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We present a full analysis of data from our preliminary
report (Lafer-Sousa, Hermann, & Conway, 2015) and test
whether #TheDress image is multistable. A multistable
image must give rise to more than one mutually
exclusive percept, typically within single individuals.
Clustering algorithms of color-matching data showed
that the dress was seen categorically, as white/gold (W/
G) or blue/black (B/K), with a blue/brown transition
state. Multinomial regression predicted categorical
labels. Consistent with our prior hypothesis, W/G
observers inferred a cool illuminant, whereas B/K
observers inferred a warm illuminant; moreover,
subjects could use skin color alone to infer the
illuminant. The data provide some, albeit weak, support
for our hypothesis that day larks see the dress as W/G
and night owls see it as B/K. About half of observers who
were previously familiar with the image reported
switching categories at least once. Switching probability
increased with professional art experience. Priming with
an image that disambiguated the dress as B/K biased
reports toward B/K (priming with W/G had negligible
impact); furthermore, knowledge of the dress’s true
colors and any prior exposure to the image shifted the
population toward B/K. These results show that some
people have switched their perception of the dress.
Finally, consistent with a role of attention and local
image statistics in determining how multistable images
are seen, we found that observers tended to discount as
achromatic the dress component that they did not
attend to: B/K reporters focused on a blue region,
whereas W/G reporters focused on a golden region.

Introduction

Most visual stimuli are underdetermined: A given
pattern of light can be evidence for many different

surfaces or objects. Despite being underdetermined,
most retinal images are resolved unequivocally. It is not
known how the brain resolves such ambiguity, yet this
process is fundamental to normal brain function
(Brainard et al., 2006; Conway, 2016). Multistable
images are useful tools for investigating the underlying
neural mechanisms. The two defining properties of
multistable stimuli are that they give rise to more than
one plausible, stable, percept within single individuals
and that the alternative percepts are mutually exclusive
(Leopold & Logothetis, 1999; Long & Toppino, 2004;
Schwartz, Grimault, Hupe, Moore, & Pressnitzer, 2012;
Scocchia, Valsecchi, & Triesch, 2014). Multistable
images are similar to binocular rivalrous stimuli,
although in binocular rivalry the competition is
between two different images rather than alternative
interpretations of a single image. Although the first
account of binocular rivalry involved color (Dutour,
1760), to date there are no striking examples of
multistable color images. Of course, not all colored
stimuli are unambiguous: Consider turquoise, which
might be called blue or green by different people. Such
ambiguous color stimuli typically retain their ambigu-
ity even when labeled categorically, unlike multistable
shape images (Klink, van Wezel, & van Ee, 2012). To
date, the best example of something approximating a
multistable color phenomenon is the colored Mach
card, in which the color of a bicolored card folded
along the color interface and viewed monocularly can
vary depending on whether one perceives the card
receding or protruding (Bloj, Kersten, & Hurlbert,
1999). But it is not clear that the color perceptions of
the Mach card are categorical. Moreover, the phe-
nomenon is primarily an illusion of 3-D geometry:
Without stereopsis, the perspective cues are ambiguous;
the way the colors are perceived is contingent on how
these cues are resolved.
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Could #TheDress be an elusive multistable color
image? Initial reports on social media raised the
possibility that the image was seen in one of two
mutually exclusive ways, as white and gold (W/G) or
blue and black (B/K). But color-matching data (not
color names) reported by Gegenfurtner, Bloj, and
Toscani (2015) concluded that there were many
different ways in which the dress’s colors could be seen.
The tentative conclusion was that reports of two
categories arose as an artifact of the two-alternative
forced-choice question posed by social media (‘‘Do you
see the dress as W/G or B/K?’’). The implication was
that the true population distribution is unimodal,
which is inconsistent with the idea that the image is
multistable. The Gegenfurtner et al. study measured
perceptions of 15 people. It is not known how many
subjects would be required to reject the hypothesis that
the population distribution is unimodal. We addressed
these issues through a full, quantitative analysis of the
results that we presented in preliminary form shortly
after the image was discovered, in which we argued that
the dress was seen categorically (Lafer-Sousa, Her-
mann, & Conway, 2015). A side goal was to evaluate
the extent to which tests conducted online replicate
results obtained under laboratory conditions. Many
studies of perception and cognition are being con-
ducted through online surveys; it remains unclear
whether results obtained in a lab and online are
comparable.

Popular accounts suggest that people are fixed by
‘‘one-shot learning’’ in the way they see the dress image
(Drissi Daoudi, Doerig, Parkosadze, Kunchulia, &
Herzog, 2017). These observations have been taken to
imply that the dress is not like a typical multistable
image, because it is widely thought that most people
experience frequent perceptual reversals of multistable
images. But frequent reversals might not be a necessary
property of multistability (see Discussion). The per-
ception of multi-stable shape images at any given
instant was initially thought to depend only on low-
level factors, such as where in the image one looked
(Long & Toppino, 2004): since we move our eyes
frequently, it was assumed that the perception of a
multi-stable shape image would necessarily reverse
frequently. It is now recognized that high-level factors,
including familiarity with the image, prior knowledge,
personality, mood, attention, decision making, and
learning, also play a role in how multi-stable shape
images are seen (Kosegarten & Kose, 2014; Leopold &
Logothetis, 1999; Podvigina & Chernigovskaya, 2015).
These factors are often modulated over a longer time
frame than eye movements, which could explain why
some multi-stable images do not reverse very often.
Data in our initial report suggested that some observers
experience perceptual reversals of the dress, raising the
possibility that the image is not unlike other multistable

images. Here we determined the extent to which the
individual differences in perception of the dress image
are fixed. We characterized the conditions that promote
perceptual reversals of the dress, and tested five factors
known to influence how multistable images are
perceived: prior knowledge about the image (Rock &
Mitchener, 1992); exposure to disambiguated versions
(Fisher, 1967; Long & Toppino, 2004); low-level
stimulus properties (e.g., stimulus size; Chastain &
Burnham, 1975); where subjects look (or attend; Ellis &
Stark, 1978; Kawabata & Mori, 1992; Kawabata,
Yamagami, & Noaki, 1978); and priors encoded in
genes or through lifetime experience (Scocchia et al.,
2014). These experiments were afforded because we
tested people who varied in terms of both prior
exposure to the image and knowledge about the color
of the dress in the real world.

By examining the factors that influence perception of
the dress image, we hoped to shed light on how the
brain resolves underdetermined chromatic signals.
While low-level sensory mechanisms like adaptation in
the retina can account for color constancy under simple
viewing conditions (Chichilnisky & Wandell, 1995;
D’Zmura & Lennie, 1986; Foster & Nascimento, 1994;
Land, 1986; Stiles, 1959; von Kries, 1878; Webster &
Mollon, 1995), they fail to explain constancy of natural
surfaces (Brainard & Wandell, 1986; Webster &
Mollon, 1997) and real scenes (Hedrich, Bloj, &
Ruppertsberg, 2009; Khang & Zaidi, 2002; Kraft &
Brainard, 1999). We have argued that the competing
percepts of the dress are the result of ambiguous
lighting information. The colors of the pixels viewed in
isolation align with the colors associated with daylight
(Brainard & Hurlbert, 2015; Conway, 2015; Lafer-
Sousa et al., 2015). The visual system must contend
with two plausible interpretations—that the dress is
either in cool shadow or in warm light. In our prior
report, we tested the idea that illumination assumptions
underlie the individual differences in color perception
of the dress, by digitally embedding the dress in scenes
containing unambiguous illumination cues to either
warm or cool illumination. Most observers conformed
to a single categorical percept consistent with the
illumination cued (Lafer-Sousa et al., 2015). Here we
directly tested the hypothesis by analyzing subjects’
judgments about the light shining on the dress. We also
tested our hypothesis that the way the dress is seen can
be explained by one’s chronotype: Night owls spend
much of their awake time under incandescent light, and
we hypothesized they would therefore be more likely to
discount the orange component of the dress and see the
dress’s colors as B/K; day larks spend more of their
time under blue daylight, and we surmised that they
would discount the blue component of the dress and see
the colors as W/G (Rogers, 2015).
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Finally, we used the dress image as a tool to examine
the role of memory colors in color constancy. The
spectral bias of the illuminant could, in theory, be
determined by comparing the chromatic signals enter-
ing the visual system with the object colors stored in
memory. The gamut of human skin occupies a
distinctive profile in cone-contrast space that is
surprisingly stable across skin types and shifts predict-
ably under varying illuminations (Crichton, Pichat,
Mackiewicz, Tian, & Hurlbert, 2012). These statistics,
coupled with the fact that skin is viewable in almost
every natural glance, make skin a potentially good cue
to estimate the spectral bias of the illuminant (Bianco &
Schettini, 2012). We used our disambiguation paradigm
(Lafer-Sousa et al., 2015), digitally embedding the dress
in scenes in which we systematically introduced
different cues to the illuminant. As far as we are aware,
the results provide the first behavioral evidence that
skin color is sufficient to recover information about the
illuminant for color constancy.

Methods and materials

Experimental setup

Detailed methods are provided in the supplementary
material of our previous report (Lafer-Sousa et al.,
2015). Raw materials and sample analyses are provided
here: https://github.com/rlaferso/-TheDress. The ma-
jority of participants (N ¼ 2,200) were recruited and
tested online through Amazon’s Mechanical Turk
using a combination of template (Morris Alper’s Turk
Suite Template Generator 2014, available online at
http://mturk.mit.edu/template.php) and custom
HTML and JavaScript code. A smaller number of
subjects (N ¼ 53) were recruited from the Massachu-
setts Institute of Technology (MIT) and Wellesley
College campus through word of mouth and social
media, and tested using the M-Turk platform on a
calibrated display in the laboratory. We adhered to the
policies of the MIT Committee on the Use of Humans
as Experimental Subjects in using Amazon’s Mechan-
ical Turk for research purposes. Informed consent was
obtained from those subjects who performed the study
in the laboratory study. Procedures were approved by
the institutional review board of Wellesley College.
Subjects were between 18 and 69 years of age. To
control for subject quality among the Mechanical Turk
participants, we required that subjects have Mechanical
Turk approval ratings of 95% or higher and have
previously completed at least 1,000 human intelligence
tasks on Mechanical Turk.

In-laboratory subjects viewed the display at 40 cm.
Subjects used a chin rest to control viewing angle and
distance. The experiment was performed on a cali-

brated 21.5-in. iMac computer with a pixel resolution
of 1,920 3 1,080 in a windowless room with LED
overhead lighting (CIExyY: 0.4814, 0.4290, 4.3587 cd/
m2), measured off the Macbeth color checker’s
standard white, held at the same location and viewing
angle on the monitor at which we presented the dress
image). Normal color vision was confirmed with
Ishihara plates (Ishihara, 1977).

To ensure that stimuli were the same size across
displays for online subjects, we specified the sizes of
stimulus images in absolute pixels in the HTML ex-
periment code. There is some variability from display to
display in terms of the actual physical size of a pixel. We
measured the images on a typical monitor in the labo-
ratory to provide a reasonable estimate for how the pixel
values correspond to degrees of visual angle. We esti-
mate that among different displays the variance in actual
display size was ;610% of the size measured in lab.

Three experiments were conducted: 1, a main
experiment; 2, a follow-up experiment to assess the role
of image size in determining what colors people report;
and 3, an in-laboratory, controlled experiment. Data
were pooled from the various experiments depending
on the analysis performed.

In each experiment, dress color percepts were
queried using two tasks: a free-response color-naming
task and a color-matching task. In Experiments 1 and 3
subjects were also asked to report on their impressions
of the lighting conditions in the image by providing
temperature ratings and verbal descriptors, and to
estimate where in the image they thought they spent
most of their time looking. In addition, Experiments 1
and 3 queried color percepts for a set of digitally
synthesized test stimuli featuring the dress (cropped
from the original image) embedded in scenes with
unambiguous simulated lighting conditions, and a
version of the original image that had been spatially
blurred. Experiment 3 included an additional set of
synthetic test images not presented in Experiment 1.
Each experiment contained questions about subjects’
demographics, viewing conditions, and past viewing
experiences, which were distributed throughout the
experiment (the full questionnaire is reproduced in
Lafer-Sousa et al., 2015).

