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Neutrophils, the most copious leukocytes in human blood, play a critical role in

tumorigenesis, cancer progression, and immune suppression. Recently,

neutrophils have attracted the attention of researchers, immunologists, and

oncologists because of their potential role in orchestrating immune evasion in

human diseases including cancer, which has led to a hot debate redefining the

contribution of neutrophils in tumor progression and immunity. To make this

debate fruitful, this review seeks to provide a recent update about the

contribution of neutrophils in immune suppression and tumor progression.

Here, we first described the molecular pathways through which neutrophils aid

in cancer progression and orchestrate immune suppression/evasion. Later, we

summarized the underlying molecular mechanisms of neutrophil-mediated

therapy resistance and highlighted various approaches through which

neutrophil antagonism may heighten the efficacy of the immune checkpoint

blockade therapy. Finally, we have highlighted several unsolved questions and

hope that answering these questions will provide a new avenue toward

immunotherapy revolution.
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1 Introduction

Neutrophils are the most profuse leukocytes, representing 50%–70% of all the

circulating leukocytes in human, and are regarded as body’s first responders to injury,

infections, and inflammation (1, 2). In response to infection-associated signals,

neutrophils initiate multiple effector functions such as the production of neutrophil

extracellular traps (NETs), generation of reactive oxygen species (ROS), and

production of antibacterial peptides to eradicate pathogens (3, 4). The functional

importance of neutrophils had been overlooked previously on the basis of their

reported short life span; however, recent studies suggesting that they can survive in

the circulation from 19 h to 5 days have ensured renewed attention toward the role of

neutrophils under varying biological conditions (5). Since the last two decades, various
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immunotherapeutic agents have been approved as treatment

for multiple human cancers, and most of them mainly focus on

the targeting of major immunosuppressive molecules in both

tumor and immune cells. Immune checkpoint blockade

therapy has been extensively tested and approved as first-line

treatment for various cancers (6, 7). Although the development

of novel immune checkpoint inhibitors has emerged as a

revolutionary milestone in defeating human tumors, and

tuning immune system activity for promoting its antitumor

activity and overcoming immune suppression, work from

multiple groups has shown that immunotherapy treatments

have largely failed in most of the patients with solid tumors (8–

10). Undoubtedly, several combinatorial treatment approaches

have improved these metrics. For instance, anti–programmed

death-1 (anti-PD1) monoclonal antibody, pembrolizumab,

combined with chemotherapy, has been proven effective in

Non-small cell lung cancer (NSCLC) patients whereas

treatment with another (anti-PD1) monoclonal antibody,

nivolumab, combined with the monoclonal antibody

ipilimumab, which enhances the T-cell response by targeting

cytotoxic T lymphocyte–associated antigen 4 (CTLA-4), has

been fruitful to treat cancer in advanced melanoma patients

(11, 12). However, most of the cancer patients are still not

getting satisfactory benefits from immune checkpoint blockade

therapy due to either a low response rate or higher immune-

related toxicities (13). Recently, it has been reported that nearly

44% of the US population of tumor patients is eligible for

checkpoint blockade therapy and merely approximately 13% of

the patients showed a positive response to it (14). This adverse

outlook is associated with multidimensional tumor

microenvironment (TME), which endlessly formulates

unique resistance mechanisms, thereby leading to a limited

response to immunotherapeutic agents (15). Neutrophils are

emerging as central effector cells of the innate immune system

and are associated with poor outcomes in many types of

human cancers, except some specific tumor types (16, 17).

Accumulating evidence suggests that neutrophils are key

components of TME, drive tumor progression, and limit the

efficacy of immunotherapy by establishing immunosuppressive

TME (18–20). Furthermore, neutrophils also counteract

immunotherapy efficacy by manipulating the adaptive

immune system (21, 22). In recent years, boosting

the antitumor ability of immune cells, particularly of

neutrophils in the tumor niche, has become a major goal in

devising new treatment options, owing to aggressive

immunosuppressive TME. That is why we have focused on

the relationship between neutrophils in tumor progression and

immune suppression in this review. We begin with

unmasking the molecular pathways by which neutrophils are

polarized into the antitumor (N1) or protumor (N2)

phenotype and support tumor progression/suppression.

Later, we discuss the key concepts related to the critical role

of neutrophils in immune suppression/evasion and therapy
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resistance and highlight the novel strategies for targeting

immunosuppressive neutrophils.
2 Neutrophils in cancer progression

Since the last decade, the customary standpoint about

neutrophils as a mere bystander in human tumors has been

revolutionized and research on the diverse role of neutrophils in

cancer progression was established significantly, which can be

reflected by numerous recent review papers published in well-

reputed journals (23, 24). Increased neutrophil abundance is

frequently detected in both cancer patients and tumor-bearing

mice (25, 26). A growing body of evidence also suggests that

neutrophils function as early responders against inflammatory

insult (27, 28). Recently, the neutrophil-to-lymphocyte ratio

(NLR) has been used to predict a patient’s tumor or

inflammatory status and immunotherapy response in multiple

cancer types (29, 30). Neutrophils are capable to infiltrate into

tumors and constitute a major portion of the TME (31).

Furthermore, association between these tumor-associated

neutrophils (TANs) and patient outcomes have also been

demonstrated (32). Neutrophils act as a double-edged sword

in human cancer, owing to their inimitable potential to either

support or inhibit tumor progression. Strong evidence suggests

that neutrophils act as a tumor promoter (33–36), while fewer

studies have reported that neutrophils may also act as a tumor

suppressor (37, 38). Moreover, both the preclinical and clinical

trials have shown that TANs contribute in malignant

transformation, angiogenesis, and antitumor immunity (39,

40). Based on their role in tumor progression, TANs can be

divided into N1 and N2 types. The N1 TANs inhibit tumor

growth and increase antitumor immune memory and tumor cell

toxicity, while N2 TANs foster tumorigenesis, invasion,

metastasis, and immune suppression (41). Tumor cell–driven

TME factors often signal for TAN polarization into N1 and N2

types. For instance, transforming growth factor beta (TGF-b),
the major immunosuppressive cytokine that is also correlated

with poor prognosis in cancer patients, is released by tumor cells

in the TME where it polarizes neutrophils to the N2 phenotype

and suppresses N1-type neutrophils. On the other hand,

interferon beta (IFN-b) in the TME suppresses the N2

neutrophil phenotype and stimulates N1 neutrophils (42, 43)

(Figure 1). Changes in the expression of heat-shock proteins

(HSPs) have been suggested as danger-associated molecular

patterns (DAMPs) because these molecules are highly

conserved and their intracellular expression is elevated in

response to infection and oxidative stress (44). HSP72 as an

endogenous DAMP activates neutrophils via TLR4 signaling

(45). A previous study investigated the key role of TLR4 in the

programming of N1/N2 neutrophils after stroke. Results showed

that the absence of TLR4 increased the amount of N2
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neutrophils in ischemic brain (46). Similarly, a recent study has

shown that TLR4 regulates neutrophils dynamics in stroke (47).

Together, the above findings suggest that HSPs as a danger signal

may regulate neutrophil polarization. Here, we have reviewed

the tumor- promoting role of neutrophils by focusing on N2-

type TANs that exploit diverse mechanisms to promote tumor

progression, such as secreting inflammatory cytokines and

chemokines (48, 49), releasing NETs (50), and epithelial-to-

mesenchymal transition (EMT) (51) (Table 1), which we have

discussed in detail in the following subsections.
2.1 Inflammatory cytokines and
chemokines

Tumor cells induce various inflammatory cytokines,

including TNF-a, IL-1b, IL-6, IL-17/18, and IL-23, and

growth factors (G-CSF, GM-CSF, and IL-3) to generate

neutrophil production and confirm their survival (55–57, 62).
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Furthermore, various neutrophil-attracting chemokines

