null distribution of TE. Specifically, we generate the surrogates and 
compute their TEs according to the method associated with the continuous-time spiking TE estimator 
(Shorten et  al., 2021) and using the parameters shown in Table 6. One small change was made 
to that surrogate generation method: instead of laying out the ‍NU,surrogates‍ sample points randomly 
uniformly, we placed each one at an existing target spike, with the addition of uniform noise on the 
interval ‍[−240 ms, 240 ms]‍. This was to ensure that these points adequately sampled the incredibly 
dense burst regions.

With the surrogate TE distribution constructed, the resulting p-value for our TE estimate can 
be computed by counting the proportion of these surrogate TEs that are greater than or equal to 
the original estimate. Here, we seek to compare significance against a threshold of ‍α < 0.01‍. We 
chose this lower threshold as false positives are generally considered more damaging than false 
negatives when applying network inference to neuroscientific data (Zalesky et  al., 2016). We 
also applied a Bonferroni correction (Miller, 2012) to all the significance tests done on a given 
recording. Given that there are 59 electrodes in the recordings, 3422 tests were performed in each 
recording. This meant that, once the Bonferroni correction was included, the significance threshold 
dropped to ‍p<2.9 × 10−6

‍. Comparing against such a low significance threshold would require an 
infeasible number of surrogates for the many pairs within each recording, if computing the p-value 
by counting as above. Instead, we assume that the null TE distribution is Gaussian and compute the 
p-value for our TE estimate using the CDF of the Gaussian distribution fitted from 100 surrogates 
(e.g. as per Lizier et al., 2011). Specifically, the p-value reports the probability that a TE estimate 
on history embeddings conforming to the null hypothesis of zero TE being greater than or equal 
to our original estimated TE value. If this p-value is below the threshold, then the null hypothesis 
is rejected and we conclude that there is a statistically significant information flow between the 
electrodes.

Analysis of population bursts
A common family of methods for extracting periods of bursting activity from spike-train recordings 
examines the length of adjacent interspike intervals. The period spanned by these intervals is desig-
nated a burst if some summary statistic of the intervals (e.g. their sum or maximum) is below a certain 
threshold (Kaneoke and Vitek, 1996; Wagenaar et al., 2005; Wagenaar et al., 2006b; Selinger 
et al., 2007; Bakkum et al., 2013). In order to detect single-electrode as well as population-wide 
bursts, we implement such an approach here.

We first determine the start and end points of the bursts of each individual electrode. The locations 
of the population bursts were subsequently determined using the results of this per-electrode analysis.

The method for determining the times during which an individual electrode was bursting proceeded 
as follows: the spikes were moved through sequentially. If the interval between a given spike and the 
second most recent historic spike for that electrode was less than ‍α‍, then, if the electrode was not 
already in a burst, it was deemed to have a burst starting at the kth most recent historic spike. A 
burst was taken to continue until an interspike interval greater than ‍a ∗ α‍ was encountered. If such an 
interval was encountered, then the end of the burst was designated as the timestamp of the earlier of 
the two spikes forming the interval.

The starts and ends of population bursts were similarly determined by moving through the time 
series in a sequential fashion. If the population was not already designated to be in a burst, but the 
number of electrodes currently bursting was greater than the threshold ‍β‍, then a burst start position 
was set at the point this threshold was crossed. Conversely, if the electrode was already designated to 
be in a burst and the number of individual electrodes currently bursting dropped below the threshold 

‍γ‍ (‍γ < β‍), then a burst stop position was set at the point this threshold was crossed.
In this article, we always made use of the parameters ‍k = 2,α = 1

2λ̄ , a = 3,β = 15‍ and ‍γ = 10‍, where 
‍̄λ‍ is the average spike rate. These parameters were chosen by trial-and-error combined with visual 
inspection of the resulting inferred burst positions. The results of this scheme showed low sensitivity 
to the choice of these parameters.

For the simulated network dynamics, we used the parameters ‍k = 1,α = 1
2λ̄ , a = 1.5,β = 2‍ and ‍γ = 1‍. 