Stimuli

Full-scale stimuli reproductions are provided in the
Supplementary Image Appendix; they can also be
viewed online at https://youtu.be/U6c4au-Wu-E.

Original dress image (used in Experiments 1, 2, and 3)

The original dress image circulated on the Internet
(courtesy of Cecilia Bleasdale; Figure 1). In Experi-
ments 1 and 3, the original dress photograph was
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presented at 36% of its original size so that the entire
image would be visible on the display. The image was
presented at an absolute size of 226 3 337 pixels. This
corresponded to 7.28 of visual-angle width. In Exper-
iment 2, the original dress photograph was presented at
one of four sizes, defined as a percentage of the
original: 10% (633 94 pixels, or 2.08 of visual angle on
a 21.5-in. iMac), 36% (the image size presented in
Experiment 1; 2263 337 pixels, or 7.28 of visual angle),
100% (628 3 937 pixels, or 20.08 of visual angle), and
150% (9423 1,405 pixels, or 30.08 of visual angle). The
stimuli in the 10% and 36% conditions fit fully in all
browser windows. For the 100% and 150% images, only
part of the image was visible at once in the height
direction, but the full width of the image was
completely visible in the horizontal dimension. As a
result, subjects had to scroll over the stimulus image,
from top to bottom, to view it. Scrolling to see the
entire image was required in order for subjects to access
the buttons to move through the study, ensuring that
all subjects saw the entire image even in the 100% and
150% displays. Subjects were randomly assigned to one
of the four scale conditions.

Blurry dress stimulus (used in Experiments 1 and 3)

A blurry version of the original image was presented
at 41% of the source size, with a Gaussian blur radius
of 3.3 pixels (0.118). The image was 8.38 of visual angle
along the horizontal axis.

Disambiguating stimuli (warm and cool
illumination simulations)

Cue-rich test stimuli (used in Experiments 1 and 3)

To create the cue-rich test stimuli (see Supplemen-
tary Image Appendix for full-size reproductions), we
digitally dressed a White female model in the garment
and embedded her in a scene depicting a Rubik’s cube
under either a simulated warm (yellowish) or cool
(bluish) illuminant (cube reproduced with permission
from Beau Lotto; Lotto & Purves, 2002). In the cool-
illumination scene, the woman was positioned in the
shadow cast by the cube. The colors of her skin and
hair were tinted to reflect the color bias of the simulated
illuminant using a semitransparent color overlay. The
chromaticity of the overlay was defined on the basis of

Figure 1. Population distributions of subjects’ color matches show categorical perception of the dress. Subjects used a digital color

picker to match their perception of four regions of the dress (i, ii, iii, iv); the dress image was shown throughout the color-matching

procedure. (A) Matches for regions i and iv of the dress plotted against matches for regions ii and iii, for all online subjects (N¼2,200;

R ¼ 0.62, p , 0.001). Contours contain the highest density (75%) of matches. The first principal component of the population

matches (computed from CIELUV values) to (i, iv) defined the y-axis (gold/black: GK); the first principal component of the population

matches to (ii, iii) defined the x-axis (white/blue: WB). Each subject’s (x, y) values are the principal-component weights for their

matches; each has two (x, y) pairs, corresponding to (i, ii) and (iii, iv). Color scale is number of matches (smoothed). (B) Color matches

for regions (i, iii) of the dress plotted against matches for regions (ii, iv) for subjects who had never seen the dress before the

experiment (Näıve; N¼ 1,017; R¼ 0.62, p , 0.001). Axes and contours were defined using data from only those subjects. (C) Color

matches for regions (i, iv) of the dress plotted against matches for regions (ii, iii) for subjects who had seen the dress before the

experiment (N¼ 1,183; R¼ 0.61, p , 0.001). Axes and contours were defined using data from only those subjects. (D) Color matches

for all subjects (from A) were sorted by subjects’ verbal color descriptions (‘‘blue/black’’¼ B/K, N¼ 1,184; ‘‘white/gold’’¼W/G, N¼
686; ‘‘blue/brown’’¼ B/B, N¼ 272) and plotted separately. Axes defined as in (A). In all panels, contours contain the highest density

(75%) of the matches shown in each plot. Dress image reproduced with permission from Cecilia Bleasdale.
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the chromaticity of the white component of the scene’s
checkered floor, which provides a quantitative white
point for the scene (for the cool-illumination scene we
used the white checkers that were cast in shadow,
corresponding to our placement of the model in
shadow). In the warm scene, the white point was 0.352,
0.394, 66 cd/m2 (CIExyY 1931); in the cool scene it was
0.249, 0.271, 23 cd/m2. Note that the pixels making up
the dress were never manipulated. The dress portion of
the stimulus was presented at 76% of the size of the
dress in the original image; the complete picture was
518 3 429 pixels (;16.58 of visual angle on the
horizontal axis). Throughout this article, figures
showing the model are for illustration purposes only:
Copyright for the photograph of the model we used to
create the stimuli could not be secured for reproduc-
tion.

Uniform-surround test stimuli (used in Experiment 3)

To test whether a low-level sensory mechanism like
receptor adaptation or local color contrast is sufficient
to resolve the dress’s colors, we superimposed the

isolated dress on uniform fields matched to the mean
chromaticity of the cue-rich scenes (CIExyY warm
field: 0.363, 0.414, 51 cd/m2; cool field: 0.276, 0.293, 29
cd/m2). The dress portion of the stimulus was presented
at 76% of the size of the dress in the original image; the
complete picture was 5183 429 pixels (;16.58 of visual
angle on the horizontal axis). The pixels that make up
the dress were not manipulated.

Skin-only test stimuli (Experiment 3)

To test whether skin chromaticity is by itself a
sufficient cue to achieve good color constancy, we
presented the dress superimposed on the woman on a
white (achromatic) background (CIExyY: 0.322, 0.352,
75 cd/m2) and tinted her skin according to the spectral
bias of the illuminants simulated in the cue-rich scenes.
The dress portion of the stimulus was presented at 76%
of the size of the dress in the original image; the
complete picture was 5183 429 pixels (;16.58 of visual
angle on the horizontal axis). The pixels that make up
the dress were not manipulated.

Figure 2. K-means clustering of color-matching data favor a two- or three-component model over a single-component distribution.

Plots summarize the results from k-means clustering assessment (via the gap method; Tibshirani et al., 2001) of the color-matching

data presented in Figure 1A (N¼ 2,200 subjects). (A) The gap statistic computed as a function of the number of clusters, for color-

matching data (principal-component analysis weights) obtained for the upper regions of the dress, using all the data from the online

population. Dashed line indicates the optimal k clusters. (B) Bar plot showing the cluster assignments of the color matches, binned by

the color terms used by the subjects to describe the dress. (C) RGB values of the color matches, sorted by cluster assignment from

(B); each thin horizontal bar shows the color matches for a single subject. (D–F) As for (A–C), but for color matches made to the

bottom regions of the dress. The gap analysis compares the within-cluster dispersion of a k-component model to its expectation

under a null model of a single component. The algorithm seeks to identify the smallest number of clusters satisfying Gap(k) �
GAPMAX � SE(GAPMAX), where k is the number of clusters, Gap(k) is the gap value for the clustering solution with k clusters,

GAPMAX is the largest gap value, and SE(GAPMAX) is the standard error corresponding to the largest gap value. The optimal k

solution for the distribution of upper dress-region color matches is two clusters, and for the lower dress regions it is three, confirming

the suspected nonunimodality of the underlying population distribution.
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We considered color constancy good if the majority
of subjects conformed to the percept predicted by the
lighting cues in each condition, and bad when
individual subjects’ perceptions were unaffected by the
changes in simulated lighting conditions: Under the
cool illuminant, good color constancy predicts that
subjects should discount a cool (blue) component and
see the dress as W/G, while under the warm illuminant
they should discount a warm (yellow) component and
see the dress as B/K. Note that we use the terms blue,
yellow, white, warm, and cool as shorthand for accurate
colorimetric descriptions. McNemar’s chi-square tests
were used to compare goodness of constancy achieved in
different stimulus conditions. McNemar’s test is a
within-subject z test of equality of proportions for
repeated measures. Each test compares the proportion
of subjects that did or did not conform to the percept
cued in stimulus condition X versus the proportion that
did or did not conform to the percept cued in stimulus
condition Y. Six tests were performed: cue-rich scene
(warm) versus uniform background (warm); skin tint
(warm) versus uniform background (warm); skin tint
(warm) versus cue-rich scene (warm); cue-rich scene
(cool) versus uniform background (cool); skin tint (cool)
versus uniform background (cool); and skin tint (cool)
versus cue-rich scene (cool).

Tasks

Color naming

Each image was shown for 15 s, and then subjects
were prompted to report the apparent color of the dress
via a free-response verbal task (two text boxes were
provided): ‘‘Please look carefully at the dress. A
‘continue’ button will appear just below this text after
15 seconds. This is a picture of a ____ and ____ dress.
(Fill in the colors that you see).’’ The image was on the
screen continuously while the subjects responded (this
was not designed as a test of color memory). Color
descriptions of the dress were binned into categories:
blue/black, white/gold, blue/brown, other (following
the methods outlined in Lafer-Sousa et al., 2015).

Lighting judgments

After performing the color-naming task, subjects were
prompted to rate the apparent quality of the light
illuminating the background of the image (‘‘On a scale
from 1 to 5, where 1 is cool and 5 is warm, please rank
the lighting conditions in the background’’) and the light
illuminating the dress (‘‘On a scale from 1 to 5, where 1
is cool and 5 is warm, please rank the light illuminating
the dress’’). They were then asked to characterize the
light in the background, and the light illuminating the
dress, by checking off any of a number of possible verbal

Figure 3. Comparison of color-matching data (contours) with predictions from the k-means clustering solutions (x), sorted by subjects’

verbal reports. Color-matching distribution contours and k-means cluster centroids derived from independent data sets for (A) the

color matches made to upper regions of the dress (region i is plotted against region ii; principal-component analysis weights and

principal-component axes from Figure 1A) and (B) lower regions of the dress (iv, iii). Distribution contours were determined using one

half of the data set (randomly sampled from the online subject pool); cluster centroids were determined using the left-out data

(clustered using the optimal k identified in the gap analysis from Figure 2). Individual plots show the contours encompassing the top

80% of color matches for half the data from each group (left to right): all subjects; subjects who described the dress as blue and black

(B/K); subjects who described the dress as white and gold (W/G); and subjects who described the dress as blue and brown (B/B).

Within each row, the same cluster centroids are replotted across the panels, reflecting the outcome of clustering the unsorted data

set (i.e., independent of verbal reports).
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descriptors from a list (‘‘The lighting in the background

is... Check all that apply/The light illuminating the dress

is... Check all that apply’’: dim, dark, cool, blueish,
bright, warm, yellowish, glaring, blown out, washed out,
reddish, greenish, purplish, iridescent).

Color matching

Each image was presented a second time (again, for
15 s), and this time subjects were prompted to make
color matches to four regions of the dress (Figure 1
inset, arrows i, ii, iii, iv), using a color-picker tool
comprising a complete color gamut: ‘‘Please adjust the
hue (color circle) and brightness (slider bar) to match
the pixels you see in the image.’’

For Experiments 1 and 3, in the first half of the
experiment each image was shown for 15 s and then

subjects were prompted to perform the color-naming
task and the lighting-judgment task. In Experiment 2,
subjects were not asked to perform the lighting
judgment task. The image was on the screen continu-
ously while the subjects responded (this was not
designed as a test of color memory). In the second half
of the experiment, each image was shown a second
time, and after 15 s, subjects were prompted to perform
the color-matching task (the image remained on the
screen continuously while the subjects performed the
task). Between the presentation of the first and second
images, we collected basic demographic information.
Between the presentations of the last two images, we
asked subjects about the environment in which they
were completing the study. We also asked whether they
had viewed the original dress image prior to this study,

Figure 4. K-means clustering solutions for näıve, non-näıve, and in-lab subjects. The k-means clustering assessments were performed

for the subsets of subjects who (A) had never seen the dress before participating in the study (N¼ 1,017; top row), (B) had seen the

dress before (N¼ 1,183; middle row), and (C) who were tested under controlled conditions in the laboratory (N¼ 53; bottom row).

Conventions are as in Figure 2.
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and if so, whether they had experienced multiple
percepts of the dress (i.e., switching).

