
ARTICLE

A multi-modal MRI study of the central response to
inflammation in rheumatoid arthritis
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It is unknown how chronic inflammation impacts the brain. Here, we examined whether

higher levels of peripheral inflammation were associated with brain connectivity and struc-

ture in 54 rheumatoid arthritis patients using functional and structural MRI. We show that

higher levels of inflammation are associated with more positive connections between the

inferior parietal lobule (IPL), medial prefrontal cortex, and multiple brain networks, as well as

reduced IPL grey matter, and that these patterns of connectivity predicted fatigue, pain and

cognitive dysfunction. At a second scan 6 months later, some of the same patterns of

connectivity were again associated with higher peripheral inflammation. A graph theoretical

analysis of whole-brain functional connectivity revealed a pattern of connections spanning 49

regions, including the IPL and medial frontal cortex, that are associated with peripheral

inflammation. These regions may play a critical role in transducing peripheral inflammatory

signals to the central changes seen in rheumatoid arthritis.
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When people experience injury or infection, their
behaviour and perceptions change dramatically. These
changes tend to be conserved across mammalian

species and include increased sensitivity to pain, fatigue and
cognitive dysfunction. These are collectively referred to as ‘sick-
ness behaviours’1. The primary mechanisms through which these
changes occur are inflammatory—molecular messengers of
damage and infection signal the central nervous system (CNS)
through afferent nerves, sentinel cells in the circumventricular
organs and transport across the blood–brain barrier (BBB)1.
However, the neural correlates of inflammation in chronic con-
ditions have scarcely been explored. Chronic conditions char-
acterized by both heightened inflammation and symptoms like
fatigue and neurocognitive deficits include diabetes, cancer,
dementia and rheumatoid arthritis (RA)2–6. Experimental para-
digms in small samples of healthy individuals who receive
immunogenic substances have demonstrated transient alterations
in functional connectivity of the brain7,8. These effects, however,
represent the response of the resilient CNS to acute inflammatory
insults, and studies of how symptoms change over longer-term
administration of immunogenic substances suggest potentially
important differences in the central response to chronic vs. acute
inflammation9. Characterizing the neuro–immune axis in chronic
inflammatory conditions represents a crucial link in determining
how repeated inflammatory insults result in debilitating symp-
toms in RA.

In this study, we leverage the natural fluctuations in levels of
peripheral inflammation that are a feature of RA in order to
determine how inflammation affects brain function and structure.
RA is ideal for these purposes because the condition is arche-
typically inflammatory and chronic6, with most sufferers
experiencing periodic disease flares wherein both circulating
inflammatory markers and symptoms become elevated. Our
primary objectives were to identify specific brain regions that
become more or less connected with each other as levels of
inflammation increase. This was accomplished by first conducting
a whole-brain search using Independent Component Analyses
(ICA) to identify relationships with established neural networks.
Second, we expanded on this approach using graph theoretical
analyses to identify relationships with inflammation across the
entire functional connectome. Finally, we employed voxel-based

morphometry (VBM) to identify areas where grey matter (GM)
volume is increased or decreased in conjunction with levels of
inflammation. To confirm the validity of our results, we repeated
ICA analyses in the same individuals 6 months later. Our purpose
was to identify, among patients with RA, brain regions and pat-
terns of connectivity that are important in the central response to
peripheral inflammation. We find that the left inferior parietal
lobule (IPL) and medial prefrontal cortex (mPFC) play critical
roles in the altered patterns of brain connectivity associated with
peripheral inflammation in RA.

Results
Sample. Fifty four RA patients underwent magnetic resonance
imaging (MRI) at baseline and at 6 months (mean age 54.94 ±
11.41 years; n= 41 (76%) female; mean disease duration 11.49 ±
8.64 years) of a total of 335 patients who were approached
(Supplementary Figure 1). There was variation in the primary
clinical indication of inflammation, erythrocyte sedimentation
rate (ESR; range: 2–62 mm/h at the baseline visit) and clinical
presentation of RA. Clinical characteristics, including ESR, C-
reactive protein (CRP), Disease Activity Score −28 (a composite
of swollen joint counts, ESR and self-rated health)10, and symp-
tom levels at each time are displayed in Fig. 1 (and see Supple-
mentary Table 1). A number of anti-inflammatory medications
were used by the sample (Supplementary Table 2).

Seed network to whole-brain connectivity analysis. Eight
functional brain networks identified through ICA11 were used as
seeds in a whole-brain search to identify specific brain regions
that become more positively or negatively connected to the seed
network at higher levels of peripheral inflammation (ESR). These
analyses revealed several significant associations between higher
ESR and positive functional brain connections and a single
association with a negative functional connection. Four of the
eight networks (default mode network (DMN), dorsal attention
network (DAN), salience network (SLN), medial visual network
(MVN)) showed these relationships (Table 1 and Fig. 2). Two
brain regions showed connections to multiple networks, roughly
comprising the left (L) IPL /L angular gyrus and the bilateral
mPFC (Fig. 3). The other four networks (sensorimotor network
(SMN), lateral visual network, left and right fronto-parietal
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perception/language networks) showed no significant relation-
ships. As noted in Table 1, six of the eight identified patterns of
connections between regions and seed networks were also asso-
ciated with higher levels of CRP. Three of these relationships were
replicated at the second session with ESR at a trend level (L IPL to
DMN, L IPL to DAN, right (R) mPFC to DAN) while five of the
eight identified connections were replicated with CRP (L IPL to
DMN, R PCC to DMN, L IPL to DAN, R mPFC to DAN, L IPL to
MVN). See Fig. 4 and Table 2.