These parameters were found to better suit the stereotyped dynamics of the simulated networks.

https://doi.org/10.7554/eLife.74651
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Estimation of burst-local TE
The information dynamics framework provides us with the unique ability to analyse information 
processing locally in time (Lizier et al., 2008; Lizier, 2013; Lizier, 2014). We make use of that ability 
here to allow us to specifically examine the information flows during the important period of popula-
tion bursts. The TE estimator which we are employing here (Shorten et al., 2021) sums contributions 
from each spike in the target spike train. It then divides this total by the time length of the target spike 
train that is being examined. In order to estimate the burst-local TE, we simply sum the contributions 
from the target spikes where those spikes occurred during a population burst. We then normalise 
by the number of such spikes, providing us with a burst-local TE estimate in units of nats per spike, 
instead of nats per second. Note that the burst-local TE is different to the approach of Stetter et al., 
2012, who extracted the bursting activity prior to any analysis, rendering a TE conditioned on bursting 
occurring. Specifically, in contrast to the burst-local TE, in their work the non-spiking activity is ignored 
for the purposes of estimating the log densities.

Code availability
Scripts for performing the analysis in this article can be found at bitbucket.org/dpshorten/cell_cultures 
(Shorten, 2022; copy archived at swh:1:rev:8ee5e519da5cb90590865e9a692b96ad7e68a69e).
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Appendix 1

(a) QQ plots of TE values against the normal distribution. (b) QQ plots of log TE values against the normal distribution.

Appendix 1—figure 1. Quantile-quantile (QQ) plots (Gibbons and Chakraborti, 2020) of the nonzero estimated 
transfer entropy (TE) values against normal (a) and log-normal (b) distributions, respectively. The ‍y‍ axis shows 
estimated TE values (or their logarithm), whereas the ‍x‍ axis shows the value of the normal distribution at the same 
quantile. The solid orange line shows the line ‍y = x‍. If the data is drawn from the distribution against which it is 
being plotted, then the blue marks will sit along this line. We observe that the distributions of TE values deviate 
substantially from both normal and log-normal distributions in all recordings analysed.

Appendix 1—table 1. p-Values for the Shapiro–Wilk test (Shapiro and Wilk, 1965) of normality for 
the distribution of transfer entropy (TE) values estimated in each recording.
Only the statistically significant TE values are included in these tests. Recordings for which there 
were no statistically significant values estimated are left blank. These p-values represent the 
probability that the associated test statistic is more extreme than that calculated on the estimated 
TE values, under the null hypothesis that these values are normally distributed. For any reasonable 
choice of p cutoff value, the null hypothesis is rejected in all recordings.

Culture 1-1 Day 4 Day 14 Day 20

– 9.8×10–45 4.2×10–35

Culture 1-3 Day 5 Day 10 Day 16 Day 24

4.4×10–13 4.7×10–24 2.7×10–36 1.0×10–36

Culture 2-2 Day 9 Day 15 Day 21 Day 33

7.9×10–6 1.6×10–28 2.6×10–35 9.5×10–38

Culture 2-5 Day 4 Day 10 Day 22 Day 28

– 7.5×10–10 2.4×10–28 3.7×10–29

Appendix 1—table 2. p-Values for the Shapiro–Wilk test (Shapiro and Wilk, 1965) of normality for 
the distribution of transfer entropy (TE) values estimated in each recording.
Only the statistically significant TE values are included in these tests. Recordings for which there 
were no statistically significant values estimated are left blank. These p-values represent the 
probability that the associated test statistic is more extreme than that calculated on the estimated 
TE values, under the null hypothesis that these values are normally distributed. For any reasonable 
choice of p cutoff value, the null hypothesis is rejected in all recordings.