(CXCL1, CXCL2, CXCL5, CXCL6, and CXCL8) promote the

migration of neutrophils to the tumor site through CXCR1 and

CXCR2 receptors (54, 63). More recent study has shown that the

cancer cell-mediated secretion of CXCL5 drives mature

protumorigenic neutrophil infiltration in non-small cell lung

cancer and impairs the differentiation of antitumor CD8+ T cells

(53). CXCL8 is highly expressed in a wide range of tumor types,

and various studies have suggested that the CXCL8 serum level

in tumor patients serves as an independent prognostic marker

(64, 65). Moreover, it supports tumor progression and promotes

resistance to immune checkpoint blockade therapy (65, 66). The

function of CXCL8 mainly depends on its binding with two

receptors, namely, CXCR1 and CXCR2 (67). Notably, these two

receptors are highly expressed on neutrophils (68, 69). The

inhibition of CXCR1/2 limits neutrophil infiltration and

results in the decreased growth of multiple tumors, including

lung adenocarcinoma (70), colorectal cancer (71), and

pancreatic ductal adenocarcinoma (72). Furthermore,
FIGURE 1

Neutrophils act as tumor suppressor or tumor promoter. Neutrophils act as either a tumor suppressor or promoter depending on their
phenotypes that are regulated by transforming growth factor beta (TGF-b) and interferon beta (IFN-b). N1 TANs suppress tumor growth by
increasing the expression of MET and HGF binding and NO production. In addition, N1 TANs increase cell toxicity via ADCC and ROS generation
and apoptosis by releasing TRAIL; inhibit angiogenesis by releasing antiangiogenic VEGF-A165b; and induce immune stimulation by releasing
TNF-a, elastase, and cathepsin G. In contrast, N2 TANs promote tumorigenesis through ARG1, CCL17, iNOS, and NE; foster invasion and
metastasis via MMP9, NE, OSM, HGF, NETs, and chemerin; support angiogenesis by releasing VEGF, MMP9, BV8, and OSM; and induce immune
suppression through ARG1, TGF-b, IL-10, CCL17, and ROS.
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inflammatory cytokines foster the production of growth factor

G-CSF in the TME and further stimulate new neutrophil

production in bone marrow (73, 74). In turn, neutrophils

stimulate tumor-associated inflammation, thereby leading to

tumor progression. In this line, more recently, Shan et al. have

investigated interaction among neutrophils, CD4+ T cells, and

tumor cells in the gastric TME. Their findings show that CXCL6/

CXCL8-CXCR1 chemotaxis arbitrates neutrophil recruitment

and accumulation into the gastric TME, an event which

upregulates the expression of CD54 and B7-H2 through the

activation of the Extracellular signal-regulated kinase (ERK),

Nuclear factor kappa B (NF-kB) pathway by tumor-derived

TNF-a. Then, neutrophils induce the polarization of the IL-

17A-generating Th subsets in a B7-H2-dependent manner,

where polarized IL-17A-generating Th cells can be able to

wield protumorigenic roles through IL-17A, thereby leading to

gastric tumor onset and progression (75). In pancreatic cancer,

the expression of neutrophil chemoattractants in tumor cells is

increased, following gemcitabine treatment. Subsequently, Gas6-

expressing neutrophils infiltrate and accumulate in liver in a

CXCR-2-dependent manner. Then, neutrophil-derived Gas6

induces AXL Receptor Tyrosine Kinase (AXL) on metastatic

tumor cells and finally contributes to metastatic growth in liver.

Furthermore, the pharmacological targeting of the Gas6/AXL

axis through warfarin in combination with gemcitabine

treatment suppresses metastatic relapse (76). Another latest

study has revealed that IL-17-mediated neutrophil infiltration
Frontiers in Oncology 04
contributes to gastric tumor angiogenesis and maintains tumor

persistence (77). These novel findings highlight the crucial role

of cytokines and chemokines in neutrophil infiltration to trigger

tumor onset and progression and the impact of their blocking to

improve efficacy of immunotherapy. Moreover, a deep

knowledge about their function in neutrophil maturation and

activation can further guide to establish more effective

therapeutic strategies.
2.2 Neutrophil extracellular traps

Another important mechanism by which neutrophils

promote tumor progression is NETs. NETs are web-like DNA

structures and contain the abundance of antimicrobial proteins

that are released by neutrophils through a unique program cell

death process termed NETosis induced by different pro-

inflammatory mediators and microbial stimuli (78, 79). The

major NETosis inducers in tumor can vary between different

tumor models, but HMGB1 (80) and CXCR1/2 (81, 82) agonists

have been found to induce tumor-associated NETosis. Recently,

the role of NETs is conspicuously becoming critical in

promoting tumor progression (83, 84). Previously, various

studies have identified the abundance of NETs in mouse

tumor models (59, 85, 86). Recently, the abundance of NETs

has been detected and quantified in many types of solid tumors

(87) and can be used as tumor biomarker candidates for clinical
TABLE 1 Role of neutrophils in tumor progression.

Mediators Interaction with neutrophils Mechanism References

XIAP Increases neutrophil infiltration XIAP-mediated IL-8 secretion promotes neutrophil recruitment and contributes to
melanoma tumor progression

(20)

TGF-b Promotes neutrophil recruitment TGF-b-mediated neutrophils recruitment promotes colorectal tumor metastasis by
activating NOTCH1

(52)

CXCL5 Increases neutrophil accumulation in lungs CXCL5-mediated neutrophil accumulation in lungs promotes lung cancer metastasis by
inhibiting the differentiation of antitumor CD8+ T cells

(53)

CXCR2 Increases neutrophil recruitment CXCR2-mediated neutrophil recruitment contributes to brain metastasis through
triggering NET formation

(54)

IL-17 Promotes neutrophil recruitment IL-17-mediated neutrophil recruitment contributes to pancreatic tumor through
inducing NET formation and inactivates antitumor CD8+ T cells

(55)

IL-23/IL-18 Promote neutrophils to secrete IL-17A and
IL-22

IL-23 plus IL-18-mediated polarization of neutrophils to the Th17-type phenotype
promotes lymphoma tumor through the JNK/P38-STAT3 axis

(56)

GM-CSF Induces tumor-infiltrating PD-L1+ neutrophils GM-CSF-induced tumor-infiltrating PD-L1+ neutrophils contributes to laryngeal
squamous cell carcinoma by inhibiting T-cell proliferation and activation

(57)

IL-8 Induced by neutrophil receprtors CXCR1/2 IL-8/PTEN/STAT3/snail positive feedback loop induces EMT, thereby leading to head
and neck squamous cell carcinoma proliferation and metastasis

(58)

C3aR Expressed by neutrophils Neutrophil-mediated induction of C3aR triggers NETosis and coagulation, polarizing
neutrophils to the N2 phenotype and promotes intestinal tumorigenesis

(59)

TIMP-1 Released by neutrophils Neutrophil-mediated production of TIMP-1 induces EMT and contributes to breast
cancer metastasis

(60)

MMP8 Expressed by neutrophils Reciprocal positive interaction between MMP-8 and TGF-b1 promotes hepatocellular
carcinoma progression by inducing EMT via PI3K/Akt/Rac1 axis

(61)

NE Secreted by neutrophils Neutrophil-secreted elastase contributes to oral tumor cell survival and invasion
through Src/PI3K-dependent activation of the AKT signaling

(36)
fr
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diagnosis (88, 89). NETs stimulate tumor growth (90) and serve

as a scaffold for the inert adhesion or chemotaxis of the cancer

cells in different tumor types such as breast, liver, and colon

cancer (91, 92). NETs are stimulated by pro-inflammatory

cytokines or chemokines during infection (93, 94). And

promote tumor progression through diverse mechanisms such

as by awakening dormant tumor cells in lungs (95), inducing

tumor cell chemotaxis to the liver (84), modulating cancer cell

bioenergetics (96), and building a protective coat around cancer

for protecting them against drug cytotoxicity (55).

Tumor metastasis is the major reason of huge number of

cancer-associated deaths (97). In recent years, emerging studies

have shown that NETs foster tumor metastasis in a wide range of

cancer types (98–100), whereas NET depletion markedly decreases

tumor metastasis (101). In line with these reports, in a more recent

study published in Cancer Cell, Xiao et al. have identified a novel

mechanism by indicating that NETs promote lung metastasis by

degrading TSP-1 protein. In addition, this novel research has

revealed a new pathway by which CTSC expression promotes

metastatic potential through activating neutrophil membrane–

bound PR3 to assist in IL-1b processing and the activation of

NF-kB, thereby leading to the upregulation of IL-6 and CCL3 to

recruit neutrophils in the metastatic lung niche, while the targeting

of CTSC by AZD7986 avoids mouse lung metastasis (92). IL-17

has also been found to promote pancreatic ductal adenocarcinoma

progression and immune checkpoint blockade therapy resistance

by triggering NET formation, while IL-17 blockade enhances

immune checkpoint blockade sensitivity (55). Similarly, another

recent study has shown that NETs trap HCC cells and fuel their

metastatic potential by activating the TLR4/9-COX2 axis, whereas

the inhibition of COX2 by using HCQ and TLR4/9 by Dnase I

effectively suppresses HCC metastasis. This combinatorial

approach not only efficiently depletes NETs but also abrogates

the metastatic ability of the trapped liver cancer cells via

undissolved NETs (91).
2.3 Epithelial-to-mesenchymal transition

EMT is a phenotypic switching event where epithelial cells

lose their characteristics and undergo mesenchymal transition.

