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Biased signaling or functional selectivity occurs when a 7TM-receptor preferentially acti-
vates one of several available pathways. It can be divided into three distinct forms: ligand
bias, receptor bias, and tissue or cell bias, where it is mediated by different ligands (on the
same receptor), different receptors (with the same ligand), or different tissues or cells (for
the same ligand–receptor pair). Most often biased signaling is differentiated into G protein-
dependent and β-arrestin-dependent signaling. Yet, it may also cover signaling differences
within these groups. Moreover, it may not be absolute, i.e., full versus no activation. Here
we discuss biased signaling in the chemokine system, including the structural basis for
biased signaling in chemokine receptors, as well as in class A 7TM receptors in general.
This includes overall helical movements and the contributions of micro-switches based on
recently published 7TM crystals and molecular dynamics studies. All three forms of biased
signaling are abundant in the chemokine system. This challenges our understanding of
“classic” redundancy inevitably ascribed to this system, where multiple chemokines bind
to the same receptor and where a single chemokine may bind to several receptors – in
both cases with the same functional outcome. The ubiquitous biased signaling confers a
hitherto unknown specificity to the chemokine system with a complex interaction pattern
that is better described as promiscuous with context-defined roles and different functional
outcomes in a ligand -, receptor -, or cell/tissue-defined manner. As the low number of suc-
cessful drug development plans implies, there are great difficulties in targeting chemokine
receptors; in particular with regard to receptor antagonists as anti-inflammatory drugs.
Un-defined and putative non-selective targeting of the complete cellular signaling system
could be the underlying cause of lack of success. Therefore, biased ligands could be the
solution.

Keywords: 7TM-receptor, 7TM structure–function, chemokine system, biased signaling, ligand/receptor/tissue bias,
b-arrestin recruitment, G protein coupling, pathway-specific drug development

CHEMOKINE RECEPTORS
Chemokine receptors belong to class A 7TM receptors and con-
sist of 350 amino acids on average. Their ligands, the chemokines
(8–12 kDa peptides), are divided into two major and two minor
groups, depending on the position of two conserved cysteine
residues relative to each other. Hence, the two major groups are
CCL- (the two cysteines are situated next to each other) and CXCL-
chemokines (separated by one amino acid), and the two minor
groups are CX3CL1 (only one ligand, where there are three amino
acids in between the cysteines) and XCLs (two ligands, lacking
the first cysteine). The chemokine receptors are grouped accord-
ing to the ligands they bind, i.e., CCR1-10, CXCR1-6, CX3CR1,
and XCR1. Presently, there are 18 chemokine receptors and ~40
chemokines acknowledged in the human proteome (1, 2). In addi-
tion to these receptors, which all mediate signaling, there are also
so-called scavenging receptors, which bind chemokines but have
not been shown to mediate intracellular signaling, i.e., ACKR1-
4 and CCRL2 (also known as DARC, D6, CXCR7, CCRL1, and
CRAM), (2). These are believed to function as decoy receptors to

attenuate the chemokine-induced responses. As the large numbers
of receptors and ligands indicate, the chemokine system is highly
promiscuous. Thus, several chemokines can bind to the same
receptor and vice versa (although some receptor–ligand inter-
actions are highly specific and selective, e.g., CCR9–CCL25 and
CXCR6–CXCL16). This promiscuous interaction pattern together
with the large number of receptors and ligands enables the
chemokine system to propagate a great variety of cell functions.
An overview of the human chemokine communication network is
given in Figure 1.