Network-Based Statistic. To explore more detailed patterns of
inflammation-linked functional connectivity, all pairwise con-
nections between 264 brain regions12 were examined for subsets
of brain regions (nodes) that are positively connected to one
another (edges) at higher levels of peripheral inflammation. This
approach uses a Network-Based Statistic (NBS)13 derived from
graph theoretical network analysis14 to identify the relevant nodes
and edges. Higher levels of ESR were associated with a significant
NBS configuration comprised of 49 nodes and 54 edges. These are
depicted visually in Fig. 5, and the nodes are listed in Table 3
(edges in Supplementary Table 3). Using the consensus network
assignment of Power’s atlas12, these nodes belonged most fre-
quently to the fronto-parietal task control (nine nodes), default
mode (eight nodes) and salience (seven nodes) networks.

The L IPL/angular was well-represented in the NBS config-
uration, as five of the eight nodes that correspond approximately
to the L IPL/angular region in the Power's atlas were present.
Three of these five nodes were located in the L IPL region
identified through the network to whole-brain connectivity
analyses (regions 86, 87, 177). Similarly, three nodes were located
in the medial frontal/orbital region, one of which was located in
the medial frontal region identified through the network to
whole-brain connectivity analyses (region 75). The three nodes
that overlapped with the ICA findings in the IPL collectively
participated in 10 of the 54 edges in the ‘inflammation
configuration’, while the medial frontal node participated in
three. Edges showed a diverse range of connections, including
connections within the L IPL/L angular and connections from the
L IPL to regions of the putative pain matrix such as the dorsal
anterior cingulate cortex and anterior insula.

Hub analyses. Brain regions can be defined as hubs if they a large
number of rich connections to other brain regions, a measure
called eigenvector centrality (EC)15. Four nodes located in the L
IPL region identified through seed network to whole-brain ana-
lyses were classified as hubs. Of the 49 nodes in the NBS
inflammation configuration, 17 were classified as hubs. These are

noted in Table 3 (all identified hubs are shown in Supplementary
Table 4).

EC and the inflammation configuration. The EC score, a
measure of overall hub-like qualities, derived from the 49 NBS
nodes was positively associated with ESR (r= 0.466, p < 0.001;
Pearson correlation). This indicates that the nodes comprising the
‘inflammation configuration’ are increasingly hub-like in their
role in the whole-brain functional connectome in individuals with
higher levels of peripheral inflammation.

Region-of-interest VBM analyses. Of the significant functional
connectivity regions identified in Table 1, higher levels of ESR
were associated with reduced GM volumes of the L IPL (B=
−0.00032; multiple linear regression; p= 0.038 age/sex/total
intracranial volume [TIV] corrected and posterior cingulate
cortex (B=−0.00050; multiple linear regression; p= 0.024). This
result did not meet false discovery rate (FDR) correction, a
method for controlling for multiple comparisons (p > 0.05 FDR).
Results of each region of interest (ROI) analysis are shown in
Table 4.

Whole-brain VBM. One region of reduced GM volume was
identified that was associated with higher levels of ESR. This was
a region that included the L Cerebellum and L lingual gyrus (MNI
coordinates: −4, −85, −21; z value: 4.07; cluster size: 2213 voxels;
FDR-corrected p < 0.001). There were no relationships with
increased GM volume.

The association between ESR and the GM volume of the L IPL
was replicated in session 2 6 months later (B=−0.00031;
multiple linear regression; p= 0.035 age/sex/TIV corrected),
whereas the relationship with the posterior cingulate cortex was
not (B=−0.00029; multiple linear regression; p= 0.13). Similar
to the baseline results, this finding in the L IPL did not meet FDR
correction (p > 0.05 FDR).

Associations with symptoms. Different clinical domains of RA
were also associated with identified functional connections.
Increased functional connectivity between the DAN and R mPFC
correlated with increased levels of fatigue (r= 0.46), pain inten-
sity (r= 0.36) and diffuse pain (r= 0.34; all p < 0.05; Pearson
correlation). Enhanced functional connectivity of the SLN–L IPL/
angular (r= 0.34), and DMN–L IPL (r= 0.28) were associated
with more diffuse pain (both p < 0.05; Pearson correlation).
Increased SLN–L mPFC connectivity was associated with more
diffuse pain (r= 0.27) and a lower percentage of correct
responses on the paced auditory serial addition test (PASAT; r=

Table 1 Seed network to whole-brain connectivity analyses at baseline

Seed network region (direction of association) MNI coordinates (x, y, z) Z score Cluster size (voxels) p-value, FDR

Default mode network
L IPL (+) −36, −76, 54 4.34 117 0.049a

R mid/sup frontal gyrus (+) 38, 52, −2 4.00 135 0.049
R posterior cingulate (−) 16, −52, 30 4.28 172 0.008a

Dorsal attention network
L IPL (+) −36, −76, 54 5.10 675 <0.001a

R mPFC (+) 12, 62, −12 4.50 245 0.001a

Medial visual network
L IPL (+) −48, −56, 56 4.07 240 0.001a

Salience network
L IPL/angular gyrus (+) −52, −58, 24 4.53 240 0.002a

L mPFC (+) −2, 54, −16 4.02 171 0.009

Cluster-corrected false discovery rate (FDR) p-values are displayed. Analyses control for age and sex
aAlso associated with higher levels of C-reactive protein (CRP); Spearman’s rank procedure, p < 0.05
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−0.28; both p < 0.05; Pearson correlation). All of the tested
associations are displayed in Table 5.