The first image shown was always the original dress
photograph (courtesy of Cecilia Bleasdale), but the
order of the subsequent two images differed between
the two conditions. In addition, all subjects were
queried on their perception of a blurry version of the
original image.

Experiment 1:

� Order A: Report colors and lighting for original
dress image, cue-rich scene (cool), cue-rich scene
(warm); make color matches for original dress
image, cue-rich scene (cool), cue-rich scene (warm);
report colors of the blurry dress.
� Order B: Report colors and lighting for original
dress image, cue-rich scene (warm), cue-rich scene
(cool); make color matches for original dress
image, cue-rich scene (warm), cue-rich scene (cool);
report colors of the blurry dress.

Experiment 2:

� Order: Report colors for original dress image;
make color matches for original dress image.

Experiment 3:

� Order A: Report colors and lighting for original
dress image, cue-rich scene (cool), cue-rich scene

(warm), uniform surround (cool), uniform sur-
round (warm), skin-tint only (cool), skin-tint only
surround (warm); make color matches for original
dress image, cue-rich scene (cool), cue-rich scene
(warm), uniform surround (cool), uniform sur-
round (warm), skin-tint only (cool), skin-tint only
(warm); report colors of the blurry dress.
� Order B: Report colors and lighting for original
dress image, cue-rich scene (warm), cue-rich scene
(cool), uniform surround (warm), uniform sur-
round (cool), skin-tint only (warm), skin-tint only
surround (cool); make color matches for original
dress image, cue-rich scene (warm), cue-rich scene
(cool), uniform surround (warm), uniform sur-
round (cool), skin-tint only (warm), skin-tint only
surround (cool); report colors of the blurry dress.

Data analysis

Analyses are described in the legends and Results
section. All statistical analyses were conducted using
MATLAB. A value of p , 0.05 was considered
statistically significant.

Figure 5. Power analysis. Plots show the results of k-means

clustering (as in Figure 2) for a range of sample sizes (color-

matching data randomly sampled from the online subject pool).

For each sample size tested, the average gap value derived from

100 bootstraps is plotted; error bars show the standard

deviation. Left panel corresponds to upper dress-region

matches; right panel, to lower dress-region matches. The

variance around the predicted k decreases and the predicted k

increases with increasing numbers of samples. That the optimal

k¼ 2 or 3, and not 1, becomes significant with about 125–180

subjects, and plateaus around 500 subjects.

Figure 6. Color matches made by B/K reporters and W/G

reporters differ in lightness and hue, under controlled conditions

and online. (A) Matches for the blue/white regions. (B) Matches

for the black/gold regions. Plots show the average lightness and

hue components (CIELUV 1976: L*, u*, v*) of color matches

made by subjects reporting B/K or W/G, tested online (black

lines; N¼ 1,174; 770 B/K, 404 W/G) and under controlled

viewing conditions (red lines; N¼ 49; 28 B/K, 21 W’/G). Solid

lines show data from the upper regions of the dress, and dashed

lines show data from the lower regions; error bars show 95%

confidence intervals. Asterisks show cases for which B/K and W/

G matches differed significantly (paired t tests): In the online

data, matches differed in all three color dimensions (u*, or ‘‘red–
greenness’’; v*, or ‘‘blue–yellowness’’; and L*, or Luminance; p

values , 0.001); and in the in-lab data, matches differed in all

but the u* and v* dimensions of one region (i; p values , 0.001

for all paired t tests, except u* and v* of region i: p¼ 0.06, 0.2).
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Results

#TheDress (Figure 1, left) is a rare image that elicits
striking individual differences in color perception
(Gegenfurtner et al., 2015; Lafer-Sousa et al., 2015).
Although the pixels that make up the dress are (in
isolation) light blue and brown, most observers queried
through social media reported seeing the dress as either
blue/black (B/K) or white/gold (W/G; Rogers, 2015). A
minority of subjects (;10%) reported seeing the dress
as blue/brown (B/B) (Lafer-Sousa et al., 2015).

Categorical perception of the dress: True or
false?

Subjects were asked to identify the colors of four
regions of the dress (i–iv; Figure 1, left). The three-
dimensional (CIE L*,u*,v*) coordinates of the color-
matching data were compressed to one dimension using
principal-component analysis (Lafer-Sousa et al.,
2015). Subjects’ color matches for the brown regions of
the dress (i, iv) are plotted against their matches for the
blue regions of the dress (ii, iii), and are highly
correlated (density plots and contours were created in
MATLAB using scatplot1). Moreover, the correlation
shows two peaks, suggestive of two underlying
categories. This pattern of results was consistent for
both subjects who had and had not seen the image
previously (Figure 1B, 1C). The peaks in the popula-
tion density plots corresponded well with the categor-
ical color descriptions provided by the participants:
Figure 1D shows the color matches made by subjects

Figure 7. Categorical verbal reports can be predicted from color

matches. Multinomial logistic regression was used to build

nominal-response models (classifiers). Four models were gener-

ated: The full model was fitted using the L*, u*, and v*

components of subjects’ color matches (to all four match regions)

as predictors; three additional models were fitted using either

the L*, u*, or v* component of subjects’ matches as the pre-

dictors. Models were fitted with responses from a subset of the

online subjects (half the subjects from Experiment 2, Ntrain¼549)

and tested on responses from the left-out subjects (Ntest¼ 547).

(A) Predicted probability of category membership for the full

model. Each panel contains the results for data from individual

(left-out) subjects, grouped by the verbal label they used to

describe the dress (ground truth) and whether they had seen the

dress prior to the study (Näıve vs. Not-Näıve). Each thin vertical

column within a panel shows the results for a single subject:

�

 
The colors of each row in the column represent the predicted

probability that the subject used each of the categorical labels

(B/K, W/G, B/B, Other); each column sums to 1. Subjects are

rank-ordered by the predicted probability for the ground-truth

class. The average predicted probabilities for each response

category are denoted lP. (B) Bar plots quantifying classification

performance (the area under the receiver operating character-

istic curves, computed using the true and false positive rates), by

category, for each of the four models. Error bars indicate 95%

confidence intervals. Values greater than 0.90 indicate excellent

performance; values between 0.75 and 0.90 indicate fair to good

performance; values between 0.5 and 0.75 indicate poor

performance. We compared the accuracy of the various models

against each other using MATLAB’s testcholdout function: The L*-

only model performed no better than the u*-only model (Näıve:

p¼ 0.5; Not-Näıve: p¼ 0.8) or the v*-only model (Näıve: p¼ 0.5;

Not-Näıve: p¼ 0.3). The full model was more accurate than the

L*-only model, but only among Näıve subjects (Näıve: p , 0.001;

Not-Näıve: p¼ 0.09). True positive rates (sensitivity) for all four

models are provided in Table 1.
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who reported a B/K percept (left panel) or a W/G
percept (middle panel). Some subjects reported B/B.
These subjects made color matches that were interme-
diate to the two main categories (Figure 1D, right
panel). To quantitatively test the hypothesis that the
dress is viewed categorically, we performed a k-means
clustering assessment on the color-matching data.

There are several methods for estimating the optimal
number of k clusters (groups) in a distribution, but
most are constrained to assessing solutions of two or
more clusters. To test our hypothesis, we need some
way of assessing the relative goodness of clustering for
a single-component (k ¼ 1 cluster) versus a k . 1
component model. To do so, we clustered the data,
varying the number of clusters (k¼ 1, 2, . . ., 13), then
used the gap method to assess the outcomes and
identify the optimal K clusters (Tibshirani, Walther, &

Hastie, 2001). The gap statistic is estimated by
comparing the within-cluster dispersion of a k-compo-
nent model to its expectation under a single-component
null, and seeks to identify the smallest k satisfying
Gap(k) � Gap(k þ 1) � SE(Gap(k þ 1)). For color
matches made to both upper (Figure 2A–2C) and lower
(Figure 2D–2F) regions of the dress, the single-
component solution was rejected in favor of two or
three clusters, confirming the suspected nonunimodal-
ity of the underlying population distribution.

The bar plots (Figure 2B, 2E) show the distribution
of the different color terms assigned to each cluster, for
the optimal k solution returned by the gap analysis.
The clustering algorithm assigned the majority of W/G
reporters’ matches to Cluster 1 (in both the upper- and
lower-region analyses) and the majority of B/K
reporters’ matches to Cluster 2 (upper-region analysis)
or Clusters 2 and 3 (lower-region analysis). Matches
made by subjects who described the dress as B/B or
other colors outside of the main categories (other) were
distributed more evenly across the clusters, even when
three clusters were returned. Each thin band in the
tapestries (Figure 2C, 2F) corresponds to the color
matches made by a single subject, providing a visual
snapshot of the success of the clustering algorithms in
separating W/G and B/K reporters. These results show
that perception of the dress in the population is
categorical, not continuous, and reject the idea that
reports of categorical perception are an artifact caused
by a forced choice.

Categorical perception of the dress: How many
categories?

The results of Figure 2 suggest that the underlying
population may comprise two or three distinct catego-
ries. In our initial report, we argued that subjects who
report the dress as B/B constituted a distinct third
category, intermediate between the two main categories.
Figure 3 (top row) shows the spatial relationship of the
optimal k cluster centroids (x) and the color-matching
distributions (contours) for subjects grouped by their
verbal report, for an analysis of the upper match regions.
The cluster centroids coincide with the center of the
color-matching data for W/G and B/K subjects (xs fall
inside the contours; contours and centroids obtained
with different halves of the data). Color matches made
by subjects who reported B/B fell between these
centroids (Figure 3, top right panel). These results
suggest that the B/B report does not reflect a distinct
category. Figure 3 (bottom row) shows the relationship
between the optimal k cluster centroids for the bottom
match regions, which returned three clusters. But none
of the centroids fell within the contour capturing color
matches made by B/B subjects (Figure 3, bottom right
panel). These results show that the third category, when

Figure 8. Image scale and prior exposure affect perception of

the dress’s colors. In Experiment 2 we varied the presentation

scale of the image (different subjects saw different scales; 10%,

36%, 100%, 150%). Unlike in Experiment 1, subjects were never

shown an image in which the lighting cues were disambiguated.

Open circles show the percentage of subjects who reported B/K

at each scale. The red line shows data from subjects who had

not seen the dress prior to participating in the study (10%, N¼
207; 36%, N¼ 194; 100%, N ¼ 192; 150%, N ¼ 195). The black

line shows data from subjects who had seen the dress prior to

the experiment (10%, N ¼ 80; 36%, N ¼ 80; 100%, N ¼ 100;

150%, N¼ 78). Viewing the image at a reduced scale and having

prior experience with the image both increased the proportion

of subjects who reported B/K, and the two factors interacted

(ANOVA performed with bootstrapped data from the open

circles showed main effects of scale, p , 0.001, experience, p ,

0.001, and their interaction, p , 0.001). Subjects who had seen

the image before also reported on the colors they perceived

when they first saw it, recalled from memory (solid black

square; data from Not-Näıve subjects in Experiments 1 and 2, N

¼ 1,037). The distribution of verbal color reports corresponding

to the first time that Not-Näıve subjects viewed the image

differed from the distribution of reports the same subjects

provided in response to our presentation of the image,

confirming that many had flipped (chi-square test of indepen-

dence: X2 ¼ 731, p , 0.001). Error bars show standard errors

(bootstrapping, sampling with replacement).
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evident, is a subgroup of the population of observers
who describe the dress as B/K. In addition to the gap
analysis, we applied the silhouette clustering criterion
and the Calinski–Harabasz clustering criterion; these
methods do not allow for a single-component solution.
They returned an optimal solution of two clusters, for
both the upper and lower match regions.

Does prior exposure to the image change the number
of categories manifest in the population? The color-
matching data for subjects with versus without prior
exposure were similar (Figure 1), suggesting that prior
exposure had no impact on the number of categories in
the population. Figure 4 shows gap-statistical tests of
the color-matching data to establish this conclusion.
The optimal number of clusters for subjects with no
prior exposure (N¼ 1,017), for either the top or bottom
regions of the dress, produced an optimal cluster
number of two (Figure 4A); the only color-matching
data that produced more than two optimal clusters
were those obtained on subjects with prior exposure
tasked with matching the lower part of the dress (N ¼
1,183, three clusters, Figure 4B). The results of the
analyses carried out using the silhouette clustering
criterion and the Calinski–Harabasz clustering criterion
returned two clusters, regardless of whether the
matches came from subjects with prior experience.