Chemokine receptors are most often Gαi/o-coupled; i.e., they
inhibit adenylate cyclase and limit the level of intracellular cAMP
and activation of PKA. However, other pertussis toxin-sensitive
(i.e., Gαi-coupled) effects have been shown to occur in response
to activation of chemokine receptors, e.g., phosphorylation of
ERK1/2 (part of the MAP kinase cascade) (3–5) and increase in
Ca2+ flux, most likely through the Gβγ subunit (6), which activates
PLC-β. Moreover, it has been shown that Gβγ is important for
chemokine-induced leukocyte migration (7, 8) possibly through
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Steen et al. Biased signaling in 7TM receptors

FIGURE 1 | Overview of the promiscuity of the human
chemokine system. Chemokine ligands are listed vertically, while
chemokine receptors are listed horizontally. A circle indicates
interaction between the receptor and ligand. No receptors are

reported for CCL18, CXCL4, and CXCL14. Atypical chemokine
receptors are boxed in black on the right. The diagram is constructed
based on (144) and updated to match the database from IUPHAR (2)
and the NCBI gene bank1.

the action of phosphoinositide-3 kinases (PI3K), thereby stimu-
lating the generation of phosphatidylinositol (3–5)-trisphosphate
(PIP3) (9, 10).

1http://www.ncbi.nlm.nih.gov/gene/

Chemokines are so named because they are chemotactic
cytokines, and thus their primary role is to mediate leukocyte
chemotaxis. All chemokines, except CXCL16 and CX3CL1, which
are integral membrane proteins, are soluble proteins. However,
to limit their dissemination, chemokines can bind to negatively
charged glycosaminoglycans (GAGs), which are attached to
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proteins on cell surfaces or the extracellular matrix, forming pro-
teoglycan structures. When secreted by, for example, endothelial
cells, chemokines tend to remain concentrated and immobilized at
tissue sites, and so do not flow freely in the blood. This immobiliza-
tion of chemokines is vital for the establishment of a chemokine
gradient and thus for the recruitment of leukocytes to endothelial
cells lining the blood vessels (11, 12). These chemokine gra-
dients can be made up by homeostatic chemokines, which are
constitutively produced and coordinate general leukocyte circu-
lation important for immune tolerance as well as maintaining
the architecture of secondary lymphoid organs, and inflammatory
chemokines, which only are produced by activated cells and recruit
leukocytes to sites of inflammation. However, some chemokines
fall into both categories. In addition to cell migration, other bio-
logical functions have been ascribed to chemokine receptors, e.g.,
angiogenic effects (13, 14), cell-adhesion and cell-extravasation
(15, 16), as well as anti-apoptotic signaling (17, 18).

Because chemokines and their receptors are highly impor-
tant in the immune defense, it is not surprising that they have
been attributed roles in several autoimmune and inflammatory
diseases. In addition, they are implicated in cancer and viral
infections, e.g., HIV. As a consequence, chemokine receptors are
amenable drug targets. However, at present only clinical trials
in inhibition of HIV infection [the CCR5 antagonist maraviroc
(19, 20)] and mobilization of stem cells [the CXCR4 antago-
nist plerixafor (21, 22)] have successfully led to marketed drugs.
In contrast, the pursuit of chemokine-receptor antagonists as
anti-inflammatory compounds has been futile, generally because
of lack of efficacy in Phase II clinical trials (23, 24). As the
number of successful drug development plans implies, there are
great difficulties in targeting chemokine receptors. Because of the
promiscuity of the chemokine system it is conceivable, that var-
ious chemokines binding to the same receptor, and vice versa,
induce different responses (25). Drug targeting of a single ligand
or receptor could therefore be insufficient to obtain the desired
response. On the other hand, antagonizing and thus eliminat-
ing physiological responses of exclusive chemokine-receptor pairs
could have detrimental effects on for example development, as
seen in CXCR4−/− neonatal mice (26, 27). In both cases, un-
defined targeting of the complete cellular signaling system could
be the underlying cause of lack of success. Therefore, biased lig-
ands could be a solution. Because these ligands induce or inhibit
selective pathways (see below), this form of treatment could
potentially eliminate side effects originating from activation of
a variety of cellular signaling pathways. In the following, we will
discuss signaling bias from a functional and structural point of
view.