The EMT event is orchestrated by the activation of various

transcription factors (TFs) such as TWIST1/2, ZEB1/2, and

SNAIL1/2 (102), growth factors (TGF-b and Hepatocyte

growth factor (HGF), and inflammatory cytokines (TNF-a,
CXCL12, IL-6, and IL-8), which, in turn, drive cancer cell

invasion (103, 104). Interestingly, same EMT-TFs regulate the

expression of various secreted mediators such as growth factors

(GM-CSF), cytokine (TNF-a), and chemokines (CXCL6/8/11,

CCL2, and GRO) in cancer cells (105–107). In addition,

numerous mediators from EMT-induced tumors produce

monocytes (CCL2) and neutrophil chemoattractants (GM-CSF,

CXCL8, and GRO); the production of these mediators following
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the induction of EMT regulate the tumor niche immune

landscape (108). It has also been reported that neutrophils

interact with tumor cells by using the same molecular

machinery that induces EMT such as TGF-b, IL-8, CCl2, TNF-
a, and IL-17a (61, 100). Consistently, TGF-b pathways stimulate

both EMT and the neutrophil pro-tumor phenotype (N2), which

is likewise associated with therapy resistance (101). Emerging

evidence suggests that neutrophils stimulate tumor progression

through inducing EMT (60, 109, 110). It is well documented that

both the neutrophils and EMT play a critical role in tumor

progression and immunotherapy resistance (105, 111). However,

the underlying molecular mechanism of neutrophil-mediated

EMT induction remains poorly understood. Here, we provide a

recent update about how neutrophils foster tumor through

inducing EMT. In gastric cancer stroma, neutrophils promote

tumor metastasis by inducing EMT through secreting CXCL5

and IL-17a, whereas antibody-mediated IL-17a blockade

suppresses EMT in cancer cells cocultured with TANs (112,

113). In breast tumor, neutrophils induce EMT by producing

TIMP-1. TANs-MCF-7 interaction establishes a feedback-loop

between MCF-7 cells and TANs with the induction of EMT in

cancer cells due to the increased expression of TIMP-1 by CD90.

Blocking CD90 decreases tumor metastasis in mice (114).

Authors have identified the novel mechanism of the

neutrophil-mediated induction of EMT in breast cancer cells by

regulating TIMP-1. However, the exact molecular mechanism of

how CD90 regulates TIMP-1 expression in neutrophils remains

unexplored. In addition, this novel study also provides the

foundation to further investigate the therapeutic effect of CD90

blockade in different tumor types.
3 Neutrophils as immune suppressor

Many tumor therapeutic approaches , including

radiotherapy, chemotherapy, and immunotherapy, have been

widely used to control the level of neutrophil infiltrations or

modulate their accumulation and function (25). However,

neutrophils are linked with a poor clinical response to these

targeted tumor therapies and mediate therapeutic resistance in

most of the solid tumors because of their immunosuppressive

features (115–117). Accumulating evidence suggests that

neutrophils instigate the immunosuppressive TME through

instituting brawny crosstalk both in vitro and in vivo with innate

immune cells, including natural killer (NK) cells and dendritic cells

(DCs), and adaptive immune cells including T cells and B cells (25,

118) (Figure 2). Therefore, it is critical to unmask the involved

mechanisms for a better understanding of the crosstalk mediators

and signaling pathways that dictate neutrophil infiltration into

tumors, which can assist to design new effective therapeutic

approaches. In this section, we will discuss the interaction

between neutrophils and immune cells and how this crosstalk

contributes to neutrophil-mediated immune suppression.
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3.1 Interaction between neutrophils
and T cells

T cells play a major role in effective antitumor immunity and

are critical for tumor immunotherapy (119, 120). Recently,

various studies have demonstrated the importance of the

tumor-specific T-cell priming and activation in the draining

lymph node, migration of the T cells toward the tumor site, and

the creation of tertiary lymphoid structures inside tumor (112,

121). Primed T cells in the tumor-draining lymph node can

respond more efficiently to immune checkpoint blockade

compared with those T cells that enter and reside inside tumor

(60, 117, 122). However, neutrophils contribute to the

immunosuppressive microenvironment by suppressing

antitumor T cells (123, 124). Although many scientists have

investigated the role of neutrophils in tumor, how neutrophils

and T cells communicate with each other to institute immune

suppression remains elusive. Emerging evidence has suggested

that the suppression of T-cell activity by neutrophils is mediated
Frontiers in Oncology 06
through the overexpression of ARG1 (125, 126) or the PD-1/PD-

L1 axis (127, 128). Recent evidence suggests that TANs are

associated with a poor clinical prognosis and also contribute to

immune suppression by suppressing the activity of CD8+ T cells.

In this event, IL-8 has been identified as a key player that

establishes immunosuppressive crosstalk between TANs and

CD8+ T cells through recruiting neutrophils into the TME and

by inducing JAG2 (129). Another recent study has investigated

the underlying molecular mechanism of the neutrophil-

mediated inhibition of T-cell activity. Their novel findings

demonstrate that neutrophils inhibit antitumor T-cell activity

via the MMP-mediated induction of active TGF-b within the

colon TME. Importantly, the depletion of neutrophils in mouse

adenomas has resulted in decreased tumor burden and a high

level of tumor-infiltrating T cells, while T-cell depletion, in turn,

enhanced tumor burden and also abolished the valuable effects

of neutrophil depletion. Together, these findings demonstrate

that neutrophils drive colon tumor progression in mice by

repressing the antitumor activity of T cells (130). Interestingly,
FIGURE 2

Interaction between neutrophils and different immune cells. Neutrophils impair the infiltration ability of natural killer (NK) cells by decreasing the
expression levels of CCR1. In addition, neutrophils inhibit the antitumor activity of NK cells through the PD-1/PD-L1 axis. NK cells regulate neutrophil
activation and survival by secreting GM-CSF and IFN-g. Neutrophils modulate B-cell activation by secreting BAFF and APRIL, while B cells regulate
neutrophil production through ST6Gal-1. Furthermore, neutrophils inhibit T-cell activity by increasing the expression levels of ARG1, IL-8, MMP9, and
PD-1/PD-L1, while TNF- a, IL-17, and IFN-g secreted by T cells promote neutrophil activation and recruitment. Finally, neutrophils N2 and dendritic cell
interaction via the release of HMGB1 from neutrophils and TIM3 from dendritic cells and the production of IL-10 contribute to dendritic cell inhibition,
while dendritic cells regulate neutrophil proliferation and survival by releasing b-defensins and Type 1 IFNs.
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Minns et al. have recently identified that primed and resting

neutrophils contribute to opposite responses in T cells. Their

findings show that resting neutrophils inhibit the activation of

early-activating CD4+ and CD8+ T cells, while primed

neutrophils do not inhibit act ivation significantly .

Furthermore, neutrophils primed with unlike mediators show

opposite effects on T cells. Neutrophils primed with LPS and

TNF enhance CD4+ T-cell activation, while cytochalasin B/fMLF

prime cells repress the activation of the late-stage T cells (131).

Accumulating evidence suggests that neutrophils modulate the

function of various T-cell subsets Th1, Th2, Th17, gd T, and Treg
cells (132–134). The interaction between TANs and T-cell

responses has demonstrated the evidence of direct TAN-

mediated inhibition of the Th1 cells and cytotoxic T

lymphocytes in tumors. In this perspective, ARG1-expressing

human granulocytic cells contribute to the downregulation of

the CD3z chain on T cells via the depletion of L-arginine and

ultimately suppress cytokine secretion and T-cell proliferation.

In non-small cell lung cancer patients, ARG1+ neutrophils are

increased with the disease stage in treatment-naïve patients and

negatively correlated with the CD8+ T-cell population (135).