Together with the qualitative evaluation of the color-
matching data we reported previously (Lafer-Sousa et
al., 2015), these results show that the categories
reported in social media reflect true categories in the
population and are not a result of the way the question
was posed.

Figure 9. Familiarity with the dress image affects subsequent

viewings. (A) The distribution of color reports (Experiment 1;

image scale always 36%) from subjects who had seen the image

before (N¼ 845) and had knowledge of the dress’s colors in real

life (‘‘Knowers,’’ N ¼ 577) differed from the distribution of

reports from subjects who had seen the image and did not

know the dress’s real colors (‘‘Not-knowers,’’ N ¼ 268; chi-

square test for difference of proportions: p , 0.001, X2 ¼ 66).

(B) Color reports of the dress during the experiment as a

function of how subjects first perceived the dress (recalled from

memory). Results for Not-knowers are predominantly along the

x ¼ y diagonal, reflecting dominance of initial stable state

(though the presence of deviations was still significant: chi-

square test of independence: X2¼ 277, p , 0.001). Results for

Knowers showed more substantial deviations from the diagonal,

particularly for subjects who first saw W/G or B/B, reflecting a

weakening of initial state and an increased dominance of B/K

state (the color of the dress in real life; chi-square test of

independence: X2¼ 394, p , 0.001). (C) Quantification of self-

�

 
reported reversal rates for Knowers and Not-knowers; per-

centages computed within class (B/K, W/G, B/B, Other; class

corresponded to first-view percepts from memory). Subjects

were asked: ‘‘In your viewings prior to this study, did your

perception of the dress colors ever change? Y/N’’ and ‘‘How
often did you see it change? Frequently/Infrequently/Never.’’
The proportion of subjects who reported changes was higher

among Knowers than Not-knowers (gray asterisk; chi-square

test for difference of proportions: p¼ 0.036, X2 ¼ 4.4). Error

bars indicate standard errors (bootstrapping, sampling with

replacement). (D) Quantification of self-reported reversals as a

function of professional art experience. Left panel shows the

proportion of subjects who reported at least one reversal,

sorted by professional art experience. Right panel shows the

proportion of those subjects who reported that reversals were

frequent. Compared to non-artists, reports of frequent reversals

were significantly higher among subjects who indicated having

professional art experience in the fields of illustration (p ¼
0.004, two-proportion z test) and graphic design (p ¼ 0.005).

Error bars indicate standard errors (bootstrapping, sampling

with replacement).
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Categorical perception of the dress: Power
analysis

The categorical nature of the population distribution
appears, on first inspection, to contradict reports that
the true population distribution is continuous. The
discrepancy may be resolved by considering the large
differences in the number of subjects in the different
studies: Conclusions of a continuous distribution were
made using data from less than two dozen subjects,
whereas the present analysis depends on data from
several thousand subjects. How many subjects are
necessary to uncover the true population distribution?
To address this question, we performed a power analysis
by computing the optimal k using subsamples of the
data we collected, and then bootstrapping (Figure 5).
The variance around the predicted k decreases and the
predicted k itself increases with increasing numbers of
samples. That the optimal k is 2, and not 1, becomes
significant with about 125–180 subjects.

The gap statistic obtained for all subjects (N ¼
2,200), for the upper match regions, yielded compara-
ble values for two and three clusters (Figure 2); in this
case, the optimal gap value is considered to be 2,
because the gap method favors the smallest number of
clusters satisfying the method’s criterion. The gap
statistic for the lower match regions was clearly
distinguished as three clusters. This difference between
the upper and lower match regions accounts for the
difference in the results of the power analysis: For the
upper regions, the optimal k converges between two
and three clusters (and the error bars remain large even
at large sample sizes); for the lower regions, it
converges on three clusters and the error bars get very
small at large sample sizes. The additional cluster
identified using color matches for the bottom region of
the dress correspond not to a discrete B/B category but
rather to a subdivision of the B/K category (Figure 3B;
two centroids fall within the B/K reporters).

Figure 10. Color matches made by B/K and W/G reporters track the daylight locus. Chromaticity matches for (A) the top regions of the

dress and (B) the bottom regions of the dress. Left graphs: Mean hue (CIE u0, v0) of color-matches made by online subjects (N¼1,174;

B/K¼770; W/G¼404). Right plots: Mean lightness of matches (CIE L). Error bars show the 95% confidence interval of the mean. Data

were grouped by the verbal report made by the subjects: squares for W/G and circles for B/K. The color of the symbol corresponds to

the color term used by the subject (blue, black, white, or gold). Black line shows the daylight locus. Inset¼ CIE 1976 u0v0 color space

with the daylight locus (arrow).
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Our estimate of the number of subjects required to
adequately assess the underlying population distribution
was made using data obtained online; there is much
higher variability in the viewing conditions and subject
pool for experiments conducted online versus in a lab. It
is possible that the number of subjects needed to
determine the true underlying population distribution
would be lower for data obtained in a lab, where the
viewing conditions can be better controlled. In our prior
study, we collected data from 53 subjects under
controlled lab conditions. A k-means clustering analysis
of these data neither rejected nor confirmed a single-
component model (Figure 4C). These results suggest
that conducting the experiments in a lab confers no
benefit in uncovering the population distribution.

Categorical perception of the dress: Comparing
results obtained online and in a lab

The results in Figure 4C show that even under
controlled viewing conditions, samples of more than 53

participants are needed to reliably uncover the true
population distribution. Nonetheless, the data collected
in the lab showed trends consistent with two underlying
categories of observers. First, qualitative assessment of
the color-matching plots (Lafer-Sousa et al., 2015)
shows evidence of two clumps. Second, the optimal k
for one of the two sets of regions (iii, iv) was 2, even if
this optimal value is not strongly distinguished from
other values of k (Figure 4C, left panel). That the
optimal k is 2 becomes clearer when the analysis is run
on data combining color matches for all regions tested,
essentially doubling the data set, which returns an
optimal k of 2 (data not shown). Third, the relative
distribution of W/G to B/K observers among partici-
pants without prior exposure was about the same for
subjects tested online versus in a lab (Lafer-Sousa et al.,
2015). And fourth, the average chromaticity of the
color matches made by subjects in the lab was
consistent with those made by subjects online (Figure
6). Regardless of whether the data were obtained online
or in a lab, the results showed the same pattern:
Compared to B/K subjects, W/G subjects reported not
only higher luminance but also higher values of u*
(redness) and v* (yellowness), for all four regions
tested. The strongest changes were in the luminance
and v* dimensions. The comparability of data collected
online versus in a lab is consistent with the idea that the
factors that determine how one sees the dress are
relatively high level, divorced from the specific low-level
conditions of viewing (such as the white balance, mean
luminance, and size of the display).

Categorical perception of the dress: Predicting
color terms from color matches

The results in Figures 1–6 support the conclusion
that the color of the dress photograph is resolved as one
of two dominant categories, consistent with the initial
social-media reports. As an additional test of the
hypothesis, we performed a multinomial logistic
regression analysis to test the extent to which we could
predict the colors a person would use to describe the
dress, given the color matches the person makes. If, for
example, B/B reporters represent a distinct or stable
perceptual category, then a classifier (trained on
independent data) should be able to distinguish B/B
reporters from B/K and W/G on the basis of color
matches alone. We generated four models: a full model,
which used the L*, u*, and v* components of subjects’
matches as the predictors, and three additional models
which used either the L*, u*, or v* component of
subjects’ matches as the predictor. The models were
trained and tested with independent data (Ntrain¼ 549,
Ntest¼ 547). Figure 7A shows the prediction outcomes
for the full model. Panels show the results grouped by

Figure 11. Temperature ratings of the light shining on the dress

systematically differ as a function of percept. Subjects (top row:

1,074 online, bottom row: 53 in-lab) were asked to rate their

impression of the light shining on the dress and the light

illuminating the background, on a scale of 1–5 (cool to warm).

Plots show illumination ratings for the light on the dress (left

panels) and the light in the background (right panels), grouped

by verbal report of the dress’s colors (B/K, W/G, B/B, Other).

Subjects’ ratings of the light on the dress systematically differed

as a function of percept (two-sample t test comparing the

ratings provided by subjects who saw the dress as B/K vs. those

who saw W/G; online: p , 0.001; in-lab: p ¼ 0.002). Subjects’

ratings of the background light did not differ as a function of

percept (online: p¼ 0.2; in-lab: p ¼ 0.5).
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prior experience with the image (Naı̈ve vs. Not-Naı̈ve)
and ground-truth verbal label (B/K, W/G, B/B, Other).
Among participants who reported B/K, the average
predicted probability of B/K category membership was
0.85 for subjects with no prior experience (Figure 7A,
top left) and 0.81 for subjects with prior experience
(Figure 7A, top right). These probabilities were such
that 92% of B/K reporters were classified B/K (93% of
those without prior experience, 89% of those with prior
experience); and 98% of W/G reporters were classified
W/G (100% of those without prior experience, 91% of
those with prior experience; Table 1). The model was
less successful in its classification of B/B reporters, but
above chance: 51% of B/B reporters were classified B/B
(54% of those without prior experience, 45% of those

with prior experience). The classifier failed to classify
all Other reporters as Other. Overall, the true positive
rate was 85%. We further quantified model perfor-
mance by computing the area under the receiver
operating characteristic (ROC) curve for each cate-
gorical label. This quantity reflects both the true and
false positive rates (Figure 7B). Values greater than
0.90 indicate excellent performance (which we observed
for B/K and W/G reporters), while values between 0.75
and 0.90 represent fair to good (observed for B/B
reporters) and values between 0.5 and 0.75 represent
poor performance (observed for Other reporters).
Values below 0.5 represent failure.

Do the model results contradict the conclusions
drawn in Figures 2 and 3 by providing evidence for

Figure 12. Subjects’ color percepts of the dress are predicted by their inference of the lighting conditions. Subjects (top row: 1,074

online; bottom row: 49 in-lab; only subjects who reported either W/G or B/K are included in this analysis) were asked to characterize

the light shining on the dress and the light illuminating the background, by checking off any of a number of possible verbal descriptors

from a list (dim, dark, cool, blueish, bright, warm, yellowish, glaring, blown out, washed out, reddish, greenish, purplish, iridescent). (A) For

each word in the list, the likelihood of being B/K¼ (# of B/K reporters who used the term)/(# of B/Kþ # of W/G who used the term).

The diameter of the bubble reflects the proportion of people in the population who used the term: (# of B/K who used itþ # of W/G

who used it)/(# of B/K reportersþ # of W/G reporters). Inset key¼ 50%. Bubble plots for the light shining on the dress (foreground;

left panels) and the light in the background (right panels; top row: online subjects; bottom row: in-lab subjects). (B) Classification

histograms for a binary logistic regression where the lighting descriptors were used as predictors to distinguish B/K from W/G

reporters—online subjects: correct rate¼ 84% (85% for B/K, 80% for W/G), d0¼ 1.83, R2¼ 0.52; in-lab subjects: correct rate 100%, d0

¼þ‘, R2¼ 1. A test of the full model against a constant-only model was statistically significant, indicating that the predictors (the

verbal descriptors of the lighting conditions) as a set reliably distinguish between B/K reporters and W/G reporters (online subjects:

X
2 ¼ 583, p , 0.001; in-lab subjects: X2 ¼ 66.9, p ¼ 0.037).
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three categories? While the true positive rates for the B/
B observers (51%) are above chance (chance ¼ 25%)
and the ROC analysis shows fair to good performance,
only ;25% of the correctly classified B/B reporters

were classified accurately with high predicted proba-
bility. Furthermore, among those misclassified, most
were classified with strong confidence as being either B/
K or W/G (Figure 7A, third row). There was a delay of
a few minutes between when subjects provided verbal
reports about the dress color and when they did the
color-matching experiment; the perception of the dress
could have switched during this time, as spontaneously
reported by some subjects. That many B/B people were
confidently classified as either B/K or W/G is consistent
with the hypothesis that these subjects may have
switched percepts between when they gave their verbal
report and when they gave their color match. Together
with the results in Figures 2 and 3, the classifier results
suggest that the B/B designation is not a distinct
category. Instead, we interpret the results to indicate
the B/B category as a transient state between B/K and
W/G, which would be consistent with the properties of
a bistable phenomenon.