Culture 1-1 Day 4 Day 14 Day 20

Appendix 1—table 2 Continued on next page
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– 0 3.3×10–33

Culture 1-2 Day 6 Day 11 Day 17

– 2.3×10–21 3.8×10–43

Culture 1-3 Day 5 Day 10 Day 16 Day 24

– 6.4×10–13 3.3×10–14 5.3×10–14

Culture 1-4 Day 8 Day 13 Day 19

– 2.5×10–28 2.1×10–31

Culture 1-5 Day 7 Day 12 Day 18

8.4×10–2 1×10–35 1.5×10–12

Culture 2-1 Day 14 Day 32

2.8×10–1 0

Culture 2-2 Day 9 Day 15 Day 21 Day 33

– 1.4×10–19 7.1×10–44 0

Culture 2-3 Day 6 Day 12 Day 24

– 2.6×10–1 1.4×10–45

Culture 2-4 Day 3 Day 5 Day 11

3.5×10–12 – 1.0×10–2

Culture 2-5 Day 4 Day 10 Day 22 Day 28

– 1.2×10–21 3.5×10–40 1.2×10–37

Culture 2-6 Day 7 Day 13 Day 31

1.0×10–1 – 1.9×10–19 –

Appendix 1—table 3. p-Values for the Shapiro–Wilk test (Shapiro and Wilk, 1965) of log-normality 
for the distribution of transfer entropy (TE) values estimated in each recording.
Only the statistically significant TE values are included in these tests. Recordings for which there 
were no statistically significant values estimated are left blank. These p-values represent the 
probability that the associated test statistic is more extreme than that calculated on the logarithms 
of the estimated TE values, under the null hypothesis that these values are normally distributed. For 
any reasonable choice of p cutoff value, the null hypothesis is rejected in all recordings (apart from 
those with very few significant TE values). It is interesting to note that the p-values are often smaller 
on later days, despite the Q-Q plots in Appendix 1—figure 1, suggesting the distribution is closer 
to log-normal. This is probably due to there being many more statistically significant TE values on 
these later days (see Table 2).

Culture 1-1 Day 4 Day 14 Day 20

– 3.1×10–21 2.9×10–10

Culture 1-2 Day 6 Day 11 Day 17

– 3.2×10–14 1.6×10–22

Culture 1-3 Day 5 Day 10 Day 16 Day 24

– 1.3×10–4 3.0×10–13 1.3×10–22

Culture 1-4 Day 8 Day 13 Day 19

– 3.0×10–15 2.4×10–7

Culture 1-5 Day 7 Day 12 Day 18

3.3×10–2 7.8×10–24 2.0×10–4

Appendix 1—table 2 Continued

Appendix 1—table 3 Continued on next page
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Culture 2-1 Day 14 Day 32

9.7×10–1 3.6×10–22

Culture 2-2 Day 9 Day 15 Day 21 Day 33

– 1.8×10–12 3.6×10–14 5.8×10–29

Culture 2-3 Day 6 Day 12 Day 24

– 6.1×10–2 1.78×10–7

Culture 2-4 Day 3 Day 5 Day 11

9.8×10–13 – 5.1×10–2

Culture 2-5 day 4 day 10 Day 22 Day 28

- 1.2×10–3 1.1×10–16 2.4×10–14

Culture 2-6 day 7 day 13 Day 31
 

7.4×10–1 - 1.9×10–14 –

Previous studies have placed an emphasis on the observation of log-normal distributions of TE 
values in in vitro cultures of neurons (Shimono and Beggs, 2015; Nigam et al., 2016). As such, 
we analysed the distribution of the nonzero (statistically significant) estimated TE values in each 
individual recording.

Figure 1 shows histograms as well as probability density functions estimated by a kernel density 
estimator (KDE) of the nonzero TE values for each recording. From these plots, we can see that the 
distributions of TE values exhibit a clear right (positive) skew. In order to ascertain how well the 
estimated TE values were described by a log-normal distribution, we constructed quantile-quantile 
(QQ) plots (Gibbons and Chakraborti, 2020) for the TE values against the log-normal distribution 
in Appendix 1—figure 1. In all recordings, the plotted points deviate from the line ‍y = x‍, indicating 
that the data is not well described by a log-normal distribution. However, this deviation appears 
only slight for some recordings, most notably days 22 and 28 of culture 2-5. We also perform 
Shapiro–Wilk tests (Shapiro and Wilk, 1965) for log-normality, the resulting p-values are displayed 
in Appendix 1—table 3. The p-values for every recording are incredibly low, meaning that we reject 
the null hypothesis of a log-normal distribution in every case.