Th17 cells produce different types of cytokines such as GM-CSF,

TNF-a, IL-17, and IL-22 and acts as either antitumor or

protumor (136, 137). Neutrophils secrete chemokines and

cytokines that directly affect Th17 activat ion and

differentiation (138, 139). A more recent study has shown that

NETs regulate Th17 cell differentiation and activity through

their histone protein components. This modulation of

neutrophils, NETs, and histone protein components is

mediated through TLR2 in T cells, thereby resulting in STAT3

phosphorylation (3). Coffelt et al. have investigated the critical

role of IL-17-secreting cells and cancer-mediated inflammation

in a metastasis event. Their findings show that IL-1 b-mediated-

IL-17 induction from gd T cells results in neutrophil expansion

and polarization via G-CSF in mammary tumor-bearing mice,

while the absence of neutrophils or gd T cells significantly

decreases tumor metastasis (140). These findings demonstrate

a novel urbane neutrophil–T-cell interaction and highlight the

critical need of exploring a new mediator of this interaction to

induce T-cell-mediated adaptive immunity.
3.2 Interaction between neutrophils
and B cells

Previously, immune checkpoint blockade therapy mainly

focused on the bolstering of effector T lymphocytes; however,

work from multiple laboratories have unmasked the fact that B

cells are also key players of immunotherapy (141, 142). B cells

possess both the protumor and antitumor functions, which

mainly depend on their immune-suppressive or immune-

stimulatory events and also the tumor type (143, 144).

Reflective of both the protumor and antitumor activities of B
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cells, several clinical trials have been conducted to modulate B-

cell functions (145). A recent study has shown that the adoptive

transfer of the cancer-specific memory B cells display effective

tumor suppression in a murine tumor model, thereby suggesting

their clinical worth (146). Furthermore, B cells have also been

reported to modulate the functional features of T cells (147, 148).

In addition, the existence of PD-1+ and PD-L1+ B cells has been

found in several types of human tumors (149–151). The baseline

density of B cells can predict a response to immune checkpoint

blockade therapy in tumor patients (152). Accumulating

evidence suggests that neutrophils directly modulate the

response of B cells by regulating cytokine production required

for B-cell maturation, differentiation, and survival, such as BAFF

and APRIL (153–155). Regarding human cancer, there are

supporting evidences about the key role of neutrophils in the

differentiation of the B cells. For instance, neutrophils are

implicated in the pathogenesis of the B-cell lymphomas by

producing APRIL (156). Moreover, it has been found that

CXCL8 acts as a mediator to recruit APRIL-expressing

neutrophils for diffusing B-cell lymphoma lesions (157).

Another important mechanism by which neutrophils promote

the development of B-cell chronic lymphocytic leukemia in mice

is by elevating the expression level of APRIL and BAFF (158).

Furthermore, the critical role of NETs and their crosstalk with

CD5+ B cells is another important pathological mechanism

driving B-cell chronic lymphocytic leukemia in mice (159). In

a recent study in Nature, Petitprez et al. identified that patients

with sarcoma immune class highly responded to immune

checkpoint inhibitors, while patients from the immune class

desert showed no response (160). These results have provided

novel insights for changing the care of the patients with soft

tissue sarcoma who showed a poor response to immune

checkpoint blockade. In melanoma, B-cell signature, and not

the T-cell signature, was associated with a response to immune

checkpoint blockade. In addition, the density of B cells was

enhanced in the tumor of responders compared to non-

responding patients (152). B cells have been reported to

penetrate into tumor and regulate tumor immunity. However,

the profound impact of neutrophils on B cells has been

overlooked. A recent study has shown that tumor-associated

neutrophils (TANs) drive B-cell recruitment and modulation

into plasma cells in the TME. In this event, TNF-a has been

found as a key cytokine mediating B-cell chemotaxis by TANs

(161). Recently, IL-10+ plasmablasts and IL-10+ B cells have

been recovered from tumor-draining lymph nodes and tumor,

where tumor patients have demonstrated a higher level of IL-10+

Bregs (162, 163). In addition, the key role of Bregs in regulating

CD8+ T-cell responses has been reported in various tumor

experimental models (164, 165). Bregs regulate immunity

through various anti-inflammatory cytokines, including IL-10

and IL-35 (166). Moreover, Bregs inhibit CD4+ T-cell

proliferation and Th1/17 differentiation through IL-10 and IL-

35 (167). Accumulating evidence has suggested that neutrophils
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express IL-10 during inflammatory conditions (168); hence,

neutrophils may modulate Breg-mediated immunity regulation

by secreting IL-10.
3.3 Interaction between neutrophils and
dendritic cells

Dendritic cells (DCs) are the most potent antigen-presenting

cells (APCs) and play a critical role in innate and adaptive

immune response via arresting, processing and presenting

antigens to B and T cells and by activating antitumor T cells

(169, 170). The antitumor response mainly depends on APCs to

prime naïve T cells (171). Various studies have reported that the

cDC1 subset is associated with the induction of tumor-

controlling immunity and improved overall survival in many

tumor types (172, 173). The activation of neutrophils releases the

granule content neutrophils elastase (NE) that induces the

polarization of the DC-mediated development of T cells into

Th 17 cells, while the blocking of neutrophil activation or NE

prevents the production of Th 17 cells (174). Another study has

shown that neutrophils promote the development of Th 17 cells

from naïve T cells preferentially through their interaction with

DCs (175). The neutrophil-derived cathelicidin also induces

Th17 and inhibits Th1 differentiation, while cathelicidin-

deficient mice inhibit Th17. This study highlights the key role

of neutrophils in regulating the T-cell fate through releasing

cathelicidin (176). Emerging evidence suggests that DCs play a

critical role in triggering immune suppression in response to

tumor-associated antigens (177). The DCs migration is crucial

for cancer immune surveillance (178). This event includes the

migration of DCs into tumor sites, arresting and endocytosing

cellular debris or dead tumor cells, and transporting antigens to

the tumor- draining lymph nodes to induce the activation of T

cells (179). The recruitment of DCs mainly depend on various

chemokines including CCL4/5 and XCL1, whereas CCR7 is

needed for the migration of DCs to tumor-draining lymph

nodes (178). Neutrophils are major producers of CCL4/5; thus,

they regulate the recruitment of DCs to the TME (180). DCs as

major APCs are associated with the priming of the effector CD4+

and CD8+ T-cell response (181). DCs’ major subsets are

monocytes-derived DCs (moDCs), plasmacytoid DCs (pDCs),

and conventional CDs (cDCs) (177). DC subset migration plays

a critical role in the immune response and tumor onset and

progression (182). Migration of cDC trafficking toward lymph

node parenchyma for initiating a Th2-cell-dependent immune

response is mediated by the chemokines CXCR7 and CXCR8

(182). It has been reported that the subpopulation of the both

mouse and human neutrophils has been found to express

CXCR7 (183); hence, neutrophils regulate the migration event

of cDCs to lymph node parenchyma. Moreover, the recruitment

of monocyte-derived DCs (moDCs) to the lymph node is
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mediated by CCR2 to change their phenotype into

CD11c+CD11bhiGr-1+, which induces Th1 responses through

IL-12p70 (184). CCR2 is overexpressed in neutrophils and plays

a key role in the mobilization of neutrophils from the bone

marrow to the liver and as well as the recruitment of neutrophils

toward inflammatory sites (185). Thus, neutrophils regulate the

migration of moDCs to lymph nodes. pDCs are key producers of

type 1 interferons and play an important role in the immune

response (186). Recent evidence suggests that neutrophils also

regulate the activity of the pDC subset by releasing NETs (187).

Together, these findings demonstrate the significance of the

interaction between neutrophils and DCs in orchestrating T-

cell responses.
3.4 Interaction between neutrophils and
natural killer cells

NK cells possess the strong ability of detection and killing

malignant or virally infected cells (188–190). In addition, they are

also the first lymphocytes that exhibited the natural ability of

killing tumor cells and remained unexplored compared with

cytotoxic cell therapy toward tumor treatment (191). Clinically,

the abundance of NK cells have shown good prognosis in various

types of solid tumors (192). Moreover, accumulating evidence has

suggested that the increased density of NK cells improves the

efficacy of immune checkpoint blockade therapy (193, 194).