When the model was fitted using only the L*, u*, or
v* components of subjects’ color matches as the
predictors, the classification performance remained
high (Table 1; Figure 7B) and did not differ as a
function of which component was used as the
predictor: The L*-only model performed no better than
the u*-only model (no prior experience: p¼ 0.5; prior
experience: p ¼ 0.8) or the v*-only model (no prior
experience: p ¼ 0.5; prior experience: p¼ 0.3). The full

Figure 13. When the dress is embedded in scenes with overt cues to the illumination, it is perceived in a way that can be predicted

from the overt cues: W/G when a cool illuminant is cued, B/K when a warm illuminant is cued. (A) The dress was digitally embedded

in simulated contexts designed to convey warm illumination (top row) or cool illumination (bottom). Cues to the illuminant are

provided by a global color tint applied to the whole scene, including the skin of the model, but not the pixels of the dress. (B)

Distribution of subjects’ (N ¼ 1,127; 1,074 online, 53 in-lab) color matches. Conventions as in Figure 1. (C) Results of k-means

clustering assessments of the matching data from (B). Conventions as in Figure 2. The analysis favored a single-component model

(optimal k¼ 1 cluster) for both the warm and cool scene distributions. (D) Distribution of categorical percepts observed (dark-gray

bars) and the distribution predicted from the multinomial classifier (light-gray bars; see Figure 7). Error bars show 95% confidence

intervals. Photograph of the dress used with permission; copyright Cecilia Bleasdale.

Model predictor Subjects

True positive rate

All B/K W/G B/B Other

(L*, u*, v*) Näıve 86% 93% 100% 54% 0%

Not-Näıve 83% 89% 91% 45% 0%

L* Näıve 79% 96% 96% 2% 0%

Not-Näıve 78% 91% 89% 5% 0%

u* Näıve 78% 92% 89% 24% 0%

Not-Näıve 79% 89% 89% 18% 0%

v* Näıve 80% 89% 99% 30% 0%

Not-Näıve 81% 86% 96% 36% 0%

Table 1. True positive rate of multinomial classifiers trained to
predict verbal color reports from color matches (see Figure 7).
Four models were generated: The full model was fitted using
the L*, u*, and v* components of subjects’ color matches as
predictors; three additional models were fitted using either the
L*, u*, or v* component of subjects’ matches as predictors.
Models were fitted with responses from a subset of the online
subjects (half the subjects from Experiment 2, Ntrain¼ 549) and
tested on responses from the left-out subjects (Ntest¼ 547). The
table shows the true positive rates—(# of true positives)/(# of
true positives þ # of false negatives)—for each model, broken
down by subjects’ prior experience with the image (Näıve, Not-
Näıve) and their verbal label (B/K, W/G, B/B, and Other).
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model was more accurate than the L*-only model, but
only among subjects with no prior experience (p ,
0.001; prior experience: p ¼ 0.09). This provides
additional support for the contention that B/K and W/
G reporters are differentiated by both the lightness and
the hue of the matches they select.

Categorical perception of the dress: Switching
perception from one category to another

The evidence presented in Figures 1–7 strongly
suggests that the dress image is an ambiguous image
that the visual system can interpret as one of two
mutually exclusive categorical percepts. When viewing
ambiguous shape images such as the Necker cube,
subjects often report a change in their perception of the
image from one stable state to the other. But it has also
been shown that knowledge of the fact that the image
can be perceived in different ways can have a profound
impact on whether subjects see the image flip. The
online data we obtained came from a diverse subject
pool. Unlike most other online surveys of the
phenomenon, participants were not recruited with links
attached to media reports describing the dress. As a
result, the image was entirely new to many of the
participants in our study. Moreover, of those who had
previously encountered the image, many had no
knowledge of the actual color of the real dress, enabling
us to test the extent to which subjects can change their
perception of the dress and, if so, the impact on flip
rates conferred by knowledge of the image’s multi-
stability.

We asked subjects who had previous experience with
the image about their first encounter with it. The
distribution of verbal color reports corresponding to
the first time that these subjects viewed the dress
(recalled from memory; Figure 8, filled symbol) showed
a greater proportion of W/G than was reported by the
same subjects in response to our presentation of the
image (X2 ¼ 731, p , 0.001). Some of these subjects
must have switched their perception of the dress’s
colors since their first viewing; the results show that
experience with the image biased the population toward
the B/K percept. The relative proportion of B/K first-
encounter reports is comparable to findings from other
surveys and matches the proportion recovered in
experiments of subjects without experience of the image
who were shown it at 100% size (the solid symbol
overlaps the open red circle; Figure 8). As we showed
previously, reducing the size of the image from its
native size on the Internet also biased the population
toward the B/K percept. These two factors (image size
and experience) interact (ANOVA performed with the
data from the Figure 8; open circles confirmed main

effects of scale, p , 0.001, experience, p , 0.001, and
their interaction, p , 0.001).

Among the 845 subjects with prior experience, 577
knew that the true dress color was B/K, allowing us to
ask how knowledge alters perception. Knowledge of
the dress’s color in real life dramatically altered the
ratio of B/K to W/G responses in the population in a
direction that favored B/K (Figure 9A, 9B). Moreover,
knowledge of the true colors increased reports of
flipping between B/K and W/G (Figure 9C). Among
people who first saw W/G yet reported knowing the
true colors of the dress, 42% had switched to B/K (we
confirmed that these individuals were not merely
reporting the dress’s true colors while continuing to
perceive W/G by running their color matches through
our classifier: Only 9% of them were classified as W/G;
76% were classified as B/K, 13% as B/B). Among
people who first saw W/G and reported not knowing
the true colors of the dress, only 14% had switched to
B/K. These results show that knowledge of the dress’s
true colors affected whether people could see it flip.

The distribution of observers across categories was
different between participants with and without
knowledge of the true dress color (compare figure 1 of
Lafer-Sousa et al., 2015, with Figure 9A, right panel;
X2¼ 21, p , 0.001; all data obtained with the 36%
image). Specifically, the proportion of B/K among
participants with knowledge of the true colors (65%)
was higher than the proportion of B/K among
participants with no previous experience (54%). Curi-
ously, among the population who had seen the dress
previously but did not know its colors, we found
roughly the same proportion of B/K as W/G observers
(Figure 9B, left panel); this distribution was different
than observed for participants with no prior experience,
who were much more likely to see B/K (X2¼ 23, p ,
0.001). Individuals with prior exposure but no knowl-
edge of the dress’s colors likely first saw the image in
social media, where it was shown at a larger scale than
we used in this set of experiments. We attribute the
relatively higher levels of W/G reports among this
group—even though the image we showed was at the
smaller size—to the fact that their first view likely
established a prior about the colors of the dress that
had not been updated with any subsequent knowledge
of its true colors.

On average, half of subjects reported experiencing
the dress reverse at least once, while only 12% reported
frequent reversals (Figure 9C). Given that reversal rates
in multistable perception can be influenced by cognitive
factors like personality, creativity, and attention, we
examined the proportion of subjects reporting reversals
as a function of their professional art experience
(subjects could indicate professional experience with
graphic design, illustration, photography, painting, and
art history; Figure 9D). Although the proportion of
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people who reported having seen the dress switch at
least once did not differ as a function of art experience
(Figure 9D, left), the proportion who reported frequent
reversals was different across different art experience
(Figure 9D, right). Compared to nonartists, reports of
frequent reversals were 3 times higher among subjects
who indicated having professional illustration experi-
ence (p¼ 0.004; two-proportion z test) and 2.5 times
higher among those with professional graphic-design
experience (p ¼ 0.005).

Together, the analysis of the population responses of
different categories of observers shows that (a) how you
first saw the dress establishes a prior; (b) knowledge of
the colors of the dress in real life updates this prior,
biasing it toward B/K; (c) varying the image size
systematically biases the percept (increasing image size
increases W/G reporting; reducing image size increases
B/K reporting); (d) experience with the image over
time, independent of knowledge of the dress’s true
colors, biases the population toward B/K; and (e)
reversal frequencies vary with professional art experi-
ence. These results uncover the important role played
by both low-level perceptual features (such as image
size) and high-level features (such as knowledge) in
shaping how people perceive the colors of #TheDress,
and add to a growing body of evidence that exposure to
social media can change the colors we see.

What accounts for the different ways in which
the dress colors are seen?

We have argued that the multistability of the image
derives specifically from the fact that colors of the
image align with the daylight locus (Brainard &
Hurlbert, 2015; Conway, 2015; Lafer-Sousa et al.,
2015). We hypothesized that in this context, multiple
percepts become possible because the illumination cues
in the image are ambiguous: Subjects may infer either a
warm or a cool illuminant, and discount it accordingly.
Consistent with this notion, color matches made by B/
K and W/G reporters systematically shifted along the
daylight locus, with B/K matches shifting away from
the warm end of the locus (consistent with discounting
a warm illuminant) and W/G matches shifting away
from the cool end (consistent with discounting a cool
illuminant; Figure 10A, 10B, left plots). W/G matches
were also lighter on average than B/K matches,
consistent with the idea that subjects are discounting
not only chromatic biases in the illuminant but also
lightness biases expected if they thought the dress was
in shadow (Figure 10A, 10B, right plots). In our prior
report, we tested the idea that illumination assumptions
underlie the individual differences in color perception
of the dress by determining how perception changes
when the dress is embedded in a scene with disambig-

uated lighting (Lafer-Sousa et al., 2015). The results
support the idea that observers who see B/K assume the
dress is illuminated by a warm illuminant, while
observers who see W/G assume that it is illuminated by
a cool light source. Further evidence for this idea has
been provided by others (Toscani, Gegenfurtner, &
Doerschner, 2017; Witzel, Racey, & O’Regan, 2017).

To further test the hypothesis, we applied a
classification algorithm to data collected in our initial
survey (1,074 subjects online, 53 subjects in the lab), in
which we asked people to explicitly report on the
lighting conditions in the image (for the full question-
naire, see the supplementary material of Lafer-Sousa et
al., 2015). We ran two experiments to assess subjective
experience of the lighting conditions. First, we asked
subjects to rate the illumination temperature on a scale
of 1 to 5 for cool versus warm; second, we asked them
to check off any of a number of possible verbal
descriptors, including ‘‘dim,’’ ‘‘dark,’’ ‘‘bright,’’
‘‘warm,’’ ‘‘cool,’’ ‘‘blueish,’’ and ‘‘yellowish’’ (see
Methods and materials). Most subjects, regardless of
their perception of the dress, reported the background
illumination in the image to be warm (Figure 11, right
panels; B/K and W/G reporter ratings did not differ,
according to a t test—online subjects: p¼ 0.2; in-lab
subjects: p ¼ 0.5). But subjects who saw W/G differed
from those who saw B/K in terms of their inference
about the light on the dress itself: W/G percepts were
associated with cool illumination, as if the dress were
backlit and cast in shadow, while B/K percepts were
associated with a warmer illumination, as if the dress
were lit by the same global light as the rest of the room
(Figure 11, left panels; t tests—online subjects: p ,
0.001; in-lab subjects: p , 0.001). These analyses
quantify results in our initial report and are consistent
with other findings (Chetverikov & Ivanchei, 2016;
Toscani et al., 2017; Wallisch, 2017; Witzel et al., 2017).

The results obtained using data on the warm/cool
ratings were confirmed by an analysis of the descriptors
that subjects used to characterize the lighting. W/G and
B/K subjects were indistinguishable in the words they
used to report on the illumination of the background
(in Figure 12A the descriptors form one cluster in the
right-hand bubble plots, where the most common
descriptor was ‘‘bright’’) but showed strikingly different
word choices when reporting on the illumination over
the dress itself (descriptors form two clusters: Figure
12A, left-hand bubble plots), with words like ‘‘dim’’
and ‘‘cool’’ corresponding to higher likelihoods of W/G
reporting and words like ‘‘warm’’ and ‘‘bright’’ to
higher likelihoods of B/K reporting. The binary logistic
regression using the lighting descriptors as predictors
reliably classified B/K and W/G reporters (Figure 12B,
classification histograms; online subjects: correct rate¼
84%, d0¼ 1.83, R2¼ 0.52; in-lab subjects: correct rate¼
100%, d0 ¼þ‘, R2¼ 1) and outperformed a constant-
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only model (online subjects: X2¼ 583, p , 0.001; in-lab
subjects: X2¼ 66.9, p¼ 0.04). Note that, once again, the
results obtained online were consistent with those
obtained in the lab.