Discussion
These are some of the first analyses to identify brain regions that
play an outsized role in inflammation-linked functional brain
connectivity among patients with a chronic inflammatory disease.
These regions were identified through converging analytic stra-
tegies. Our primary analysis used a seed network to whole-brain
approach and found that multiple established intrinsic con-
nectivity networks showed greater positive connections to the L
IPL and bilateral mPFC in individuals with higher levels of
inflammation. These findings were expanded upon and supported
by unsupervised graph-theory-based analyses examining all
pairwise connections across the whole brain. These analyses

revealed a configuration of nodes and edges that have more
positive connections in individuals with higher levels of inflam-
mation. Together these analyses suggested that some structures of
the brain—particularly the L IPL—are important for the altered
pattern of connectivity we observed in RA patients with higher
levels of peripheral inflammation. Seed network to whole-brain
analyses were replicated at the trend level 6 months later for the L
IPL to DMN and for the L IPL and R mPFC to DAN, suggesting
some stability of these results. Graph theoretical analyses showed
that, while the L IPL and medial frontal are indeed important for
inflammation-associated connectivity, they are part of a larger
configuration of more positive connections involving many brain
regions that participate in sustained attention and working
memory. While nearly one fifth of the nodes in the whole brain
participated in this configuration, only a very small fraction of
possible connections were involved, and these generally involved
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Fig. 2 Inflammation-associated functional connectivity patterns. Brain regions (medial prefrontal cortex [mPFC], inferior parietal lobule [IPL]) showing
positive connections to the default mode network (DMN; a), dorsal attention network (DAN; b, c), medial visual network (MVN; d), and salience network
(SLN; e, f) at higher levels of peripheral inflammation. Scatterplots showing the strength connectivity and levels of erythrocyte sedimentation rate (ESR) are
displayed below brain images. All associations were detected using seed networks identified by independent component analysis in a whole-brain search
with ESR as the primary predictor of interest controlling for age and sex with p < 0.05 false discovery rate (FDR) cluster corrected for multiple comparisons
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more positive connections between the DMN, the DAN and the
fronto-parietal task control networks. An analysis of the centrality
of these nodes found that the brain regions making up the
‘inflammation configuration’ become increasingly prominent in
the landscape of global functional connectivity in individuals with
higher inflammation. Secondary analyses showed that there was
also reduced GM volume in the L IPL. Finally, these patterns of
inflammation-linked positive connectivity between the L IPL,
bilateral mPFC and seed networks were associated with clinical
symptoms of RA, including more widespread pain, fatigue, pain
severity and a worse performance on the PASAT. These findings
are strengthened by the agreement of some of the functional and
structural outcomes and the broad agreement of analytic strate-
gies. We conclude that the L IPL and mPFC are regions critical to
the central response to peripheral inflammation in RA and may
be part of a broader pattern of inflammation-linked network
reorganization.

Increases in ESR and CRP are indices of overall disease activity
in RA and, together with pain/tenderness and swollen joints,
represent an important metric for disease severity and a bench-
mark for the success of treatment16. During heightened disease
activity in RA, the balance of inflammatory factors skews towards
production of pro-inflammatory mediators as a result of
increased autoimmune activity6,17. These molecular signals sub-
sequently reach the CNS through distal afferent nerves with

cytokine receptors, sentinel immune cells embedded in the cir-
cumventricular organs outside the BBB, cytokine receptors on
perivascular immune cells in the CNS and by active transport
across the BBB when a sufficient circulating concentration of
cytokines is reached1. Elevations in ESR and CRP then almost
certainly represent increased activity along the various pathways1

that induce ‘sickness behaviours’ under conditions of acute
inflammation. Accordingly, anti-cytokine therapies represent
some of the most effective and widely used treatments for RA and
appear to alter CNS responses to painful stimuli18. In the current
study, symptoms analogous to ‘sickness behaviours’ were asso-
ciated with inflammation-linked altered connectivity. These
included greater fatigue and pain intensity, more widespread pain
or tenderness and a worse performance on the PASAT—positive
connections between the mPFC and DAN specifically were
associated with both fatigue and pain outcomes. In RA, fatigue
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and pain are closely linked19, so identifying common neural
substrates of these symptoms could help determine whether and
how anti-inflammatory treatment alters the CNS.

To date, the most compelling evidence of inflammation-linked
changes in neuroimaging outcomes come from studies of healthy
people given immunogenic substances such typhoid vaccine or
lipopolysaccharide (LPS). Both of these substances yield transient
(i.e. hours) increases in circulating levels of pro-inflammatory
cytokines, such as interleukin (IL)-620,21. The mPFC region
shown to play a role in the current study has been previously
identified in studies employing experimental inflammatory
paradigms. Healthy individuals administered LPS showed
increased activation of the right medial frontal gyrus during social
tasks with emotional valence22,23 These findings may be relevant
to the greatly impaired mental health and social function seen in
chronic inflammatory conditions like RA24. However, in acute
inflammatory paradigms with healthy individuals, distinct pat-
terns of reduced connectivity between insula, amygdala, frontal
and parietal regions have also been demonstrated using seed-
based analyses25, in contrast to the current study, where more
positive connections were identified in association with higher
inflammation.