However, various studies have reported that the function of NK

cells is sternly spoiled in patients with cancer and chronic diseases

(195, 196). Based on the findings that neutrophils and NK cells are

found in the same region of lymph nodes and the spleen, they can

make conjugates (197), and neutrophils provide assistance during

the intermediate steps of tumor invasion and metastasis through

abolishing the activity of NK cells (198), it is believed that

neutrophils are key regulators of NK cells. In addition,

neutrophils have been found in orchestrating the immune

response by attracting NK cells at infection sites and activating

them, which, in turn, induce adaptive immune responses through

triggering dendritic cell maturation (199). It has been reported that

neutrophils cleaved the NK-activating receptor (NKp46) on NK

cells by producing serine protease CG and resulted in the loss of

the antitumor immunity of NK cells (200). Recently, Sun et al.

have investigated the underlying molecular mechanism of

neutrophils in the modulation of NK cell immunity. They found

that neutrophils reduce the infiltration ability of NK cells in

tumor-bearing mice by downregulating CCR1. In addition, their

findings show that neutrophils impair the NK cells’ antitumor

immunity toward lymphoma and colon cancer cells by impairing

NK-activating receptor (NKp46 andNKG2D) responsiveness. The

G-CSF led to increased expression of PD-L1 on neutrophils, while

IL-8 led to an enhanced expression of PD-1 on NK cells, impelling

the inhibition of NK cell immunity via the PD-L1/PD-1 axis (201).
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Given the significance of NETs in regulating the tumor

immune microenvironment, Teijeira et al. (93) have

investigated the interaction between NETs and immune cell

population, particularly NK cells. They found that the NET-

mediated encapsulation of tumor cells can shield tumor cells

from NK cell–mediated cytotoxicity through impeding the

interaction between surrounding target cells and immune cells.

Tumor cells shielded from NK cell–mediated cytotoxicity trigger

tumor metastasis in mice. In addition, authors found that the

NET-mediated protective coat around tumor cells against NK

cells was lost, following the removal of NETs by using the

DNase-I treatment. These novel findings not only unmask the

critical role of neutrophils in regulating the antitumor immunity

of NK cells but also attract the attention of researchers to explore

the NET-mediated shielding of tumor cells and mechanistic link

between NETs’ and NK cells’ antitumor immunity. To this end,

the development of potent preclinical models to capture how

neutrophils physically interact with NK cells in response to

immune checkpoint blockade therapy can be a new avenue for

designing more effective immunotherapies. In addition, a deep

understanding of how neutrophils regulate NK cells’ antitumor

activity in different solid tumors can provide a new roadmap for

developing immunotherapies to manipulate neutrophil–NK

cell communication.
4 Neutrophils in therapy resistance

Accumulating evidence suggests that the aberrant regulation

of tumor suppressor genes or oncogenes regulates response to

immune checkpoint inhibitors by engaging neutrophils. In lung

cancer, the deletion of tumor suppressor STK11/LKB1 enhances

the recruitment of tumor-promoting neutrophils and resistance

to immune checkpoint blockade therapy (202, 203). Moreover,

the activation of c-MET increases the recruitment of reactive

neutrophils from the bone marrow to the lymph node and tumor

tissues and results in the inhibition of T-cell expansion and

function, while the inhibition of c-MET-dependent reactive

neutrophil responses facilitates T-cell infiltrations into tumors

and increases the efficacy of immunotherapy (204). Previous

studies have reported that CXCL5 is engaged in neutrophil

recruitment during inflammation (205) and drives neutrophil

infiltrations into many types of tumor tissues (206, 207). A more

recent study has shown that CXCL5-mediated neutrophil

accumulation in lung tumor tissue suppresses the

differentiation of CD8+ T cells and promotes resistance to

immune checkpoint inhibitors, whereas the blockade of

neutrophil infiltration in lung overcomes resistance against

immune checkpoint blockade therapy (53). Over the years,

tumor treatment has been evolved increasingly, and an overall

survival rate of tumor patients has also been improved due to

ever-evolving treatment options. Among diverse tumor

treatment approaches, immunotherapy has emerged as a
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promis ing therapeut i c approach (208) . . Targe ted

immunotherapies to inhibit immune checkpoints PD-1/PD-L1

or cytotoxic T lymphocyte antigen 4 for restoring exhausted

CD8+ T-cell activity or inducing CD4+ T lymphocyte expansion

hold promise in human cancer treatment; however, a limited

number of tumor patients have received clinical benefits mainly

due to acquired therapeutic resistance (209–212). Therefore,

there is a dire need to explore the resistance mechanisms to

immune checkpoint inhibitors to improve clinical benefits.

Increasing evidence suggests that the existence of the

immunosuppressive neutrophils hampers the immune system

from effectively killing cancer cells, creating a major barrier for

thriving tumor treatment, particularly immunotherapy (22, 213,

214). In colorectal tumor patients, CD177+ neutrophil

infiltrations were associated with dismal outcomes in patients

who received antiangiogenic bevacizumab treatment (215). In

triple- negative breast cancer, neutrophils showed

immunosuppressive properties, thereby rendering tumor

resistant to immune checkpoint inhibitors (216).

Polymorphonuclear myeloid–derived suppressor cells

(PMN-MDSCs) are a type of immature low-density

neutrophils (LDNs) and exhibit numerous morphological and

phenotypic features of neutrophils (217, 218). It is very difficult

to distinguish neutrophils from PMN-MDSCs in the same

mouse, owing to the non-existence of appropriate

phenotypical markers. Therefore, researchers have compared

cells expressing neutrophils/PMN-MDSC-associated markers in

tumor-free or tumor-bearing mice. Previously, microarray

analysis–based studies have reported that PMN-MDSCs

exhibit discrete transcriptomic programs compared with

neutrophils. Particularly, neutrophils demonstrated an

increased expression of genes associated with NF-kB signaling

through IL-1, IL-6, CD-40, TLR, and TNF pathways as well as

through lymphotoxin-b receptor signaling, while PMN-MDSCs

demonstrated an increased expression of genes linked with the

The cAMP-response element bindingprotein (CREB) pathway,

G protein signaling, autophagy, and cell cycle regulation. In

addition, researchers have also compared naïve neutrophils from

the bone marrow with PMN-MDSCs from tumors or the spleen

(219). PMN-MDSCs revealed a higher production of pro-

inflammatory cytokines as well as the activation of several

downstream targets of NF-kB signaling. This may explain the

difference between pathologically activated PMN-MDSCs and

normal bone marrow neutrophils. In the second study,

classically activated neutrophils were compared with PMN-

MDSCs, where classically activated neutrophils demonstrated

increased levels of TNF, IL-6, and NF-kB signaling compared

with PMN-MDSCs (220). Based on cancer patients and healthy

donors, Veglia et al. have identified PMN-MDSCs as

CD1 1 b h i g h CD1 5 h i g h CD6 6 b h i g h CD3 3 h i g hA r g 1 h i g h

S100A9highLox1high and classical activated neutrophils as

CD11b+CD15+CD16+CD66bhighArg1+/−STAT3-S100A9+LOX−

from the peripheral blood of NSCLC patients (221). These
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findings are consistent with the concept that different stimuli

generate both the PMN-MDSCs and classically activated

neutrophils. In bladder tumor patients, increased levels of

PMN-MDSCs have been detected in tumor tissues and blood

mononuclear cells, and this accumulation is associated with the

tumor grade and poor prognosis (222). More recently, two

studies have investigated the potential role of PMN-MDSCs in

immunotherapy response in immune-competent bladder tumor

models. In first study, Wang et al. have compared the Bacillus

Calmette–Guerin (BCG) intravesical instillation with PA-MSHA

in anMB49 orthotopic bladder cancer model. The authors found

that PA-MSHA exhibited greater antitumor benefits as

compared to BCG, but neither treatment was found to be

curative. Their findings showed that high PD-L1 expression

and increased levels of PMN-MDSCs hindered the therapeutic

efficacy of the treatment (223). This novel study attracts the

attention of oncologists for investigating whether increased

levels of PMN-MDSCs are correlated with the clinical cases of

the non-muscle-invasive bladder tumor that poorly responds to

BCG therapy. In the second study, Takeyama et al. have

generated cisplatin-resistant bladder tumor cell lines that

demonstrated an increased expression of various chemokines,

including CXCL1/2 and CCL2. They found that the depletion of

PMN-MDSCs decreases the growth of cisplatin-resistant tumor

in mice by enhancing the infiltration of the CD8+ T cells; in turn,

this depletion increases anti-PD-L1 immunotherapy, suggesting

the promising benefit of the combinatorial treatment of anti-PD-

1/PD-L1 and PMN-MDSC-incapacitating therapy in urothelial

tumor patients.
5 Strategies to target neutrophils

Immune evasion in human tumor has been found as a

multifactorial phenomenon. In recent years, this issue has

attracted greater attention because resistance mechanisms are

found linked with the efficacy of immune checkpoint blockade

therapy. Accumulating evidences both in human and mouse

models suggests that neutrophils act as immunosuppressive

players in the TME. The inflammatory chemokines and

cytokines engaged in altering the function of neutrophils

constitute new hot topics in the clinical tumor study, both as

novel immunotherapy targets and biomarkers (224). Given the

stoutness to preclinical studies incriminating neutrophils in

immune checkpoint blockade failures, numerous clinical trials

are going on to antagonize neutrophil activity combined with

immune checkpoint blockade therapy (Table 2). In this section,

we will shed light on novel strategies to target neutrophils that

include three aspects: limiting neutrophil polarization and

recruitment, reducing the immunosuppressive ability of

neutrophils, and inhibiting NET production.
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5.1 Limiting neutrophil polarization
and recruitment

In this section, we highlight the targeting of various signaling

pathways that promote tumor and hinder immunotherapy

efficacy through regulating neutrophil polarization and

recruitment (Figure 3).