BIASED SIGNALING IN CHEMOKINE RECEPTORS
Biased signaling or functional selectivity is a concept, which
describes a situation where a 7TM-receptor preferentially acti-
vates one of several available cellular signaling pathways. It can be
divided into three distinct cases: ligand bias, receptor bias, and tissue
or cell bias (Figure 2). Biased signaling is regarded as a relatively
new concept, even though a review on the serotonergic system was
published as early as 1987, speculating on the potential benefits of
selective agonists and antagonists possessing specific effects on a

particular receptor-linked effector (28). The concept of biased sig-
naling was introduced by Kenakin in 1995 as “agonist trafficking”
(29). Here, it was proposed that agonists have different affinities
toward diverse conformational states of the same receptor, which
in turn are coupled to individual effector proteins, inducing vari-
ous signaling pathways. This hypothesis has lately been backed up
by several studies (30–33).

Biased signaling can occur both as a result of ligand-induced
activation as well as in the absence of a ligand, i.e., via a consti-
tutively active receptor state, as observed for the virus-encoded
CXC–chemokine-receptor ECRF3, that signals via Gαi and Gαq in
a ligand-dependent manner, but is selective via Gαi when it comes
to constitutive activity (34). Most often, biased signaling is dif-
ferentiated into G protein-dependent and β-arrestin-dependent
signaling.

LIGAND BIASED SIGNALING
Ligand bias describes a situation where different ligands bind
the same receptor, but induce diverse responses. One example
of ligand bias has been proposed for the two endogenous CCR7
ligands, CCL19 and CCL21, which together are involved in the
homing of various T cell subpopulations and antigen-presenting
dendritic cells (DCs) to the lymph nodes. Here, the T cells are
primed by the DCs to allow their antigen-specific activation (35).
Although CCL19 and CCL21 bind to the same receptor, they
are expressed in slightly different tissues (see below). Moreover,
they only share 32% amino acid identity, and importantly, CCL21
has a large C-terminal domain of 37 amino acids that are highly
positively charged and capable of binding to glycosaminoglycans
(GAGs) and thereby immobilizing the chemokine (36, 37). This
is in contrast to CCL19, which does not contain this large C-
terminal domain. Furthermore, CCL21 was formerly known as
6Ckine, because it has six cysteine residues in contrast to most
other chemokines, which only have four. Due to their differ-
ential expression pattern and dissimilar structures, it has been
speculated that binding of CCL19 and CCL21 to CCR7 induce
distinct cellular responses. Indeed, there is general consensus that
whereas both ligands are able to activate G protein-signaling, only
CCL19 induces internalization of the receptor (5, 38, 39). Thus,
it has been shown that they have the same efficacy in G protein
binding (5) and Ca2+ flux (4), and also that they show similar effi-
cacy in ERK1/2 phosphorylation (40) (Steen et al., unpublished
work). On the other hand, Ricart and coworkers showed that the
quantitative chemotaxis of murine DCs against either CCL19 or
CCL21 depended on the relative chemokine concentration (41).
Thus, at a low chemokine concentration gradient (≤20 nM/mm),
CCL19 induced migration with a significantly higher chemotactic
index (CI) than CCL21. In contrast, at a chemokine concentra-
tion gradient of 200 nM/mm, CCL21 induced migration with
a higher CI than CCL19 (41). Furthermore, it has been shown
on several occasions that CCL19-mediated β-arrestin recruit-
ment induces receptor internalization whereas CCL21 does not
(5, 39, 40). Moreover, Zidar et al. found that in spite of no
CCL21-induced desensitization, this chemokine was perfectly able
to induce β-arrestin-mediated ERK1/2 phosphorylation. They
explained this paradox by a marked GPCR kinase (GRK) pref-
erence, i.e., GRK3 activity is unique to CCL19, whereas GRK6 is
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Steen et al. Biased signaling in 7TM receptors

FIGURE 2 | Overview of different variations of biased signaling.
Biased signaling describes a situation in which a receptor
preferentially activates one signaling pathway over another. (Left)
Ligand bias is used to differentiate between two ligands acting on the
same receptor, where ligand A favorably activates pathway 1,
whereas ligand B activates pathway 2. (Center) In receptor bias, the

same ligand binds to two different receptors, and activates pathway 1
via receptor A, but pathway 2 through receptor B. (Right) In tissue (or
cell) bias, the same ligand: receptor-complex is activated in two
different tissues or cell types (or different species), and in tissue A
pathway 1 is preferentially activated, whereas pathway 2 is more
likely to be activated in tissue B.

active in an unbiased manner responding to receptor activation by
both ligands (40).