Conceptually, an acute inflammatory insult would be expected
to impact established neural networks to promote short-term
changes in behaviour—the classic repertoire of sickness beha-
viours. In RA, the transient surges in inflammation occur in the
context of increased basal levels of inflammation, as well as many
previous inflammatory events, especially if the disease has been
poorly controlled. This means the neural pathways that transduce
inflammation into behaviour and symptoms in chronic condi-
tions such as RA likely involve a more fundamental pattern of
reorganization. This distinction is suggested by studies that follow
the administration of potent pro-inflammatory treatments in
cancer patients: fatigue and lethargy tend to develop rapidly (i.e.
within 2 weeks) while more obvious neurocognitive complaints
do not appear until several weeks later9. In the current study, we
found an ‘inflammation configuration’ that was not particularly
rich in brain regions meeting hub status—however, in individuals
with higher ESR, these regions showed greater hub-like qualities,
perhaps pointing to the hypothesized reorganization.

Cognitive processes supporting working memory, sustained
attention and persistence through distraction involve complex
interactions of neural networks. While the DMN is sometimes
called a ‘task-negative’ network, it is becoming clear that DMN
resources are recruited during complex tasks26. It was recently
shown that, as the complexity of a working memory task
increases, the global modularity of the brain decreases, meaning
that the brain’s subnetworks are increasingly likely to change
their configurations in response to the demands of the

Table 2 Region-of-interest functional connectivity replication analysis at 6 months

Seed network region (direction of association) Pearson correlation coefficient (ESR) p-value Spearman’s rank correlation (CRP) p-value

Default mode network
L IPL (+) 0.24 0.08 0.30 0.03
R mid/sup frontal gyrus (+) 0.23 0.10 0.22 0.10
R posterior cingulate (−) −0.14 0.32 −0.29 0.04

Dorsal attention network
L IPL (+) 0.27 0.051 0.43 <0.01
R mPFC (+) 0.26 0.061 0.30 0.03

Medial visual network
L IPL (+) 0.19 0.16 0.38 <0.01

Salience network
L mPFC (+) 0.08 0.55 0.05 0.74
L IPL/angular gyrus (+) −0.05 0.69 −0.05 0.70

Relationships between seed network to region connectivity and erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) at 6 months

Default mode  

Visual  

Somatosensory-motor 

Fronto-parietal  

Dorsal attention  

Salience 

Subcortical  

Auditory  

Cingulo-opercular  

a

b

0

20

40

60

–1 0 1 2

NBS configuration score

E
S

R
 (

m
m

/h
)

p = 0.038 FWE

mPFC IPL

r = 0.843

Fig. 5 Summary of inflammation-associated functional connectivity
changes. a Nodes and edges showing the Network-Based Statistic (NBS)
inflammation configuration, with scatterplot showing the association
(Pearson correlation) between erythrocyte sedimentation rate (ESR) and
the average strength of connectivity across the 54 edges. Undirected and
weighted Fisher z-transformed bivariate correlation matrices of connectivity
were created for each subject from 10mm diameter spheres at the 264
nodes of the Power atlas (264 × 264 matrices). Identified nodes and edges
associated in aggregate with higher ESR are derived from permutation
testing at family wise error corrected p < 0.05. b Overlap of regions of
positive connectivity identified through seed network to whole-brain
analyses and nodes identified through NBS analyses of higher inflammation

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04648-0

6 NATURE COMMUNICATIONS |  (2018) 9:2243 | DOI: 10.1038/s41467-018-04648-0 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


task27. Furthermore, the DMN plays a major role in this network
flexibility, and the nodes that make up the DMN, along with the
DAN, and fronto-parietal task control network are some of the
most likely to change patterns of connectivity in response to task
demands27. These are the same three subnetworks that comprise
a significant portion of the configuration we find in the current
analyses that become more positively connected to one another at
higher levels of peripheral inflammation. It is possible then that
the inflammation-linked changes in connectivity observed here
serve a compensatory function—conscription of neural resources
to perform normal cognitive tasks. This would seem to echo the
overactivation seen in the aging brain during cognitive tasks28.

Though speculative, this network conscription mechanism would
be consistent with an adaptive response to impairment that does
not resolve within days or hours, as it does in studies of acute
inflammation.

Two findings in the current study—decreased GM volume in
patients with higher peripheral inflammation and worse perfor-
mance on the PASAT in association with inflammation-linked
altered connectivity—are relevant in light of the mounting evi-
dence that RA may confer an increased risk of developing
dementia29. It is hypothesized that the basis of this risk is
uncontrolled inflammatory activity, as a nested case–control
study of RA patients has shown that the increased risk of