5.1.1 Transforming growth factor
beta blockade

Tumor-associated neutrophils (TANs) are polarized from an

antitumor (N1) to a protumor (N2) phenotype after infiltration into

the TME (225). As a major immunosuppressive cytokine, TGF-b
regulates this phenotypic switch of TANs in the TME, which, in

turn, suppresses the antitumor activity of NK cells and T cells (226).

It has been suggested that the blockade of the TGF-b pathway

suppresses colorectal cancer progression through reversing TAN

polarization into the N2 type (227). In NSCLCs, the blockade of

TGF-b also inhibits tumor growth through TAN polarization

toward antitumor phenotypes (228). Furthermore, the TGF-b
pathway plays a critical role in the recruitment of neutrophils to

tumor and subsequent resistance of cancer to immune checkpoint

inhibitors (52, 210, 229, 230). In recent years, the blockade of TGF-

b has emerged as promising approach to induce CD8+ T-cell

infiltration and improve immunotherapy efficacy. Martin et al.

has recently investigated the potential impact of TGF-b inhibition

for modulating immune checkpoint resistance in mice. Results

show that the combined treatment of the anti-PD-1 antibody and

SRK-181-mIG1 contributes to antitumor responses and survival

benefits. In addition, this novel combinatorial strategy has resulted

in the reduction of immunosuppressive myeloid cells and induction

of intratumoral CD8+ T cells, thereby suggesting that the inhibition

of TGF-b can modulate resistance to immune checkpoints (231).

Previously, it has been reported that the TGF-b pathway stimulates

T-cell exclusion and lymphocyte confiscation at tumor outskirts,

thereby leading to tumor metastasis and resistance toward T-cell-

mediated immune therapies (232, 233). The repression of CXCR3

activation has been suggested as a new mechanism for T-cell

exclusion to tumors mediated by TGF-b signaling. This shows

extensive applicability for tuning the efficacy of the CD8+ T -cell-

mediated immunotherapies that entailed the infiltrations of the T

cells into tumors (234). For instance, evidence suggests that TGF-b
is associated with resistance toward immune checkpoint blockade

(235); this may be, in part, due to diminished trafficking to tumor

via CXCR3 repression. These findings provide a mechanistic

rationale for synergy between TGF-b suppression and immune

checkpoint blockade (236, 237). Furthermore, clinical trials are also

being conducted to evaluate the combined treatment of galunisertib

and immune checkpoint inhibitors to target TGF-b in the treatment

of solid tumors (NCT02734160). Thus, the combined repression of

the TGF-b pathway and immune checkpoints can be a promising
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avenue to improve the e ffi c a cy o f fo r th coming

immunotherapeutic agents.

5.1.2 CXCL8 blockade
CXCL8 (IL-8) has been proposed as a key player of

neutrophil recruiter and also an important driver of neutrophil

activity. Growing evidence has revealed the crucial role of

CXCL8-CXCR1/2 axis in the TME and prognostic significance

of the CXCL8 serum level in human cancer, following immune

checkpoint blockade therapy (58, 238–240). Advanced NSCLC

patients who responded well toward nivolumab, a PD-1 targeted

treatment, demonstrated low levels of CXCL8, TNF-a, and IP-

10 and high levels of BMP-9 compared to non-responders (241).

Recently, two clinical studies published in Nature Medicine have

shown that the neutrophil-attractant IL-8 acts as an undesirable

predictive factor in tumor patients who received immune

checkpoint blockade therapy. Results showed that the elevated

IL-8 serum level at baseline was associated with dwindled overall

survival and partial response to immune checkpoint inhibitors

because of neutrophil-mediated immune suppression (242, 243).

Furthermore, the increased CXCL8 serum level is linked with

neutrophil expansion and limited clinical outcome from

immune checkpoint blockade therapies (244, 245). In ovarian

tumor, CXCL8 promotes the recruitment of tumor associated

neutrophils in TME and activates JAG2 in tumor-associated

neutrophils, which, in turn, suppresses the activity of the CD8+ T

cells (129). It has been reported that the anti-CXCL8

monoclonal antibody abolishes the recruitment of neutrophils

into tumor and increases the antitumor immunity of triple-

negative breast cancer (246). Moreover, various clinical trials of

combining the anti-PD1 antibody, nivolumab, and CXCL8

antibodies have also been carried out in both advanced solid

tumors (NCT03184870) , hepatoce l lu lar carc inoma

(NCT04050462), and NSCLC (NCT0413379). In triple-

negative breast cancer, the direct targeting of CXCL8 by using

the monoclonal antibody HuMax-IL8 significantly reduces

PMN-MDSC infi l tration to the TME and improves

immunotherapy efficacy (246). Giving importance to the

neutrophil-induced M2-like macrophage phenotype, the
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blocking of the neutrophil accumulation in the TME

represents a promising therapeutic approach to hinder

neutrophil-mediated immune suppression. In this line, the

latest study has shown that the blocking of CXCL-8 signaling

suppresses neutrophil migration and the neutrophil-mediated

polarization of anti-inflammatory macrophages in the TME

(247). The above discussed findings support that CXCL8

p l a sma l e v e l s c a n p r o v i d e a g l imp s e i n t o t h e

immunosuppressive TME and patients may benefit from

immune checkpoint blockade therapy, following the reduction

of the CXCL8 level.

5.1.3 Blocking of CXCR1/2 axis
CXCR1 and CXCR2 are major chemokine receptors expressed

by neutrophils (248, 249). Both the CXCR1 and CXCR2 chemokine

receptors are prognostic biomarkers in many types of human

cancers (250–253). The targeting of CXCR1/2 reduces the

neutrophil population in several cancer models and also inhibits

tumor growth and metastasis (254, 255). In addition, the inhibition

of CXCR1/2 by ladarixin decreases neutrophil-dependent airway

inflammation in mice (256). SX-682 is another novel potent

inhibitor of CXCR1/2 (22, 71) and recently being investigated in

many clinical trials in several cancer types such as melanoma,

colorectal cancer, and breast cancer (NCT03161431,

NCT04574583, and NCT04245397). In lung and breast cancer,

the combined inhibition of CXCR1/2 by using the SX-682 inhibitor

and anti-PD-1/PD-L1 has effectively controlled tumor growth in a

murine model. Grippingly, this combinatorial approach

demonstrated enhanced efficacy due to the decreased infiltration

of granulocytic MDSC and increased population of activated T cells

at the tumor site (257). Moreover, the disruption of CXCR1/2

through SX-682 has shown efficacy in mice (21, 258), and its

combinatorial treatment with PD-L1-targeted antibody,

pembrolizumab, is also being studied in a phase 1 trial in

melanoma (NCT03161421). The mutated Kirsten rat sarcoma

virus (KRAS) contributes to resistance against immune

checkpoint inhibitors through recruiting PMN-MDSCs in a

colorectal cancer mouse model. Mechanistically, oncogenic KRAS

mutation inhibits IRF2, thereby leading to the activation of CXCL3,
TABLE 2 List of clinical trials investigating effect of immune checkpoint inhibitors in combination with other drugs to overcome neutrophil-
associated resistance in different cancers.