Virus-encoded 7TM receptors often bind a broad spectrum of
chemokines, and many cases of ligand bias have been described
among these receptors. US28 encoded by human cytomegalovirus
binds several human CC-chemokines (CCL1–CCL5), but has par-
ticular high affinity for the soluble form of CX3CL1 (42). CCL2–5
act as agonists in some pathways and neutral ligands in others,
whereas CX3CL1 is a partial inverse agonist in most pathways
(43–49). Similar phenomena have been observed for the viral
CXC-chemokine receptors ECRF3 (from herpesvirus Saimiri) and
ORF74 (from human herpesvirus 8) (34, 50–55).

Recently, an article was published addressing the concept of
biased signaling in the chemokine system as a possible means for
further fine-tuning of the signaling network (56). The authors
tested whether different ligands targeting the same receptor dis-
played bias between G protein-signaling, β-arrestin recruitment,
and internalization. They found that at CCR10, CCL28 acted as
a G protein-biased agonist, while the other endogenous ligand,

CCL27 signaled through both G protein and β-arrestin. Fur-
thermore, from a qualitative bias plot they calculated that at
CXCR3, CXCL9 appears to be relatively β-arrestin-biased, while
CXCL11 is biased toward internalization. That CXCL11 is the
strongest and physiologically most relevant inducer of internal-
ization was already suggested in 2001 (57). A similar phenomenon
was described for CXCR2, as CXCL8 was reported to be much
more efficient in receptor internalization compared to CXCL7
(58) despite having equally high CXCR2 affinities (59). Later,
structural data revealed that the three CXCR3 ligands mediate
internalization through different receptor regions. In particular,
it was shown that CXCL9- and CXCL10-induced internaliza-
tion requires serine/threonine residues (putative phosphorylation
sites) on the receptor C terminus, whereas CXCL11-induced inter-
nalization depends on the third intracellular receptor loop (60).
The actual binding sites and overall receptor motifs involved in
the binding of the CXCR3 chemokines also vary, as CXCL10 is
much more dependent on residues located in the transmembrane
helices, i.e., in the deeper receptor regions. Thus, in a study probing
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the molecular intra-helical requirements for receptor activation
in CXCR3 by creating an artificial small molecule binding-site,
CXCL11 was “resistant” to most mutants in the helices, whereas
CXCL10 binding was severely impaired (61). A similar picture
was obtained when the AMD3100 binding-site was successfully
transferred from CXCR4 to CXCR3 (62). Finally, a recent study
showed that CXCL10 and CXCL11 activate distinct downstream
signaling mediators, and lead to a clearly divergent CD4+ T cell
polarization. Importantly, this bias was demonstrated to be of pro-
found importance for the treatment of experimental autoimmune
encephalomyelitis (EAE) in mice, as CXCL11 alone was able to
suppress perivascular lesions arising as a result of EAE (63).