Table 3 Network-Based Statistic nodes for the inflammation configuration

ROI X Y Z Approximate structure Power atlas network assignment Number of edges

13a −7 −52 61 L precuneus Uncertain 3
25a 29 −39 59 R postcentral Sensory/SM hand 1
28a 20 −29 60 R precentral Sensory/SM hand 2
34a −21 −31 61 L postcentral Sensory/SM hand 3
39 2 −28 60 R paracentral lobule Sensory/SM hand 6
43 36 −9 14 R posterior insula Sensory/SM mouth 3
47a −3 2 53 L supplementary motor area Sensory/SM mouth 4
48 54 −28 34 R IPL/supramarginal gyrus Cingulo-opercular 1
49 19 −8 64 R superior frontal gyrus Cingulo-opercular 1
55 −45 0 9 L precentral/operculum Cingulo-opercular 1
68 −50 −34 26 L IPL Auditory 2
69 −53 −22 23 L postcentral/supramarginal gyrus Auditory 1
70 −55 −9 12 L precentral/operculum Auditory 1
75b 6 67 −4 R medial orbital frontal Default mode 3
82 46 16 −30 R superior temporal gyrus Default mode 1
86c −44 −65 35 L angular gyrus Uncertain 3
87c −39 −75 44 L angular gyrus Default mode 2
90 −11 −56 16 L posterior cingulate/precuneus Default mode 1
95 11 −54 17 R posterior cingulate/precuneus Default mode 3
112a −2 38 36 L superior medial frontal gyrus Default mode 1
116 65 −12 −19 R inferior temporal gyrus Default mode 13
122 12 36 20 R dorsal anterior cingulate cortex Default mode 2
144 40 −72 14 R middle temporal gyrus Visual 1
150 27 −59 −9 R parahippocampal/lingual gyrus Visual 2
151 −15 −72 −8 L lingual gyrus Visual 2
160 −16 −52 −1 L parahippocampal/lingual gyrus Visual 1
165 26 −79 −16 R fusiform/lingual gyrus Visual 1
177c −53 −49 43 L IPL Fronto-parietal task control 7
187 −41 6 33 L inferior frontal gyrus Fronto-parietal task control 2
190a 49 −42 45 R IPL Fronto-parietal task control 3
192a 44 −53 47 R IPL Fronto-parietal task control 3
196 40 18 40 R middle frontal gyrus Fronto-parietal task control 1
197 −34 55 4 L middle frontal gyrus Fronto-parietal task control 1
199a 33 −53 44 R IPL Fronto-parietal task control 2
200 43 49 −2 R orbital frontal gyrus Fronto-parietal task control 1
202a −3 26 44 L superior medial frontal gyrus Fronto-parietal task control 1
206 31 33 26 R middle frontal gyrus Salience 2
207 48 22 10 R inferior frontal gyrus Salience 1
208 −35 20 0 L anterior insula Salience 1
212 −11 26 25 L dorsal anterior cingulate cortex Salience 1
213a −1 15 44 L mid cingulate cortex Salience 1
215a 0 30 27 dorsal anterior cingulate cortex Salience 3
216a 5 23 37 R mid cingulate cortex Salience 1
227 −22 7 −5 L putamen Subcortical 2
256a 22 −65 48 R precuneus Dorsal attention 2
258a 25 −58 60 R superior parietal lobule Dorsal attention 2
259 −33 −46 47 L IPL Dorsal attention 2
260a −27 −71 37 L precuneus Dorsal attention 1
264a 29 −5 54 R middle frontal gyrus Dorsal attention 3

Nodes are identified by their parcellation according to the Power Atlas
aIdentified as a hub by eigenvector centrality (one standard deviation above the mean)
bOverlap with the medial frontal region identified in seed network to whole-brain analyses
cOverlap with the L IPL/angular regions identified in seed network to whole-brain analyses
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Alzheimer’s disease is attenuated significantly by anti-cytokine
therapy30. The GM volume reduction noted in the cerebellum in
association with higher peripheral inflammation was a robust
finding—recent studies have found evidence that the cerebellum
is selectively affected in Alzheimer’s disease31,32. We also found,
using ROI analyses based on our functional connectivity findings,
that both the L IPL and posterior cingulate cortex showed
reduced GM volume in individuals with higher inflammation.
The L IPL and posterior cingulate are regions that have been
identified using emerging positron emission tomographic ima-
ging methods with the 11C-PBR28 ligand, a putative marker of
activated CNS microglia and astrocytes33,34, as areas of increased
neuroinflammatory activity in Alzheimer’s disease35. Remarkably,
the degree of neuroinflammation in these regions was also asso-
ciated with reduced GM volume and worse neuropsychological
test performance35. Because the L IPL and posterior cingulate
were also areas that showed altered connectivity in connection
with higher inflammation, it is possible that altered functional
connectivity is a consequence of these structural deficits. It is even
possible that these changes are early harbingers of more serious
neurocognitive decline later in life.

ESR and CRP are metrics of inflammatory activity but do not
show the same level of mechanistic specificity as pro-
inflammatory cytokines, such as IL-6, tumour necrosis factor
(TNF)-α and IL-1β. These and other inflammatory actors should

be measured in future studies of these phenomenon. The study
visits did not occur within a standardized window and diurnal
variation in inflammatory and imaging outcomes are possible.
These findings are based on a relatively limited assessment of
clinical symptoms of RA and neurocognitive performance. It is
perhaps unsurprising that the subnetworks not identified in the
current study are generally associated with tasks dissimilar to the
PASAT, such as fine motor skills and language processing. It will
be important to expand assessment in future studies to more
diverse measures of neuropsychological performance and to
clinical symptoms of RA, as these will likely involve their own
distinct patterns of functional connectivity. Future studies in RA
and other chronic inflammatory conditions should explore sex-
specific differences in the impact of inflammation on neural
networks as there is evidence for these differences in acute
inflammatory paradigms23. Similarly, we used only task-based
connectivity in the current analyses. A robust assessment of
intrinsic/resting connectivity may produce interesting contrasts to
the current findings. The NBS technique is meant to test the
overall significance of a group of connections; each individual
edge and node should be interpreted with caution.

These results demonstrate altered patterns of brain con-
nectivity in RA patients with higher peripheral inflammation and
may show evidence of distinct inflammation-associated subnet-
work reorganization. Treatments for RA that successfully control
peripheral inflammation should be investigated to determine
whether they normalize brain network activity or have a neuro-
protective effect. These results may have relevance for other
chronic inflammatory conditions as well.