Given that the distributions of the TE values were not well described by a log-normal distribution, 
we investigated the alternative that they could be described by a normal distribution. Appendix 1—
figure 1 displays QQ plots (Gibbons and Chakraborti, 2020) for the TE values against the normal 
distribution. In all recordings, the plotted points deviate substantially from the line ‍y = x‍, indicating 
that the data is poorly described by a normal distribution. We also perform Shapiro–Wilk tests 
(Shapiro and Wilk, 1965) for normality, the resulting p-values are displayed in Appendix 1—table 
1. The p-values for every recording are incredibly low, meaning that we reject the null hypothesis of 
a normal distribution in every case.

These results contrast with observation of log-normal distributions of TE values in in vitro cultures 
of neurons (Shimono and Beggs, 2015; Nigam et al., 2016). The difference may be due to the use 
of continuous-time estimator here in contrast to the discrete-time estimator used in previous studies. 
This estimator is more faithful to capturing the true underlying TE for spike trains (as per Shorten 
et al., 2021); however, it may be that the combination of the discrete-time estimator and use of only 
a single previous time-bin – in specifically not representing history dependence well – align more 
strongly with the component of the statistical relationship that follows a log-normal distribution. It 
is also possible that log-normal distributions of TE emerge later in development and are simply not 
yet present in the early developmental stages observed here (noting that the fit to a log-normal 
distribution seems to improve for later DIV in Appendix 1—figure 1).

Appendix 1—table 3 Continued

https://doi.org/10.7554/eLife.74651
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Appendix 2
Plots for early lock-in of incoming TE

(a) Culture 1-3 (b) Culture 2-2

(c) Culture 2-5 (d) Culture 1-1 (e) All Cultures

Appendix 2—figure 1. Plots investigating the relationship between the inward information flow from a given 
node over different days of development. (a–d) show scatter plots between all pairs of days for each culture 
(excluding days with zero significant transfer entropy [TE] values). Specifically, in each scatter plot, the ‍x‍ value of a 
given point is the average inward TE from the associated node on an earlier day and the ‍y‍ value of that same point 
is the total outgoing TE from the same node but on a later day. The days in question are shown on the bottom 
and sides of the grids of scatter plots. The orange line shows the ordinary least squares regression. The Spearman 
correlation (‍ρ‍) between the outgoing TE values on the two days is displayed in each plot. Values of ‍ρ‍ significant 
at the 0.05 level are designated with an asterisk and those significant at the 0.01 level are designated with a 
double asterisk. A Bonferroni correction for multiple comparisons was used. (e) shows all recording day pairs for all 
cultures (where the pairs are always from the same culture) and the associated Spearman correlation between the 
outward TEs of nodes across this pair of recording days. Diamonds indicate significance at ‍p<0.05‍, with Bonferroni 
correction.

https://doi.org/10.7554/eLife.74651
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Appendix 3

Extra cultures

Appendix 3—table 1. Mean transfer entropy (TE) in nats per second between every source-target 
pair for the additional cultures.