The literature also describes incidents of ligand bias in post-
translationally modified chemokines. An example of this is
observed for CCL14 and different truncated isoforms binding
to the atypical (or scavenging) chemokine-receptor ACKR2. The
inactive full-length isoform CCL14 (1–74) binds to ACKR2 but
is not internalized and degraded, and does not induce up-
regulation of the receptor to the cell surface. This is in stark
contrast to the active truncated version CCL14 (9–74), which
promotes up-regulation of ACKR2 surface expression and is subse-
quently degraded, presumably through a G protein-independent,
β-arrestin-dependent Rac1–PAK1–LIMK1–cofilin signaling cas-
cade (64, 65). The authors conclude that a proline in position 2
of CCL14 (9–74) is critical for CCL14 degradation and receptor
trafficking. In general, chemokine binding to their cognate recep-
tors is postulated to follow a two-step mechanism (66–68). The
primary interaction, which provides high-affinity binding to the
receptor, is mediated via the chemokine core-domain including
the N-loop that follows the conserved cysteine-motif. The sec-
ond step is an interaction of the ligand N terminus, preceding the
first cysteine, with various receptor domains and this is essential
for the subsequent receptor activation. In the case of CCL14, the
authors propose that a similar interaction occurs between CCL14
and ACKR2. Here, the second step is characterized by the interac-
tion of the second proline of CCL14 (9–74) with the transmem-
brane bundle of ACKR2, which leads to β-arrestin recruitment
and CCL14 degradation. Thus, in the absence of this step, as is
the case for the inactive CCL14 (1–74), where the proline is not
readily accessible, receptor trafficking is not affected (64). Hence,
truncated CCL14 is a ligand biased toward a β-arrestin-dependent
activation of the Rac1–PAK1–LIMK1–cofilin signaling pathway.
Chemokines undergo other posttranslational modifications, e.g.,
glycosylation, sulfation, and citrullination [reviewed in Ref. (69)].
It is highly likely that these modifications also can induce biased
signaling, enabling different versions of the same chemokine to
signal through alternative pathways.

An additional posttranslational event is chemokine dimeriza-
tion – a phenomenon that also influences chemokine-receptor
signaling. For example, at CXCR4 there are distinct signal-
ing patterns associated with monomeric or dimeric CXCL12
that can either promote or inhibit chemotaxis, respectively
(70). While monomeric and dimeric CXCL12 activated G
protein-dependent signaling (i.e., Ca2+ flux and inhibition of
forskolin-induced cAMP production) with similar efficacy, the
preferential monomeric form of CXCL12 induced a greater
response in β-arrestin recruitment and chemotaxis. Moreover,

whereas activation of CXCR4 by monomeric CXCL12 resulted
in a slower increase in ERK1/2 phosphorylation, dimeric CXCL12
induced a rapid and transient phosphorylation (70).

As CXCR4 is one of the primary coreceptors for HIV infection,
many compounds targeting this receptor have been synthesized.
One example is the class of pepducin molecules, which are lipid-
modified peptides derived from the amino acid sequences of one of
the three intracellular loops of a target 7TM receptor (71). One of
these pepducins, ATI-2341, has been shown to act as a biased ago-
nist on CXCR4, being able to induce β-arrestin coupling but not
Gαi signaling in contrast to CXCL12 (72). Thus, also synthesized
compounds can exhibit biased properties.

RECEPTOR BIASED SIGNALING
Receptor bias refers to the case where the same ligand induces
different responses on different receptors. For example, the
chemokine CXCL12 has been shown to bind to both CXCR4 and
ACKR3. CXCR4 was originally thought to be the sole receptor
for CXCL12 in the otherwise promiscuous chemokine system. As
mentioned above, CXCL12 induces activation of both Gαi (73)
and β-arrestin via CXCR4 (74, 75). In 2005, it was discovered that
CXCL12 also bind to ACKR3 (76), but this chemokine receptor
was thought to act as a scavenger, sequestering CXCL12 inside the
cell, as no immediate G protein-signaling was observed for this lig-
and:receptor interaction (77, 78). However, it was soon discovered
that CXCL12 is able to activate β-arrestin-mediated signaling in
ACKR3 (79), and this distinguishable activation on ACKR3 with
respect to CXCR4 makes it the first case of endogenous receptor
biased signaling.