Methods
Design and sample. RA patients attending a UK regional rheumatology service
were consecutively approached. Those who fulfilled the 2010 American College of
Rheumatology/European League Against Rheumatism classification criteria36 and
who experienced fatigue for >3months at clinically significant levels (defined as a
score of >3 on the Chalder fatigue binary scale37) were considered eligible for this
observational cohort study. Patients with contra-indications to MRI (e.g. metal
implants), alternative medical explanations for fatigue (symptomatic cardio-
respiratory disease, a history of cancer in previous 5 years, unstable thyroid disease,
beta-blocker prescription) or left handed were excluded. A sample size of 50 or
greater was the goal of recruitment, as this provides power to detect moderate-sized
correlations at relatively conservative thresholds (i.e., r= 0.46 for α= 0.001), a
sample size believed to perform well in the unbiased ROI-based functional con-
nectivity analyses described below38. All ethical guidelines were followed during the
conduct of the study and ethical approval for the study was obtained from the
North of Scotland Research Ethics Committee. All participants gave full informed
written consent according to the Declaration of Helsinki.

Procedure. All consenting participants underwent a clinical assessment pheno-
typing battery and multi-modal MRI brain scan. The full procedure was repeated at
a second session, 6 months later.

Table 4 Region-of-interest-based analyses of grey matter volume using voxel-based morphometry

Region of interest MNI coordinates (x, y, z) B SE β t p-value

Default mode network
L IPL −36, −76, 54 −0.00032 0.00015 −0.217 −2.13 0.038
R mid/sup frontal gyrus 38, 52, −2 0.00045 0.00043 0.087 1.04 0.30
R posterior cingulate 16, −52, 30 −0.00050 0.00021 −0.240 −2.33 0.024

Dorsal attention network
R mPFC 12, 62, −12 −0.00003 0.00036 −0.006 −0.08 0.94

Medial visual network
L IPL −48, −56, 56 −0.00038 0.00025 −0.181 −1.52 0.13

Salience network
L mPFC −2, 54, −16 −0.00012 0.00035 −0.029 −0.32 0.75
L IPL/angular gyrus −52, −58, 24 −0.00050 0.00050 −0.104 −1.00 0.32

Significance is derived from multiple linear regression models with erythrocyte sedimentation rate as the primary predictor of interest controlling for age, sex and total intracranial volume. Regions are
derived from the significant seed network to whole-brain analyses

Table 5 Pearson correlations between functional
connections and clinical symptoms

Seed network
Brain region

Fatigue Pain
intensity

% Correct
(PASAT)

Diffuse
pain

Default mode
network
L IPLa 0.19 0.26 −0.19 0.28*

Dorsal attention
network
L IPL 0.04 0.18 −0.08 0.22
R mPFCb 0.46** 0.36** −0.04 0.34*

Medial visual
network
L IPLa 0.16 0.21 −0.08 0.21

Salience
L mPFCb 0.17 0.11 −0.28* 0.27*
L IPL/angular

gyrusa
0.20 0.13 −0.09 0.34*

*p < 0.05; **p < 0.01
aOverlapping regions
bOverlapping regions
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The primary clinical outcome of interest was inflammation as measured by ESR.
A measure of red blood cell aggregation, which is enhanced by inflammatory
processes, ESR is one of the most widely use laboratory measures of systemic
inflammation in clinical medicine and has a long standing role in aiding the
diagnosis and monitoring of chronic inflammatory diseases, such as RA39. In RA,
ESR and CRP are elevated during times of active disease, as are acute-phase pro-
inflammatory cytokines, such as IL-6, TNF-α, and IL-1β40,41. While ESR is a
relatively non-specific measure of inflammation, it does correlate moderately with
almost all other metrics of inflammatory activity, including elevations of pro-
inflammatory cytokines42 and systemic glucocorticoid activation43. Venous blood
was drawn by a trained phlebotomist as part of routine clinical practice during
normal hours (approximately 9 a.m.–5 p.m.). Blood was immediately processed
and analysed for the calculation of ESR (Westergren method). CRP was also
analysed immediately from serum with an ADVIA® XPT immunoassay System
(Siemens).

Secondary clinical outcomes of interest were (1) acute inflammation as
measured by CRP, another broad marker of systemic inflammation which is
routinely employed in practice. This acute phase protein is a downstream response
to elevated levels of pro-inflammatory cytokines such as IL-6; it is considered a
more sensitive marker of acute inflammation compared with ESR44. (2) Phenotypic
features of sickness behaviour/clinical symptoms of RA, including (a) current levels
of fatigue and pain severity, separately assessed by answering on a 0–10 numerical
rating scale, (b) spatial extent of pain, as measured by the widespread pain index
component of the 2011 Fibromyalgia survey criteria45 and (c) performance (%
correct) on the PASAT46.

MRI brain measures. Images were acquired by a 3 Tesla, 8 channel phased array
head coil using three-dimensional (3D) T1- and T2*-weighted gradient-echo echo-
planar imaging (EPI) pulse sequences.

Overview of functional connectivity. The functional sequences were obtained
using a block design where the PASAT was undertaken during 3 × 3min ‘on’
periods and interspersed by 4 × 30 s rest or ‘off’ periods. The PASAT is a validated
measure of cognitive function (specifically auditory processing, calculation,
working memory and attention) which has been employed in functional MRI
(fMRI) paradigms46,47. Participants were asked to listen to a series of numbers
ranging from 1 to 9. They were required to sum consecutive numbers (i.e. the first
to the second, the second to the third, etc.) and to record, via a button press, every
occasion two consecutive numbers summed to the number 10. Concurrently, they
were asked to focus on a computer screen displaying three boxes containing ran-
dom, rapidly changing numbers. This visual stimulus was intended to distract the
participants from the auditory task and hence increase difficulty. They were
instructed not to process the visual numbers in any way. We chose a paradigm
based on connectivity during the PASAT because this particular procedure has
been shown to induce transient mental fatigue in Chronic Fatigue Syndrome46, and
in rheumatic autoimmune disease such as granulomatosis with polyangiitis47, and
thus might reflect connectivity relevant to the clinical characteristics, such as
‘mental fog’, in RA. It is important to note that task-based connectivity reflects both
intrinsic and task-specific activity48, and our current paradigm was not designed to
dissociate these patterns.