Quantification of color-matching data obtained from
1,127 people mostly online using cue-rich disambigu-
ating stimuli show that for both of the disambiguating
scenes (cool and warm illumination simulations; Figure
13A), the optimal k-means clustering solution is a
single-component model (one cluster), consistent with
the unimodal distribution of color terms reported
under these conditions (Figure 13B–13D). When asked
to rate the lighting conditions in the simulated scenes,
subjects also conformed to ratings consistent with the
lighting conditions cued (Figure 14). The results
confirm that embedding the dress in scenes with
unambiguous illumination cues resolves the individual
differences in perception of the dress. The results also
prove that the individual differences measured online,
for the original dress image, are not simply the result of
variability in viewing conditions.

What informs people’s priors? Immediate prior exposure

Our results show that experience acquired over the
medium term (knowledge of the true colors of the
dress) affects perception. What about experience in the
very short term? Presumably priors on lighting are
updating constantly, weighted by the reliability of the
data. We sought to test whether exposure to a
disambiguated version of the image that was digitally
manipulated to provide clear information about the
illuminant affects how subjects see the original image.

We were able to address this hypothesis because we
carried out two versions of Experiment 1 (with different
participants; Figure 15). In one version, subjects
provided color matches for the original dress image
after being exposed to the image simulating a warm
illuminant; in the second version, subjects provided
color matches for the original dress image after being
exposed to the image simulating a cool illuminant. We
also conducted a separate experiment (Experiment 2) in
which subjects were never exposed to the disambigu-
ating stimuli. At the beginning of all experiments,
subjects provided color terms for the original image. In
our analysis we leveraged the discovery described
previously (Figure 7), that color matches reliably
predict verbal reports. We compared the verbal reports
made by subjects at the beginning of the experiment
with the verbal reports we predicted they would make,
given their color matches, at the end of the experiment.
If exposure to a disambiguated stimulus updates a prior
about the lighting condition, the predicted verbal
reports made on the basis of color-matching data
should differ from the verbal reports made by the
subjects for Experiment 1 but not Experiment 2;
specifically, the predicted reports in Experiment 2
should be biased toward B/K when subjects were
exposed to the warm scene and to W/G when exposed
to the cool scene.

Figure 15A shows the results for the control case—
no exposure to a disambiguating stimulus—and repli-
cates the findings in Figure 1A: The density plot shows
two strong peaks, corresponding to B/K and W/G
reporters (Figure 15A is a subset of the data shown in
Figure 1A). We deployed our classifier trained on
independent data (Figure 7, full model) to categorize
observers on the basis of the color-matching data they
provided. The distribution of verbal reports predicted
by the classifier (light-gray bars) is almost identical to
the distribution of verbal reports that subjects provided
(dark-gray bars; Figure 15D). Figure 15B shows the
results of Experiment 1, Order A, in which a separate
set of subjects (N ¼ 553) viewed the simulated warmly
lit scene immediately before they gave color matches
for the original image. The distribution of verbal
reports (obtained prior to color matching) is essentially
indistinguishable from the distribution obtained in the
control experiment (compare dark bars in Figure 15E

Figure 14. When the dress is embedded in scenes with overt

cues to the illumination, the lighting is perceived in a

predictable way. Subjects’ ratings of the illumination in the

simulated scenes from Figure 13 (N¼ 1,127; online¼ 1,074; in-

lab ¼ 53): warm illumination (top row) and cool illumination

(bottom row). Conventions are as in Figure 11; data are

grouped by the color terms that subjects used to describe the

original dress image. Subjects’ ratings of the foreground light

did not differ as a function of initial percept (p ¼ 0.9), nor did

their ratings of the background light (p¼ 0.8; two-sample t tests

comparing the ratings provided by subjects who originally

reported B/K vs. those who originally reported W/G). Rating

variance was higher for the original image (Figure 11) than for

either test (cool: p , 0.001; warm: p , 0.001; F test), but

similar for the tests (p¼ 0.08).
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with dark bars in Figure 15D), providing reassurance
that we sampled a sufficient number of subjects to
recover an accurate estimate of the population distri-
bution. But compared to Figure 15A, the density plot
in Figure 15B shows only one strong peak, which aligns
with the color matches made by B/K subjects in the
control experiment (the contour contains 80% of the
data). These results show that more subjects reported
B/K, and fewer reported W/G, than expected on the
basis of the verbal reports that they provided. K-means
clustering returned two optimal clusters, showing that
the W/G peak was still present, albeit diminished. The
bar plots (Figure 15E) quantify the shift. Figure 15C
and 15F show the results for an independent set of
subjects (N ¼ 523) who participated in Experiment 1,

Order B. Unlike with Order A, the data look similar to
the control case—the density plot shows two strong
peaks, and the distribution of verbal reports predicted
from the color matches is not different from the
distribution of verbal reports that subjects actually
provided. These results show that priming subjects to
see B/K influences them to see B/K, whereas priming
subjects to see W/G has no effect.

What informs people’s priors? Long-term exposure
(chronotype)

The initial media reports, and many preliminary
scientific studies, implied that a given observer’s

Figure 15. Priming with disambiguated scenes of the dress affects subsequent viewings, providing evidence that priors on lighting

conditions can be updated by short-term experience. Two experiments were conducted with separate groups of subjects. In

Experiment 1, subjects gave color matches for the original dress image immediately after viewing the disambiguating stimuli from

Figure 13; in Experiment 2, subjects were never exposed to the disambiguating stimuli. In Experiment 1, two groups of subjects saw the

disambiguating stimuli in one of two orders that differed depending on which disambiguating stimulus immediately preceded the

color-matching task. All subjects provided verbal reports prior to viewing the disambiguating stimuli. (A) Analysis of data from

Experiment 2 (online subjects: N¼ 1,126). The scatterplot (conventions as in Figure 1A) shows two peaks. (B) Analysis of color-

matching data from Experiment 1, Order A (N ¼ 553; subjects viewed the simulated warm scene—the B/K primer—directly before

performing the color-matching task on the original image). K-means clustering returns two clusters, but there is one dominant peak. (C)

Analysis of color-matching data from Experiment 1, Order B (N¼ 523; subjects viewed the simulated cool scene—the W/G primer—

directly before the color-matching task on the original image). The scatterplot has two strong peaks. (D) Histograms comparing the

distribution of categorical percepts recovered in Experiment 2 (control, no-primer) during the verbal task and the color-matching task.

Dark-gray bars show data from the verbal reporting task; light-gray bars show the distribution of verbal reports predicted from the

color matches using the category-response model (see Figure 7A; the classifier was trained on half the data and the plot shows

classification for the other half). Error bars show 95% confidence intervals. Distributions do not differ. (E) Bar plots showing the

distribution of categorical percepts for Experiment 1, Order A. Dark bars show verbal reports collected prior to priming; light bars show

verbal labels predicted from color matches made following exposure to the B/K primer. Asterisks indicate a significant shift from W/G

to B/K reporting after B/K priming (dark bar falls outside of the 95% confidence interval of the light bar). (F) Histograms comparing

distributions for WG primer (Experiment 1, Order B). Photograph of the dress used with permission; copyright Cecilia Bleasdale.
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experience of the image was stable over time. The
results we described earlier in this article support an
alternative conclusion: that people can switch their
perception of the image. In light of these results, we
sought to revisit our first hypothesis about the origin of
the individual differences in how people see the dress—
that they reflect ingrained differences in the priors
people hold about the spectrum of the illuminant. Most
typical illuminants have chromaticities that fall along
the daylight locus, which from a neutral point extends
toward either a warm (orange) or a cool (blue) bias. We
had hypothesized that cumulative life experience
shaped the prior one holds about the spectrum of the
illuminant, and that in the absence of strong cues to the
illuminant, the visual system relies on these priors to
discount the spectral bias in the illuminant. We
speculated that the way in which the dress was seen
could therefore be predicted by one’s chronotype, with
day larks being more like to report W/G (having a prior
biased toward blue-skylight illumination) and night
owls being more likely to report B/K (having a prior
biased toward warm artificial light). We tested this idea

by analyzing subjects’ self-reported wake and bed times
(hour of the day); these data were acquired at the time
of our initial survey, and we queried many people who
had no previous experience with the dress image.
Figure 16A shows subjects’ probability of being awake
at any given hour of the day as a function of dress-color
report. The W/G distribution is very slightly phase
shifted (to the left) relative to the B/K distribution,
indicating earlier wake and bed times for W/G
reporters (day-lark chronotype). To test the explana-
tory power of chronotype, we ran a binomial regression
analysis, using the set of subjects’ waking and sleeping
hours as predictors (each hour of the day was assigned
a value of 1 or 0) to distinguish B/K from W/G
reporters (Figure 16B). The regression performed
above chance for the data set collected in the lab but
did poorly for the online population (in-lab: correct
rate ¼ 81% overall, 79% for B/K, 86% for W/G, d0 ¼
1.86, R2¼ 0.54; online: correct rate¼ 67% overall, 93%
for B/K, 20% for W/G, d0¼0.68, R2¼0.1). We also ran
a stepwise regression on the in-lab data set to determine
which predictors offered the most explanatory power.
In each step, a given predictive variable was considered
for addition to or subtraction from the set of
explanatory variables, evaluated on the basis of how
well the new predictive variable improved the model.
The set of explanatory variables included six specific
hours of the day (7 a.m., 8 a.m., 9 a.m., 10 p.m., 11
p.m., 1 a.m.) and two interactions terms (7 a.m. with 11
p.m. and 9 a.m. with 1 a.m.).

The predictive power of the sleep–wake cycle on
dress percept shown in Figure 16 is weaker than we
might have expected, given the correlations reported by
Wallisch (2017). There are four differences between the
two studies. First, Wallisch queried subjects using links
tied to news reports of the dress image; we queried
subjects using surveys that were independent of news
reports of the phenomenon (and many of our subjects
were entirely unfamiliar with the image). Second,
Wallisch asked people how they saw the dress when
they first encountered it (a memory test); we asked
people not only how they saw it initially but also how
they saw it during the study (a perception test). Third,
Wallisch asked people to self-report their chronotype
(day lark versus night owl); we asked people to report
the hours that they woke up and went to bed. Fourth,
Wallisch surveyed about 13,000 subjects; we surveyed
about 1,000.

Could these differences account for the different
results in the two studies? First, a person’s report of their
own behavior can differ depending on the circumstances
of questioning, as political polling shows: People can
report favoring different candidates depending on who is
asking the question. Although the news stories used to
recruit participants in the Wallisch study did not
themselves describe the chronotype theory, many

Figure 16. Relationship of chronotype to dress percept. (A)

Probability of being awake at any given hour of the day as a

function of dress percept (B/K reporters: blue bars; W/G

reporters: gold bars; top row: in-lab, N ¼ 49; bottom row:

online, N¼ 931, subjects from Experiment 1). For a given hour

of the day, P(awake)B/K ¼ (# of B/K reporters awake)/(# of B/K

reporters) and P(awake)W/G¼ (# of W/G reporters awake)/(# of

W/G reporters). Computed from subjects’ reported wake and

bed hours. (B) Classification histograms for binomial logistic

regression over the set of subjects’ waking and sleeping hours

(where each hour of the day was assigned a value of 1 or 0 and

served as a predictor) to distinguish B/K from W/G reporters.