Culture 1-2 Day 6 Day 11 Day 17

0 6.6×10–4 0.023

Culture 1-4 Day 8 Day 13 Day 19

0 0.017 0.040

Culture 1-5 Day 7 Day 12 Day 18

5.6×10–5 6.6×10–3 0.016

Culture 2-1 Day 14 Day 32

2.9×10–6 0.028

Culture 2-3 Day 6 Day 12 Day 24

0 2.0×10–5 0.075

Culture 2-4 Day 3 Day 5 Day 11

6.4×10–3 0 5.3×10–5

Culture 2-6 Day 7 Day 13 Day 31

0 0 0.061

Appendix 3—figure 1. Identical plots to those shown in Figure 1, but showing the cultures left out of that plot 

for space considerations. (a) Scatters of the TE values are overlaid on box plots. The box plots show the quartiles 

and the median (values greater than 10 standard deviationSDs from the mean have been removed from both 

the box and scatter plots as outliers). (b) Density estimates of the nonzero (statistically significant) TE distribution 

on top of a histogram. The densities are estimated using a Gaussian kernel. The histogram bin width and kernel 

https://doi.org/10.7554/eLife.74651
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histogram are both 10% of the data range. Recordings with fewer than 10 statistically significant TE values are 
excluded.

Appendix 3—table 2. Displays the same information as Figure 2, but for the additional cultures.

Culture 1-2 Day 6 Day 11 Day 17

0 105 860

Culture 1-4 Day 8 Day 13 Day 19

1 214 1457

Culture 1-5 Day 7 Day 12 Day 18

21 375 195

Culture 2-1 Day 14 Day 32

5 1165

Culture 2-3 Day 6 Day 12 Day 24

2 9 1000

Culture 2-4 Day 3 Day 5 Day 11

97 0 11

Culture 2-6 Day 7 Day 13 Day 31

9 0 873

(a) QQ plots of TE values against the normal distribution. (b) QQ plots of log TE values against the normal distribution.

Appendix 3—figure 2. Identical plots to those shown in Appendix 2—figure 1, but for the additional cultures. 
The ‍y‍ axis shows estimated TE values (or their logarithm), whereas the axis shows the value of the normal 
distribution at the same quantile. The solid orange line shows the line ‍y = x‍. If the data is drawn from the 
Appendix 3—figure 2 continued on next page

https://doi.org/10.7554/eLife.74651
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distribution against which it is being plotted, then the blue marks will sit along this line. We observe that the 
distributions of TE values deviate substantially from both normal and log-normal distributions in all recordings 
analysed. 

Appendix 3—figure 3. Identical plots to those in Figure 2, but for the additional cultures.

Appendix 3—figure 2 continued

https://doi.org/10.7554/eLife.74651
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(a) Culture 1-5 (b) Culture 1-2 (c) Culture 1-4

Appendix 3—figure 4. Identical plots to those in Figure 3, but for the additional cultures. (a) Contains plots for 
culture 1-5, (b) contains plots for culture 1-2 and (c) contains plots for culture 1-4.

(a) Culture 1-5 (b) Culture 1-2 (c) Culture 1-4

Appendix 3—figure 5. Identical plots to those in Figure 4, but for the additional cultures. (a) Contains plots for 
culture 1-5, (b) contains plots for culture 1-2 and (c) contains plots for culture 1-4.

https://doi.org/10.7554/eLife.74651
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(a) Culture 1-5 (b) Culture 1-2 (c) Culture 1-4

Appendix 3—figure 6. Identical plots to those in Appendix 2—figure 1, but for the additional cultures. (a) 
Contains plots for culture 1-5. (b) Contains plots for culture 1-2. (c) Contains plots for culture 1-4.

(a) Burst position vs TE in (b) Burst position vs TE out

Appendix 3—figure 7. Identical plots to those in Figure 5a and b, but for the additional cultures. (a) Plots the 
mean burst position against the total incoming TE. (b) Plots the mean burst position against the total outgoing TE.

https://doi.org/10.7554/eLife.74651
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Appendix 3—figure 8. Identical plots to those in Figure 5c, but for the additional cultures.

https://doi.org/10.7554/eLife.74651
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(a) Culture 1-5 (b) Culture 1-2 (c) Culture 1-4

Appendix 3—figure 9. Identical plots to those in Figure 6, but for the additional cultures. (a) Contains plots for 
culture 1-5. (b) Contains plots for culture 1-2. (c) Contains plots for culture 1-4.

https://doi.org/10.7554/eLife.74651
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