A T2*-weighted single-shot EPI sequence [TR= 3000 ms, TE= 30 ms, flip
angle (FA)= 90°, in-plane SENSE acceleration 2, matrix size 128 × 128 with
30 slices, field of view (FOV)= 240 mm, 1.88 × 1.88 × 5 mm3 voxels and 226
volumes] followed by a T1-weighted fast-field echo 3D structural scan for
normalization (TR= 8.2 ms, TE= 3.8 ms, TI= 1018 ms FA= 8°, FOV= 240 mm,
matrix size 240 × 240 matrix with 160 slices and 0.94 × 0.94 × 1 mm3 voxels) were
acquired.

fMRI pre-processing. Using SPM8 (Wellcome Department of Cognitive Neurol-
ogy, London, United Kingdom) running on MATLAB R2014a (Mathworks,
Sherborn, MA, USA), the first four volumes were discarded to allow the magne-
tization to reach equilibrium, the remaining 222 functional images were realigned
to the first image. The structural scans were then co-registered to a mean generated
from the functional scans, after which they were segmented. The functional and
structural scans were normalized to the standard SPM Montreal Neurological
Institute template grey prior probability map via the individuals segmented GM
image and then the functional scans were smoothed with an 8-mm full-width half-
maximum (FWHM) Gaussian kernel.

Independent component analysis. Group ICA was performed using the Group
ICA of fMRI Toolbox (GIFT) toolbox49. Employing pre-processed functional data
from both sessions for all subjects, component estimates were validated using the
Infomax ICA algorithm 20 times in ICASSO software. We used a moderate model
order of 40 components to identify cortical and subcortical components that
correspond to both anatomical and functional segmented networks. These included
both the task and rest periods of the scan. Subject-specific spatial maps and time
courses were estimated using the GICA3 back reconstruction method. Eight sub-
networks identified through the ICA analyses were examined. These were the
DMN, DAN, SLN, SMN, left and right fronto-parietal perception/language

networks, MVN, and the lateral visual network. These represent subnetworks
identified by Beckman et al. (2005)11 from studies of intrinsic connectivity that also
strongly agree with task-based connectivity-derived networks50. Networks were
identified and confirmed by spatial correlation between component maps and
published template maps11. Spatial masks of the mean component map, for each
intrinsic network identified, were created using the Marsbar toolbox for seed-based
connectivity analyses.

Seed network to whole-brain connectivity analysis. Seed network to whole-
brain connectivity was performed using the CONN (Cognitive and Affective
Neuroscience Laboratory, Massachusetts Institute of Technology, Cambridge, MA,
USA; www.nitrc.org/projects/conn) functional connectivity toolbox v15 in SPM851.
White matter, cerebrospinal fluid (CSF) and motion parameters were entered into
the analysis as covariates of no interest. A band pass filter (frequency window:
0.01–0.1 Hz) was applied to remove linear drifts and high frequency noise from the
data. The seeds used were based on the spatial masks of the intrinsic networks
generated from the ICA analyses. The onsets and durations of both task 'on' and
rest 'off' periods were delineated in order to measure connectivity between the
networks and the rest of the brain during each condition of the scanning period.
First-level analysis included bivariate correlations between voxels within each
network and all voxels throughout the whole brain, thereby creating separate beta
maps for each individual at each session. Only the beta maps that measured net-
work connectivity during the PASAT task 'on' period (9 total minutes) were passed
onto group second-level analyses in SPM8. The rest periods were not used in these
analyses as neither the total length of 'rest' time (2 min) nor the length of individual
blocks (30 s) are conducive to connectivity analyses52.

Associations in network connectivity and ESR during the first session were
assessed using a General Linear Model with age and sex entered as covariates of no
interest. The resulting maps were thresholded at a whole-brain p < 0.001
uncorrected voxel threshold and p < 0.05 FDR cluster corrected for multiple
comparisons. Significant regions were extracted from first-level network-to-whole-
brain connectivity beta maps for each subject by obtaining the average Fisher
transformed r values of the identified clusters. We then performed post-hoc
Spearman rank-order correlations between functional connectivity and CRP to
confirm the relationships seen with ESR. Finally, replication of these significant
clusters were tested with an ROI analysis by extracting the average Fisher
transformed r values of the 8 mm spheres—created around the significant peak
cluster coordinates using the Marsbar toolbox53—from the relevant second session
network connectivity maps and then correlating with the concurrent ESR value.
These post-hoc analyses were conducted in STATA 12.1 (Stata, College Station,
TX, USA), statistical significance was set at a p-value of 0.05 two-sided.