In-lab: overall hit rate¼ 81%; B/K hit rate¼ 79%; W/G hit rate¼
86% (d0 ¼ 1.86; R2 ¼ 0.54). Online: overall hit rate ¼ 67%; B/K

hit rate ¼ 93%; W/G hit rate ¼ 20% (d0 ¼ 0.68; R2 ¼ 0.1).
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contemporary news stories did describe this theory (e.g.,
Rogers, 2015). It is conceivable that people who read the
stories linked by Wallisch would have read more widely
on the topic, and come across explicit descriptions of the
chronotype theory. If so, could this information have
biased them to report a chronotype that lined up with
their dress percept? This explanation reverses the
direction of causality (dress percept influencing reports
of chronotype rather than chronotype influencing dress
percept), and is plausible: The way we saw the dress
powerfully shaped our identity. People formed camps
defined by the different dress percepts that transcended
race, geography, and culture; it is not unreasonable to
think that this new identity influenced how we report a
subjective chronotype. Second, people’s memories are
fallible, and not always an accurate indication of
perception (exit polls differ from actual election results).
Third, it is not clear that self-reports of chronotype are
accurate indications of actual sleep–wake cycles. Que-
rying the actual hour provides a direct test of the specific
hypothesis that differential exposure to daylight influ-
ences the perceptual state. Querying category (day lark
versus night owl) is indirect, and potentially inaccurate.
One person’s idea of a day lark might be very different
from another’s; the same category might correspond to
very different amounts of daylight exposure. We are not
aware of any studies showing that people would be more
likely to misreport their sleep–wake cycle if queried as to
the specific hour rather than the chronotype category.
To the contrary, we suspect that people can accurately
remember the hour they wake up and go to bed because
they have several explicit markers of the time of day
(alarm clocks, radio programs, TV shows).

Finally, is sample size to blame? The large sample size
we used was sufficient to demonstrate categorical
perceptions, and should be sufficient to uncover
phenomena that are as fundamental to the way we see
the dress. Nonetheless, it remains possible that our study
lacked sufficient power to address the chronotype
theory. One could address the question by reanalyzing
the data from Wallisch to determine how much data are
required, conducting an analogous power analysis to the
one we present in Figure 5. Taken together, the most
parsimonious conclusion of the two studies is threefold:
Chronotype has a modest impact on dress percept; the
way someone sees the dress can bias how they report
their chronotype; and, as with other multistable images,
many factors influence how the dress is perceived, and
no single predictor has complete predictive power.

Do differences in where subjects report looking
affect how they see the dress?

How a subject resolves the ambiguity in a multistable
image such as the Necker cube can depend on where in

the image a subject looks (Chastain & Burnham, 1975;
Kawabata et al., 1978) or attends (Peterson & Gibson,
1991), an idea proposed by Necker himself (Long &
Toppino, 2004). Toward our goal of assessing the extent
to which the dress is analogous to multistable shape
images, we sought to address whether subjective reports
of looking behavior differed between subjects who
perceivedW/G and subjects who saw B/K. Subjects were
asked to identify where in the image they spent most of
their time looking, using a grid overlaying the image as a
guide (Figure 17A, left panel). We appreciate that
subjective reports of eye movements are not a good
indicator of actual eye movements (Vo, Aizenman, &
Wolfe, 2016; Wu & Cavanagh, 2016), and interpret these
results as indications of what part of the image a subject
considered most important (i.e., what part of the image
they attended to). We focus our analysis on subjects who
were unfamiliar with the image and who viewed the
dress as either W/G or B/K, and sorted the responses on
the basis of their verbal reports (Figure 17A, right
panel). We draw three conclusions. First, the patterns of
responses for both groups of observers are not random:
Both W/G and B/K observers tend to identify regions in
the center or top half of the image. This observation is
consistent with other findings showing that, on average,
subjects generally have a center bias (Tatler, 2007), and a
top bias for visual search (Durgin, Doyle, & Egan,
2008). Second, the patterns of responses for the two
groups of observers were different: B/K observers were
more biased toward the upper right (shoulder) region of
the dress, whereas W/G observers were more inclined to
identify the center of the dress (within the fat horizontal
brown stripe). Peak locations for each group are
indicated with a bold line around the cell (Figure 17A).
We performed a binomial regression on the reported
looking locations and then did an ROC analysis to
compare the differences in perceived looking behavior
between the two groups (Figure 17C); the analysis shows
that the differences between the groups are significant.
Third, both sets of observers identified a component in
the dress image that corresponds to the chromatic
element that defines their perceptual state: B/K observ-
ers tend to identify a blue region, whereas W/G
observers identify a brown region. These results suggest
that attention to different local components (spatial
frequency and color statistics) within the image play a
role in determining what colors are seen in the image.

Is skin tint a sufficient cue to the illuminant?

To test the possible role of memory colors—in
particular skin color—in color constancy, we deployed
a variation of our disambiguation paradigm (Experi-
ment 1; Figure 13): We asked subjects to report on the
colors they saw for versions of the image that were

Journal of Vision (2017) 17(12):25, 1–30 Lafer-Sousa & Conway 21



manipulated to include only a low-level cue (an
illuminant-biased uniform surround) or skin with an
illuminant-biased tint (Figure 18). Subjects were also
queried on the cue-rich stimuli from the disambigua-
tion paradigm described in Figure 13. The RGB values
of the pixels that made up the dress portion of all the
disambiguation images were never modified (they
retained their values from the original dress image).
The experiment was carried out under controlled
viewing conditions in the laboratory (N ¼ 53).

When asked to rate the lighting conditions in the
cue-rich scenes, subjects provided ratings consistent
with the lighting conditions cued (data not shown, but
are included in the analysis shown in Figure 14).
Replicating our prior report (Lafer-Sousa et al., 2015)
and the findings in Figure 13, and consistent with color-
constancy predictions, most subjects’ percepts—re-
gardless of how subjects initially perceived the dress’s

colors—conformed to the percept predicted by the
color of the illuminant cued. The distribution of subject
percepts changed dramatically when we changed the
context from warm to cool (p , 0.001, paired t test):
When cool light was cued, most subjects reported W/G
(Figure 18A, left panel); when warm light was cued,
most subjects reported B/K (Figure 18A, right panel).
To test whether a low-level sensory mechanism like
receptor adaptation or local color contrast (long
argued to play a powerful role in color constancy;
Brainard & Wandell, 1992; Hurlbert & Wolf, 2004;
Land, 1986) could disambiguate the dress’s colors, we
superimposed the isolated dress on uniform fields
matched to the mean chromaticity of the cue-rich
scenes. If low-level sensory adaptation or local color
contrast is sufficient to achieve color constancy,
surrounding the dress by a yellowish field should induce
a uniform B/K percept, while surrounding it by a bluish

Figure 17. Self-reported looking behavior differs between B/K and W/G percievers. At the end of Experiment 1, subjects were asked to

indicate the region of the image they felt they spent the most time looking at, using a grid overlaying the image as a guide. (A) Heat

maps show data sorted by verbal report (left: B/K reporters; right: W/G reporters). The analysis was restricted to subjects with no

prior exerience with the image (B/K¼ 124; W/G¼ 62). The maps were smoothed with a moving average of 23 2 grid squares. Peak

locations for each group are shown with a bold outline. (B) Classification histograms from a binary logistic regression fitted using self-

reported looking locations. The looking predictor variable was encoded as a binarized vector corresponding to all 96 grid locations,

where reported peak look location was assigned a value of 1 and all other locations were assigned a value of 0. Histograms quanfity

the probability of being B/K or W/G, given the looking reports. A test of the full model against a constant-only model was significant

(X2 ¼ 76; p ¼ 0.008; R2 ¼ 0.33), showing that the looking report distinguishes B/K from W/G. (C) Receiver operating characteristic

(ROC) analysis confirms that the distributions in (B) are separable (ROC¼ 0.84; optimal threshold to assess classification accuracy is

;0.6). With a threshold of 0.6, the model hit rate was 76% for B/K and 76% for W/G (d0 ¼ 1.44). Photograph of the dress used with

permission; copyright Cecilia Bleasdale.
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field should induce a W/G percept. Contrary to this
prediction, when the dress was surrounded by the
uniform chromatic backgrounds subjects’ percepts did
not conform to the percept predicted by the color of the
background; the distribution of subject percepts was
the same for both backgrounds (p¼ 0.71, paired t test;
Figure 18B). The cue-rich scenes provided significantly
better color constancy than the uniform surrounds
(summary statistics provided in Table 2). Taken
together, these results suggest that a strictly low-level
mechanism is insufficient to elicit a stable color percept
of the dress.

To test whether skin chromaticity is by itself a
sufficient cue to achieve good color constancy, we
presented the dress superimposed on the woman on a
white background and tinted her skin according to the

spectral bias of the illuminants simulated in the cue-rich
scenes. Consistent with the hypothesized role of skin
memory color in discounting the illuminant from a
scene, we found that subjects’ color percepts were
predicted by the color bias of the skin tint. The
distribution of subject percepts changed dramatically
between the warm and cool conditions (p¼ 0.002, paired
t test): When the tint cued cool light, most subjects
reported W/G (Figure 18C, left panel); when the tint
cued warm light, most subjects reported B/K (Figure
18C, right panel). The presence of tinted skin alone was
significantly more effective than the uniform illuminant-
biased background in achieving good color constancy,
and was as effective as the cue-rich scene (Table 2).
These results suggest that people can use skin chroma-
ticity to recover information about the spectral compo-
sition of the illuminant to achieve color constancy.

Discussion

This study addresses the extent to which the dress
image is multistable. For an image to be multistable, it
is widely assumed that it must appear to change state
(flip or reverse) on a short timescale (the Necker cube is
typically seen to pop out, and then a few seconds later
to recede). But a review of the literature (discussed in
the following) suggests that rapid flipping is not a
necessary feature of stimuli that have been considered
multistable. Rather, the key properties of multistable
stimuli are that they have more than one plausible
percept; that the alternative percepts are mutually

Figure 18. Behavioral evidence that people can achieve color

constancy by using human skin as a reference to ascertain the

spectral bias of the light source. Histograms showing subjects’

reports of the dress’s color when it was embedded in simulated

contexts designed to convey cool illumination (left column) or

warm illumination (right): (A) cue-rich scenes; (B) uniform

illuminant-biased chromatic backgrounds; (C) skin with illumi-

nant-biased tints, in isolation. The color of the bar corresponds

to the verbal reports (key at top). Insets show stimulus

thumbnail (see Supplementary Image Appendix for full-size

reproductions). Error bars were calculated using bootstrapping

(10,000 bootstrapped samples). N¼ 53 subjects. See Table 2 for

McNemar’s chi-square tests comparing goodness of constancy

achieved across stimulus conditions. Photograph of the dress

used with permission; copyright Cecilia Bleasdale.

Test comparison X
2

p

Cue-rich scene (warm) vs. uniform

background (warm)

22.04 3 3 10�6

Cue-rich scene (cool) vs. uniform

background (cool)

15.43 8 3 10�5

Skin tint (warm) vs. uniform

background (warm)

15.04 1 3 10�4

Skin tint (cool) vs. uniform

background (cool)

15.06 1 3 10�4

Skin tint (warm) vs. cue-rich scene

(warm)

2.25 0.1

Skin tint (cool) vs. cue-rich scene

(cool)

0.25 0.6

Table 2. McNemar’s chi-square tests comparing goodness of
constancy achieved in different stimulus conditions (see Figure
18). McNemar’s test is a within-subject z test of equality of
proportions for repeated measures. Each test compares the
proportion of subjects that did or did not conform to the
percept cued in stimulus condition X versus the proportion of
subjects that did or did not conform to the percept cued in
stimulus condition Y.
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exclusive; and that switches between the alternative
percepts can occur within single individuals. By these
criteria, the results presented here provide the first
evidence for a multistable color image. Quantitative
analysis of color-matching data from a large, diverse
population shows that the dress image is experienced
categorically as either blue and black (B/K) or white
and gold (W/G). A power analysis shows that several
hundred observers are needed to uncover the categor-
ical nature of the population distribution. The two
perceptual states were distinguished not only by
differences in lightness, as suggested previously (Ge-
genfurtner et al., 2015), but also by differences in hue.
This discovery is important: A multistable image with
states defined only by differences in lightness might not,
arguably, be considered a multistable color image.
Classifiers trained on the color-matching data per-
formed very well: Given your color-matching data, the
algorithm can very likely report how you describe the
dress. These results not only support the idea that the
dress is multistable but also provide an important
example of subjective color experiences being predicted
from objective colorimetric data.