Along those lines, atypical chemokine receptors have been
described as being able to bind a variety of chemokines but without
eliciting Gαi signaling. They were originally thought to regulate
the amount of free chemokine available to bind to chemokine
receptors (i.e.,“scavenge”) and thus dampen an immune response.
However, incidents have since been described – as for ACKR2 –
where they might be able to induce G protein-independent
intracellular signaling. ACKR2 binds most inflammatory CC-
chemokine agonists of CCR1–5 (80) and no G protein-signaling
has been recorded upon binding of any of them. Although β-
arrestin-dependent signaling has not been described for all the
chemokine ligands, it is conceivable that this form of biased signal-
ing occurs in other incidents than the described ACKR2–CCL14
interaction (see above).

A different side to chemokine-receptor bias is the discovery
that several chemokines, which have been dubbed natural agonists
for some chemokine receptors, act as natural antagonists for other
chemokine receptors. One example is the chemokines targeting
CXCR3, i.e., CXCL9, -10, and -11, which originally were shown to
be selective agonists for this receptor. However, it has been shown
that the three ligands are able to displace the binding of CCL11 on
CCR3-expressing cells (81). Moreover, they are all able to inhibit
CCL11-induced CCR3+-cell migration and (cytoplasmic) [Ca2+

i]
changes with no intrinsic activity, and in addition, neither of the
CXCR3 agonists induces CCR3 internalization, and thus lack ago-
nistic effects but act as full antagonists (81). In another setting,
it has been shown that CXCL11 also acts as a CCR5 antagonist
that inhibits the binding of CCL3 to CCR5-transfected cells and

www.frontiersin.org June 2014 | Volume 5 | Article 277 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Chemoattractants/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Steen et al. Biased signaling in 7TM receptors

reduces cell migration in response to CCL5 and CCL4, the latter
being a selective agonist for CCR5. In addition to the abovemen-
tioned examples, a range of other chemokines have been described
as natural antagonists, e.g., CCL26 on CCR1 and -5 (82), CCL18
on CCR3 (83), CCL7 on CCR5 (84), CCL4 on CCR1 (85), and
CCL11 and CCL26 on CCR2 (86, 87). For CCL11, the action is
even more complex, as it also activates certain pathways in CCR2
(88). It remains to be determined if these antagonistic (and com-
plex agonistic) properties can be explained by the lack of (or
altered) secondary step(s) in the two-step activation mechanism
for chemokine receptors.

Viral chemokine receptors display biased signaling relative to
their human counterparts responding to the same ligand. For
example, CX3CL1 is an inverse agonist at US28 via Gαq, although
it is a full agonist for the endogenous receptor CX3CR1 via Gαi

(46, 89). Likewise, CXCL6, -10, and -12 are inverse agonists for
ORF74–HHV8 via Gαq (52–54) but full agonists on their cognate
human receptors via Gαi (73, 90–92). Finally, receptor bias also
occurs between viral receptors as observed for ORF74–HHV8 and
ECRF3–HVS, where various CXCLs bind with different efficacies
and initiate different pathways in these two receptors (34, 50, 54,
55, 93, 94).

TISSUE BIAS
Tissue bias (also referred to as system or cell bias) covers the phe-
nomenon in which a ligand for a given receptor activates different
pathways in a tissue/cell-specific manner – or in a species-specific
manner. The phenomenon has been described in non-chemokine
class A 7TM receptors, e.g., in the β-adrenergic receptors, where
Kenakin and coworkers observed a system bias (95, 96). Although
there has not been much focus on tissue bias in vivo, it is very likely
that efficiency of coupling to various cellular pathways is tailored
to the needs of the cell. For example, the two endogenous ligands
for CCR7, CCL21, and CCL19, show variation in their expression
pattern (described above); i.e., CCL19 is expressed by mature DCs,
whereas CCL21 is expressed in afferent lymphatic vessels, and they
are both present in the lumen of high endothelial venules (HEVs)
and on stromal cells of the lymph nodes (97–99). Their differential
expression pattern and very diverse structures indicate individual
roles for the two chemokines. Indeed, different articles disclosing
the role of CCL19 in chemotaxis show that the efficacy is cell-
type-dependent; CCL19 is able to induce chemotaxis of DCs (41),
whereas CCR7 expressing T lymphocytes are unable to migrate to
secondary lymphoid tissue in response to this chemokine (100).
Thus, CCL19 has a differing role in inducing chemotaxis depend-
ing on cell type, and these results might be extrapolated to other
chemokines.