Graph theoretical analyses. Brain networks can be modelled using graph theo-
retical tools as a set of functional interactions made up of nodes (brain regions) and
edges (functional connections between nodes)14. We defined the brain network
using a set of 264 non-overlapping nodes based on resting-state and task functional
connectivity meta-analyses12,54. This parcellation has been shown to produce
reliable network topologies12,55,56. The 264 nodes were entered into the Conn
Toolbox as 10 mm diameter spheres51. We created task-specific functional con-
nectivity matrices by entering the onsets and durations of the PASAT task 'on' and
rest 'off' periods in the Conn Toolbox as described above. A similar approach was
used in a recently published study using graph theoretical analyses on task data27.
Only the task blocks were concatenated (following our strategy in the seed network
to whole-brain analyses) to create undirected and weighted Fisher z-transformed
bivariate correlation (Pearson’s r) matrices (264 × 264) for each participant using
the average signal from each of the 264 nodes described above.

The Network-Based Statistic. The NBS is a statistical method for evaluating large
networks, first described by Zalesky et al. (2010)13. In the case of functional brain
connectivity, the raw data are the set of all pairwise connections (edges) between
parcellated brain regions (264 regions as described above). The purpose of the NBS
is to statistically control for the large number of comparisons made whenever all
the individual edges of a network are tested and to isolate a configuration or
configurations of nodes and edges (brain regions and connections between regions)
associated with a particular research question of interest. This paradigm has been
employed, for instance, in studies of schizophrenia. Statistical significance is
determined through permutation testing. First, every edge (connection) is tested
individually according to a pre-specified critical threshold. For the current analysis,
this test was whether each and every pairwise connection (34,980) increase or
decrease in strength as levels of ESR increase (controlling for age and sex). The
connections that exceed this threshold are then used in a procedure analogous to
cluster identification that seeks to identify a group of edges that form a graph
configuration. The resulting configuration is what is statistically tested via per-
mutation methods (5000 repetitions), and a significant family-wise error (FWE)-
corrected p-value indicates that the configuration is associated with higher levels of
ESR. Here we use a t-value of 3.3, corresponding approximately to a p-value of
0.001, as our critical threshold. FWE significance was set at p < 0.05.
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Hub analyses. We calculated a measure of centrality, EC, to assess the relative
global importance (hub status) of a node within the whole-brain network15. The
EC accounts for the quantity and quality of connections by taking into account the
centrality of a node and the centrality of that node’s neighbours. See ref.57 for a
detailed description and mathematical formulations of this measure. EC was cal-
culated using the Brain Connectivity Toolbox51. We assigned hub status to a node
if the EC was greater than one standard deviation above the group mean58. We
quantified the number of nodes in our NBS-derived configuration that met hub
status by EC. To determine whether the global centrality of the nodes in the NBS
configuration were associated with inflammation, we created a composite NBS EC
score for each individual. This was accomplished by standardizing each EC mea-
sure for each of the 49 nodes into z-scores and averaging these for each individual.
The resulting score was then correlated with ESR using Pearson correlations. The
purpose of this analysis was to determine whether the nodes that make up the
inflammation configuration take on a more or less prominent role in the whole-
brain network topology in conjunction with rising peripheral inflammation.

Overview of VBM. Inspection of each T1-weighted fast-field echo data set and
normalization (TR= 8.2 ms, TE= 3.8 ms, TI= 1018 ms FA= 8°, FOV= 240 mm,
matrix size 240 × 240 matrix with 160 slices and 0.94 × 0.94 × 1 mm3 voxels)
revealed no gross anatomical abnormalities.

VBM pre-processing. Inspection of each T1-weighted structural image (acquisi-
tion parameters described above) revealed no gross anatomical abnormalities. The
images were then pre-processed in SPM8 (http://www.fil.ion.ucl.ac.uk/spm) using
the Diffeomorphic Anatomical Registration using the Exponential Lie Algebra
(DARTEL) toolbox59. First, the images were segmented into GM and white matter
(WM) and CSF. Next, the GM probability maps were nonlinearly normalized to
standard MNI space. Spatial normalization expands and contracts some brain
regions; hence images were modulated in order to keep the total GM equal to the
original images. The normalized and modulated images were then smoothed with
an 8 mm FWHM Gaussian kernel.

Region-of-interest VBM. We were primarily interested in structural changes
within those regions where we found a significant relationship between functional
connectivity and ESR. The ROIs were defined as the 8 mm spheres created around
the significant peak cluster coordinates from the session 1 network to whole-brain
connectivity analyses. We extracted participant-specific raw GM values from the
normalized, smoothed GM images for all of the voxels within each ROI and then
performed regression analyses to examine the relationship with ESR in STATA
12.1 (adjusting for age, sex and TIV). This procedure was repeated for both session
1 and 2 data. Because we were performing a limited number of tests based on the
functional connectivity findings, statistical significance was set at a p-value of 0.05
two-sided without correction.

Whole-brain VBM. We also conducted a whole-brain search for differences in GM
volume associated with higher ESR. Smoothed GM images were entered into a
multiple regression analysis in SPM8 with ESR as the covariate of interest. All
analyses controlled for age, sex and TIV (the sum of GM, WM and CSF). An
absolute threshold mask of 0.1 was applied to exclude edge effects and non-
homogenous voxels. Results were derived from a whole-brain uncorrected voxel
threshold of p < 0.001 and deemed significant at p < 0.05 FDR corrected for mul-
tiple comparisons.

Associations with clinical symptoms. To determine whether the significant
regions identified through relationships with ESR were also related to clinical
symptoms, we used significant clusters extracted from session 1 (as described above
in ‘seed network to whole-brain connectivity analysis') in Pearson correlation
analyses with current levels of symptoms. We limited these analyses to regions
showing relationships with more than one subnetwork due to the potentially large
number of comparisons.

Data availability. The data supporting these analyses will be made available fol-
lowing reasonable requests to the corresponding author.
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