Immune checkpoint inhibitors Drug Target Tumor type Phase Trial ID

Pembrolizumab SX-682 CXCR1/2 Melanoma I NCT03161431

Nivolumab SX-682 CXCR1/2 Colorectal cancer Ib/II NCT04599140

Nivolumab INCB001158 Arginase-1 Solid tumors I/II NCT02903914

Durvalumab IPH5401 C5aR Solid tumors I NCT03665129

Nivolumab BMS-86253 IL-8 Hepatocellular carcinoma II NCT04050462

Niolumab BMS-13160 CCR2/5 Colorectal and
Pancreatic tumors

I/II NCT03184870

Niolumab Galunisertib TGF-b Solid tumors Ib/II NCT02734160
f
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FIGURE 3

Therapeutic strategies reducing neutrophil recruitment and polarization. Various neutrophil-targeting approaches have been established and
demonstrated promising outcomes both in preclinical and clinical settings. Neutrophil recruitment and polarization can be limited by the
pharmacological blockade of mediators and downstream pathways alone or in combination with immunotherapy involved in neutrophil
recruitment and polarization. In addition, N2 TAN can be reprogrammed into N1 TAN by modulating the activity of TGF-b and IFN-b in the TME.
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a potent ligand of CXCR2. The blocking of CXCR2 through CXCL3

knockdown or SX-682 treatment in mice reduces PMN-MDSC

recruitment and enhances response to anti-PD-1 therapy (71).

Therefore, employing an alike rationale in the preclinical models

of different cancer types, SX-682 treatment demonstrated promising

outcomes in decreasing the infiltration of PMN-MDSCs and

synergy with several modes of immunotherapy, including

adoptive T-cell transfer, immune checkpoint inhibitors, and NK

cell–based therapy (259, 260). In triple-negative breast tumor

patients, the phase I clinical trial (NCT02001974) to evaluate the

safety of the oral administration of CXCR1/2 inhibitor reparixin has

been conducted combined with paclitaxel (261). In addition,

the phase II clinical trial (NCT02370238) has also been

conducted to investigate the survival of triple-negative breast

tumor patients, following the combined treatment of reparixin

and paclitaxel.

5.1.4 Blocking IL-17
IL-17 is a prominent cytokine that plays a critical role in

tumor progression and immune response (262–265). It is linked

with poor prognosis and drives resistance in solid tumors (266,

267) and also acts as a prognostic biomarker in different types of

human cancers (268, 269). Recently, Wu et al. have investigated

the potential role of IL-17 in regulating breast cancer metastasis

and therapy resistance. Results show that IL-17 contributes to

breast tumor metastasis and therapy resistance through

recruiting neutrophils to the TME (270). Another recent study

has shown that IL-17 contributes to immune suppression

immunotherapy resistance by increasing the neutrophil

population and NET production in the TME. However, the

blocking of IL-17 enhances the sensitivity of PD-1 and CTLA4 in

pancreatic cancer (55). G-CSF plays a critical role in neutrophil

production and recruitment (271, 272). The targeting of the IL-

23-IL-17 axis has been found to reduce neutrophil abundance

induced by G-CSF (273, 274). Thus, G-CSF inhibition leads to

reduce the neutrophil amount and improve antitumor efficacy in

several preclinical cancer models (275).
5.2 Reducing immunosuppressive
ability of neutrophils

Immunosuppressive neutrophils obstruct the antitumor

activity of the immune system and pose a major obstacle in

tumor eradication, particularly immunotherapy (276). A deep

understanding of various signaling pathways regulating

neutrophil activity in tumor progression have enlightened

several strategies that exploit antibodies or drugs to block

TANs (277, 278). Therefore, the targeting of key pathways that

promote immune suppression and regulate neutrophils’

immunosuppressive function can help in reducing the

immunosuppressive ability of neutrophils.
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5.2.1 ARG1 blockade
ARG1 is an immunosuppressive marker induced almost

solely by polymorphonuclear granulocytes (PMNs) in human

and regulates both the innate and adaptive immunity (279, 280).

ARG1 expression is linked with increased tumor growth and

immune suppression (280, 281) and serves as a prognostic

biomarker in a wide range of human cancers (282–284). The

presence of ARG1 in the TME suppresses both the expression of

T-cell receptors and T-cell proliferation, while the inhibition of

ARG1 prevents the PMN-mediated suppression of T cells (285).

In several xenograft models, ARG1 inhibition has shown delayed

tumor growth and enhanced PD-L1 blockade response (286).

Based on the above studies, recently, various ARG1 inhibitors,

including CB-1158 and OATD-02, have been selected for clinical

trials in tumor immunotherapy (287). The CB-1158 potent

inhibitor has been found to effectively inhibit human ARG1

(288). Furthermore, clinical trials are also being conducted to

evaluate the combined treatment of CB-1158 and immune

checkpoint inhibitors in the treatment of solid tumors

(NCT02903914, NCT03361228, and NCT03314935). In

epithelial ovarian cancer, increased ARG1 expression has been

found to contribute in tumor growth and immune suppression,

while the blocking of ARG1 mitigated ARG1-mediated tumor

progression and immune response (289). OATD-02 inhibitor

has been also entered into phase I trials, but this inhibitor has

demonstrated low clearance and modest oral bioavailability

(290). Importantly, a recent study has evaluated the antitumor

effect of the combinatorial treatment of another potent inhibitor

of ARG1 (OAT-1746) and anti-PD-1 therapy in a glioma murine

model. Results showed that the combined treatment of OAT-

1746 and anti-PD-1 antibody reduced tumor growth by

decreasing levels of CCL2 and CCL5 in the blood plasma of

mouse (291).
5.2.2 Blocking C3A/C5A
The complement system is a major arm of innate immunity

(292). C3A and C5A are key components of complement system

and regulate immune response and tumor growth in wide range

of solid tumors (59, 293–296). In addition, both the C3A and

C5A promote resistance to immune checkpoints blockade

therapy (283, 284). The C3A and C5A trigger inflammatory

response which is crucial step in tumor onset and progression by

activating leukocytes, releasing histamine, and stimulating

generation of inflammatory mediators such as IL-1, IL-6, IL-

1b, IFNg, and TNF-a (293, 297, 298). A growing body of

evidence suggests that C3A and C5A as key components of

complement system stimulate neutrophils activation and

migration (299–302). Various studies have reported that

targeting of C3A and C5A and their receptors is a novel

strategy for increasing immunotherapy efficacy (303, 304).

Ajona et al. have investigated antitumor synergistic effect of

combinatorial inhibition of C5A and PD-1 in the treatment of
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lung cancer. In this study, they used RMP1-14 antibody to

inhibit PD-1 and L-aptamer to block C5A. Authors found that

blocking of C5A downregulates immune suppression induced by

MDCs as C5A promotes lung cancer onset and progression

through inducing the immunosuppressive TME where MDCs

are implicated. By using various lung cancer models, the authors

found that the combined targeting of C5a and PD-1 significantly

suppresses tumor growth and also enhances overall survival rate

(305). Moreover, targeting of C5aR increases paclitaxel response

in squamous cell carcinoma by reprogramming the

immunosuppressive tumor immune microenvironment,

thereby leading to improved CD8+ T cell-mediated antitumor

immune response (306). In addition to this, the inhibition of

complement receptors such as C3aR and C5aR has been proven

to be very effective in enhancing the efficacy of immunotherapy

(307). Recently, a phase I clinical trial (STELLAR-001) has also

been conducted by Innate Pharma to investigate the therapeutic

effect of IPH5401 (anti-C5aR) combined with durvalumab (anti-

PD-1) in advanced solid tumors (308).
5.3 Targeting of neutrophil
extracellular traps

Recently, it has been confirmed that NETs do not only

regulate the immune system but are also involved in the

pathogenesis of various inflammatory diseases and multiple

tumors (309–311). At the initial stage of tumor, NETosis

favors EMT induction. The treatment of breast tumor cells

with NETs drive the mesenchymal phenotype, leading to

tumor progression (312). Moreover, various preclinical studies

have also reported that neutrophil accumulation drives

metastatic disease through hindering antitumor immune

responses, by supporting cancer cell migration and producing

neutrophil extracellular traps (NETs) (100, 140, 313, 314). Thus,

the targeting of NETs could be a promising strategy for tumor

therapy. Various strategies can be adopted for the targeting of

NETs such as the blocking of pathways involved in NET

production, destroying NET structure, and obstructing NET–

tumor interaction (315). CXCL8 has been found to support the

production of NETs (316). In addition, Yang et al. have reported

that CXCL8 establishes a positive loop between NETs and

colorectal cancer liver metastasis (317). Another study has

shown that CXCL8 induces the production of NETs through

communicating with CXCR2, which, in turn, promotes cancer

cell proliferation and migration (318). Therefore, the targeting of

the CXCL8-CXCR1/2 axis can be a promising approach for

increasing the efficacy of immune checkpoint inhibitors. More

recently, Kaiser et al. have investigated the profound impact of

CXCL8 blockade in neutrophil activation and NET production.