Color matches made by the population of B/K
observers covered a larger region of color space than
those made by W/G observers. This result may reflect
the asymmetry in blue/yellow perception: Changes in
yellowness are more detectable than changes in blueness
(Winkler, Spillmann, Werner, & Webster, 2015). The
asymmetry may also reflect the lower communicative
efficiency of cool colors compared to warm colors
(Gibson et al., 2017). Color matches to the bottom
region of the dress gave rise to three clusters instead of
two. One author (BRC) initially saw the dress as blue/
brown (B/B), and so we were initially inclined to
interpret the third cluster as demarking a stable B/B
category. But the cluster peak falls outside of the color
matches made by observers who report B/B. Seeing the
dress as B/B appears to be a transition state. Our
classifier accurately classified only half of B/B reporters,
and only with relatively low probability. Among all
groups of subjects, those reporting B/B (and ‘‘other’’)
also reported the highest rates of changing their minds
about the color of the dress. Rather than identifying a
stable B/B category, the additional cluster recovered by
the cluster analysis subdivides the people who see the
dress as B/K into separate dark-blue and light-blue
reporters. This subdivision of blue is reminiscent of some
languages that carve blue into distinct light and dark
categories (Winawer et al., 2007).

The results we obtained in the lab were generally
consistent with those obtained online, suggesting that
the neural operations that give rise to different
perceptions of the dress are largely invariant to low-
level stimulus features such as mean luminance and
white point, which vary among different displays.

These results contribute to a growing body of work that
exploits the greater power and participant diversity
afforded by online experiments (Wilmer et al., 2012).

#TheDress: Evidence that it is multistable

When the image first went viral on the Internet,
many people stated that they had a stable perception of
the dress and were surprised that others saw it
differently (Rogers, 2015). The apparent lack of
reversibility is evidence against the notion that the
image is analogous to multistable shape images such as
the Necker cube. But is a person’s experience of the
dress really fixed? We found that about 50% of subjects
reported a reversal prior to participating in our
experiment; about 12% reported that their experience
of reversals was frequent. We did not ask subjects if
their perception of the dress flipped while they
performed our experiment, but several subjects tested
in the lab spontaneously reported that it did. Percep-
tual reversals of the dress are probably not as rare as
initially suggested in the popular press. The general
assumption that one’s perception of the image is fixed
may partly be accounted for by the fact that people do
not look at the image for very long. Given our own
experience, we suspect that requiring subjects to
maintain engagement with the image for longer periods
of time would promote reversals; extended, continuous
exposure promotes reversals for other multistable
images (Leopold, Wilke, Maier, & Logothetis, 2002).
Consistent with the role of top-down factors in
determining how multistable shape images are seen
(Scocchia et al., 2014), we found that knowledge of the
dress’s color in real life increased the likelihood that
subjects experienced a reversal, as did having profes-
sional illustration and graphic-design experience. Over
time the population has gravitated toward seeing the
dress as B/K, its colors in real life. That peoples’
perception has drifted toward the true colors of the
dress is reminiscent of some other ambiguous images,
such as the Dalmatian image (Gregory, 1970) and
Mooney faces, where knowledge of what is being
depicted has a profound (and stable) impact on how the
ambiguous image is subsequently seen (Lupyan, 2017).
But knowledge of the dress’s true colors is not by itself
decisive; many people who know its true colors
maintain that the image appears W/G, suggesting the
dress is more similar to a multistable image than a
simple ambiguous one.

Although we found some evidence that people can
change their mind about the color of the dress, most
observers said that the image did not flip spontaneously
or frequently, which appears to contradict the idea that
the dress is multistable. But is frequent perceptual
flipping a necessary feature of the class of stimuli that
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should be grouped together as being multistable?
Perhaps not. The reversal frequency of multistable
images varies from individual to individual and
stimulus to stimulus; the ease of reversibility depends
on (among other factors) ambiguity type and prior
knowledge. For example, content reversals and figure–
ground reversals occur with higher frequency than
perspective reversals (Kosegarten & Kose, 2014). Some
multistable images, such as the rotating dancer, are
notoriously ‘‘sticky’’ (some people never spontaneously
see the dancer change direction). Moreover, subjects
rarely report spontaneous reversals unless they are told
that the images can be seen in different states, even for
the Necker cube (Rock & Mitchener, 1992). And even
knowledge of multistability is not always sufficient to
induce reversals (Kosegarten & Kose, 2014). That most
people’s experience of the dress image is relatively
stable is not sufficient to reject the idea that the image is
multistable. The stickiness of the dress image may
simply indicate that the visual apparatus prioritizes
stable and consistent color perception, which may
explain why so few examples of multistability in color
have been discovered.

The perception of multistable images is affected not
only by top-down factors such as prior knowledge but
also by bottom-up factors (Long & Toppino, 2004)
such as the local image statistics at the point of gaze
(Chastain & Burnham, 1975; Kawabata et al., 1978;
Kawabata & Mori, 1992). Reducing differences in
texture between the dress and the surround (by blurring
or shrinking the image) increased reports of B/K
(Lafer-Sousa et al., 2015). When asked to identify the
region they looked at most, subjects who reported B/K
selected a blue region, whereas subjects who reported
W/G picked a gold region. Thus all subjects tended to
discount as achromatic the component that they
thought they were not looking at. Where one looks will
bias the interpretation of color statistics across a scene
(Toscani, Valsecchi, & Gegenfurtner, 2015) and influ-
ence color induction (Brenner, Granzier, & Smeets,
2007; Hansen & Gegenfurtner, 2005), providing an
explanation for the looking behavior: B/K reporters
tended to focus on the right edge of the dress, where
color judgments would reflect stronger induction by the
warm background. W/G reporters often identified
regions in the center of the image, away from the warm
background. Curiously, the most common region
identified across all subjects tended to cover a large
area of uniform color (B/K: the broad blue shoulder;
W/G: the wide dark stripe), perhaps reflecting the
importance of low spatial frequencies in color con-
stancy (Dixon & Shapiro, 2017). Although these
analyses suggest that bottom-up factors shape how we
see the dress, it is possible that where subjects say they
look is caused by how they see the dress’s colors. Taken
together, the evidence presented here suggests that

color images can be bistable. Documentation of
another such image will be needed to prove the case.
One possible case is the pink/white versus gray/teal
shoe image, which shares many similar features to the
dress image, and importantly, many people have
reported spontaneously switching their perception of
the image (The Guardian, 2017; Huffington Post,
2017). Both the shoe image and the dress image are
comprised of an achromatic protion and the chromatic
portion; and both with ambiguous cues to the lighting.

#TheDress: Assumptions about the illumination
that are updated over short and long timescales
explain the individual differences

In our preliminary report, we argued that the image
is consistent with two different interpretations: that the
dress is in shadow, illuminated by bluish light (in which
case people see the dress as W/G), or that it is
illuminated by a warm light (in which case people see it
as B/K). Here we tested this hypothesis directly by
analyzing the results of the subjects’ reports of the
lighting conditions. Indeed, the largest factor that
determined how the dress was seen was how subjects
interpreted the illumination: Subjects who thought the
dress was in shadow were much more likely to see it as
W/G. Our results show that the inferences about the
lighting correspond to whether subjects segment the
scene into one or two frameworks (Zdravkovic,
Economou, & Gilchrist, 2012): On the one hand, B/K
reporters make similar judgments about the light
illuminating the background and the light illuminating
the foreground (one framework: bright, warm direct/
global illumination); on the other hand, W/G reporters
make dissimilar judgments about the background and
foreground lighting (two frameworks: bright, warm
background light, but dim/cool foreground light,
consistent with cast shadow).

The two different interpretations of the dress’s colors
may be enabled because the chromaticities of the pixels
within it are restricted to the colors of the daylight axis
(Lafer-Sousa et al., 2015): When viewed in isolation, all
the pixels are either bluish or orangish. There is no other
chromatic information available for the visual system to
resolve the lighting conditions. We argued that people
must rely not only on other cues to sort out the lighting
conditions but also on priors about what they assumed
the lighting conditions to be. These priors are presum-
ably established over both a short time frame (what time
of day is it now? What illuminant were you recently
experiencing?) and a longer time frame (what sort of
light are you most often exposed to?). We tested for
priors acquired over both timescales. Priming subjects
with an unambiguous version of the image biased
subjects to make color matches consistent with that
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unambiguous version, regardless of how they said they
saw the image initially. These results provide evidence
that subjects flipped their perception during the exper-
iment, and support the idea that the brain updates its
illumination priors as soon as reliable information about
the lighting is obtained. But curiously, we saw these
effects only in one direction: Priming with a warm
illuminant predisposed people to make color matches
consistent with B/K, but priming with a cool illuminant
had little impact. We do not have an explanation for the
asymmetry, although it is consistent with three other
observations showing that W/G is less stable over time:
The B/K report was increased by (1) reduced image size,
(2) any prior exposure to the image, and (3) knowledge
of the color of the dress in the real world.

In the initial media reports of the dress, we outlined a
chronotype theory to account for the individual
differences (Lafer-Sousa et al., 2015; Rogers, 2015).
According to this theory, day larks see the dress as W/G
while night-owls see it as B/K. The idea was that day
larks are more exposed to a blue spectral bias in the
illuminant, and so are more likely to discount the blue
component of the dress and see the dress as W/G; night
owls are more exposed to incandescent light with an
orange spectral bias, and are therefore more likely to
discount the warm component in the image and see it as
B/K. The explanatory power of chronotype in our study
was larger for the in-lab data than the online data. All
in-lab subjects in our study were residents of the Boston
area, and so were matched for regional light cycle and
atmospheric conditions. The participants in the online
experiments were distributed across the globe, which
may account for the noisier results obtained from this
population. Nonetheless, the predictive power of sleep–
wake cycle on dress percept that we report here is
considerably weaker than we would have expected,
given the correlations reported by Wallisch (2017). One
salient difference between the studies is the way in which
subjects were recruited: Wallisch recruited subjects
through online links attached to news reports of the
image. While we acknowledge the appeal of the idea
that different chronotypes underlie the individual
differences in perception of the dress, it is possible that
the causal link is the reverse. People formed camps
defined by the different dress percepts, which tran-
scended race, geography, and culture; it is not
unreasonable to think that this new identity influenced
how a person reported their chronotype in the study by
Wallisch. But as we note earlier, there are also
differences in the number of subjects used in our study
and Wallisch’s, which might give rise to differences in
experimental power. Taken together, the most parsi-
monious conclusion of the two studies is threefold:
Chronotype has a modest impact on dress percept (that
might be confounded by age and gender); the way
someone sees the dress can bias how they report their

chronotype; and, as with other multistable images,
many factors influence how the dress is perceived, and
no single predictor has complete predictive power.

#TheDress: A tool for understanding color

Finally, we showcase the dress image as a tool to test
the role of memory in color constancy. An estimate of
the spectrum of the illuminant can theoretically be
achieved by performing gamut correlation between an
observed object and a memory gamut for that object
(Ling & Hurlbert, 2008). In particular, skin has been
proposed as a potential cue for color constancy, due to
its stable statistics (Bianco & Schettini, 2012; Crichton et
al., 2012; Hurlbert, 2007). Using digitally manipulated
versions of the dress, we show that a color tint applied to
the skin of a model made to look like she is wearing the
dress was sufficient for observers to infer the spectral
bias of the illuminant and achieve a predictable percept
of the dress’s colors. Placing the dress on a uniform
colored background that matched the spectral bias of a
light source was insufficient for subjects to disambiguate
the colors of the dress. These results provide a striking
demonstration that color constancy exploits more than
local color contrast. The importance of skin for color
constancy might have been predicted not only by the
ubiquity of skin in visual experience but also by the
observation that humans have precise memory colors
and preferences for skin, and show little tolerance for
color deviations in reproductions of skin (Bartleson &
Bray, 1962; Chauhan, Xiao, Yates, & Wuerger, 2015;
Hunt, Pitt, & Winter, 1974; Sanders, 1959; Smet,
Ryckaert, Pointer, Deconinck, & Hanselaer, 2011;
Yendrikhovskij, Blommaert, & Ridder, 1999). More-
over, people are most sensitive to skin color adjustments
that roughly align with the spectral bias of natural
illuminants (the daylight axis; Wuerger, Chauhan,
Sohaib, Yates, & Xiao, 2016). We only tested illumina-
tion cues with Caucasian skin, assessed mostly by
Caucasian participants. But given computational anal-
ysis of the statistics of different skin types (Crichton et
al., 2012), we expect that our results would generalize
across races. We carry skin with us everywhere, so it is
perhaps not surprising that the visual system uses it like
a color-balance card in photography, to correct the bias
in the illuminant.

Keywords: color categorization, color constancy,
bistable illusion
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