Results show that the targeting of CXCL8-CXCR1/2 by using the

anti-IL-8 antibody or a clinically available CXCR1/2 blocker
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(reparixin) reduces neutrophil activation and NET production

in mice (319). Peptidyl arginine deiminase 4 (PAD4) is a critical

enzyme associated with the formation of NETs. The blocking of

PAD4 reduces NETs protumor effects in various disease models

(320, 321). To date, several compounds have been reported for

inhibiting PAD activity such as Cl-amidine and BMS-P5. These

novel inhibitors effectively abrogate NET formation induced by

tumor cells and also set back disease progression (322, 323). In

addition, the antitumor drug kaempferol inhibits NET

formation by suppressing ROS-PAD4 signaling (324). Another

novel PAD4 inhibitor (GSK484) and A2A receptor (CGS21680)

effectively block NET formation (325). A more recent study has

shown that an Food and Drug Administration (FDA)-approved

drug (disulfiram) blocks NET formation and reduces lung injury

in rodents (326). Another promising strategy to inhibit NET

formation is to demolish the NET structure by using (327).

DNase destroys the NET backbone and results in NET

degradation (328). In addition, DNase treatment has shown

reduced tumor burden in a breast tumor mouse model (329).

Coated nanocarriers have demonstrated higher tumor-inhibiting

potential due to DNase stability linked with nanocarriers in

blood. Dnase nanocarriers effectively digested NETs and

suppressed breast tumor lung metastasis configuration (100)

(Figure 4). The above findings highlight teamwork between

tumor cells, TANs, and the formation of NETs in the TME

and the crucial role of NETs in tumor progression and

metastasis. In addition, these findings suggest that the

combinatorial approach of NET blocking with immunotherapy

may move toward clinic.
5.4 Potential role of neutrophil-derived
extracellular vesicles in tumor

Activated neutrophils have been found to produce a greater

amount of extracellular vesicles (EVs) than tumor cells (330).

Neutrophils produce EVs either instinctively or in response to

different stimuli such as chemokines, cytokines, antibodies,

complement component, and bacterial stimulation (331, 332).

Neutrophils exploit diverse mechanisms either to promote or

suppress tumor. Among them, one key mechanism involves the

release of EVs, which induce specific signaling pathways in

different target cells and immune cells (333). EVs released from

neutrophils exert either a pro-inflammatory or anti-inflammatory

effect, mainly depending on environmental conditions (334).

Neutrophils hold natural potential to traverse the blood–brain

barrier (335) and rapidly penetrate into the glioma tumor site

(336). Therefore, in recent years, neutrophil-derived EVs have

been studied as drug delivery vehicles in tumor therapy (337).

Previously, Wang et al. have shown that neutrophil–exosome-

loaded drugs effectively penetrate the blood–brain barrier and

migrate into brain. In addition, the intravenous injection of the
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neutrophil–exosome-loaded PDX efficiently inhibits tumor

growth in a glioma mouse model (338). Similarly, neutrophil-

carrying PDX have also been found effective in overcoming the

blood–brain barrier and suppress glioma recurrence, following

tumor surgery (339). More recently, Zhang et al. have engineered

neutrophil-derived exosome-like vesicles and investigated the

potential of this novel nanocarrier for safe drug delivery into

tumor. Results show that this nanocarrier efficiently accumulates

at the targeted tumor site under an external magnetic field,

suppresses tumor growth, and increases the survival rate in

tumor-bearing mice (340).
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6 Unsolved mysteries and
future perspectives

Over the years, the efficacy of immune checkpoint blockade

therapies is obstructed in many cancer settings, which raises new

unexplored scientific questions. Meantime, neutrophils have

emerged as quintessential warriors of the immune system that

play a key role in modulating immunotherapy efficacy; therefore,

deep understanding is required for developing effective

neutrophil-targeting approaches for tumor therapy. Regarding

the mechanistic perspective, we highlight the following unsolved
FIGURE 4

Neutrophil extracellular trap (NET) formation and inhibition for tumor therapy. NET formation is initiated, following the activation of chemokine
receptors upon the secretion of various types of chemokines and cytokines secreted by tumor cells. Upon the initiation of NET formation, MPO
facilitates cell cytoskeleton degradation, whereas PAD4 triggers histone citrullination, thereby leading to NET release. However, the
pharmacological inhibition of chemokines, cytokines, and receptors, MPO, and PAD4 by using selective inhibitors can suppress NET formation.
In addition, NET formation can be abolished by using pertussis-toxin and DNase I.
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questions that, when answered, may aid in developing effective

therapeutic windows to increase immunotherapy efficacy.

(a) What kind of molecular machinery controls the

production of the neutrophils recruiting arbitrators in

tumor cells?

(b) What kind of trafficking molecules control a precise

coordination between chemokines and their receptors in the

formation of NETs?

(c) Which trafficking molecules control the transcriptional

programming of neutrophils in acquiring their tissue-

associated features?

The neutrophil function in tumors is profoundly dictated by a

precise TME. The precise TME is regulated by TGF-b and IFN-b.
Therefore, modulating the activity of TGF-b and IFN-b in the TME

can change the neutrophil phenotype and may unlock the

therapeutic potential of the TME in dictating neutrophils as

either a tumor promoter or suppressor. Thus, getting control on

the desired TMEmodulationmight be a novel approach to improve

immunotherapy efficacy. Although this aspiration seems baffling, it

can be accomplished by accelerating translational research. Immune

checkpoint blockade therapy mainly works by dictating T cells to

unleash their potential in killing cancer cells. However, immune-

suppressive PMNwas found to work as gatekeeper to protect cancer

cells from a T-cell attack, which promotes resistance to immune

checkpoint blockade therapy (341). Therefore, the identification of

novel biomarkers to differentiate immunosuppressive and normal

PMN by using high-dimensional mass cytometry and single-cell

sequencing technology will be useful for a selective targeting of

immunosuppressive PMN. In addition, the identification of novel

molecules and pathways involved in the regulation of

immunosuppressive PMN will also be helpful for a selective

targeting of the immunosuppressive PMN. A better

understanding of neutrophil ontogeny is also critical to

differentiate different types of neutrophil progenitors. Neutrophils

are produced from hematopoietic stem cells (HSCs) in spleen and

bone marrow and then progress to common myeloid progenitors

(CMP) and committed granulocyte monocyte progenitors (GMP),

and then, finally, GMP yields to both neutrophils and monocytes

(342). In humans, more recent studies have defined neutrophil-

committed progenitors as CD66b–CD64dimCD115– in

SSClow CD45dim CD34+ and CD34low/– (343), and early

neutrophil progenitors as Lin– CD66b+/low CD15low CD

49d+ CD11b– (344). Another more recent study has investigated

the neutrophil progenitor commitment event in a human

neutrophil deficiency model by using small-molecule alpha-lipoic

acid. Authors have identified novel role of alpha-lipoic acid in the

regulation of neutrophil lineage specification and also found that

the SF3B1-ELK axis controls commitment of the human neutrophil

progenitors from CD371+CD115-GMPs (345). Moreover, Zhu et al.

identified committed unipotent early-stage neutrophils progenitors

from the bonemarrow of the human andmouse by using single-cell

RNA-sequencing technology and mass cytometry. Results showed

that early-stage neutrophil progenitors promote tumor both in
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humans and mice. Importantly, authors identified human

neutrophil progenitors (hNeP) from patients’ blood with

melanoma, indicating that hNeP was released from bone marrow

in tumor patients and can be detected in human blood (346). As

hNeP has been detected as a tumor promotor, therefore, it could be

a novel immune-oncology target. Furthermore, a better

understanding of the underlying molecular mechanism of the

generation of the PMN-MDSCs from their progenitors is also

very important in designing novel therapies to target PMN-

MDSCs. Accumulating evidence suggests that the developmental

joint in granulopoiesis is snuggly choreographed by various growth

factors such as G-CSF, GM-CSF, and M-CSF and transcriptional

factors. These master regulators play a key role during the

development and maturation of the normal granulocytes;

however, during tumor burden conditions, this regulatory

network is dysregulated and impairs the myeloid differentiation

event and drives PMN-MDSC accumulation (347, 348). We hope

that this novel immuno-oncology milestone can be a motivational

window for preclinical and translational scientists in developing

more effective immunotherapies in this space.
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