Another example of tissue bias is seen for the CXCR4-specific
small molecule ligand AMD3100 that was originally designed as
an antagonist hindering the ability of HIV to interact with CXCR4
and thus infect the cell. The binding mode of AMD3100 in CXCR4
has been thoroughly characterized; it not only inhibits the binding
of HIV, but also that of the CXCR4-specific antibody 12G5 and
CXCL12, and thereby also inhibits the CXCL12-induced Gαi acti-
vation and intracellular Ca2+ release (62, 101–105). These results
were achieved by using SUP-T1 cells or COS-7 cells. On the other
hand, AMD3100 has been reported to act as a partial agonist on

WT CXCR4 in a Ca2+ release assay, and with even higher efficacy
on a constitutively active CXCR4 mutant in THP-1 cells (106).
Thus, as well as being a biologically integrated beneficial phenom-
enon for tissues in vivo (like CCR7 and CCL19/CCL21), tissue bias
can be an obstacle when trying to determine the efficacy of a lig-
and/receptor in vitro or ex vivo. Hence, to be fully able to determine
the biased nature of a ligand or a receptor, comparison between
the ligand/receptor-complex in the same tissue or cell type is vital;
lessons that are important in particular for drug discovery within
7TM receptors (see below).

STRUCTURAL BASIS FOR BIASED SIGNALING IN
CHEMOKINE RECEPTORS, AND IN CLASS A 7TM RECEPTORS
IN GENERAL
As other membrane proteins, 7TM receptors are highly dynamic
and exist in several functionally distinct conformations (107). Yet,
it is generally acknowledged that the activation of all class A 7TM-
receptor subclasses involves the same overall helical movements
(108–110) and that specific domains, so-called micro-switches,
regulate these movements (111, 112). In order to develop drugs
targeting a limited number of the signaling pathways of a given
receptor (biased drugs), it is vital to understand, which residues
are important for ligand binding and subsequent receptor interac-
tion with different intracellular effector molecules. Hence, much
attention has been focused on disclosing the conformations of
7TM receptors interacting with either the G proteins or β-arrestins,
both by developing “static” pictures of active and inactive receptor
conformations by X-ray crystallography and nuclear magnetic res-
onance (NMR) spectroscopy,but also in obtaining a more dynamic
view of the activation process by employing structure–function
studies. The only chemokine-receptor structures that have been
published are of CXCR4 (113), CCR5 (114), and CXCR1 (115)
and none of them have been in complex with an effector molecule.
Hence, these structures do not describe, which receptor conforma-
tions are able to bind to either G protein or β-arrestin. However, the
chemokine-receptor structures share an overall three-dimensional
shape with other class A 7TM receptors and therefore, it is con-
ceivable that results from these structures can be transferred to the
chemokine receptors.

INTERACTIONS WITH G PROTEIN
The recently published crystal structure of the β2-adrenergic
receptor in complex with agonist and G protein was the first truly
active G protein-coupled 7TM receptor to be disclosed (116). As
suggested by Rasmussen et al., engagement of the G protein by the
receptor leads to dramatic changes in the Gα subunit, which in
turn forces displacement and stabilizes the β2-adrenergic helices
TM-5 and -6, curving TM-6 extensively outward (Figure 3) (116,
117). The β2-adrenergic receptor/agonist/G protein complex also
reveals that the interface between the G protein and the recep-
tor involves ICL-2 in addition to TM-5 and -6. Importantly, the
structure shows that there is no interaction between the receptor
and the Gβγ subunit and furthermore, that there is no interaction
between the G protein and TM-7 and helix-8 of the receptor.

RECEPTORS IN COMPLEX WITH LIGANDS ACTIVATING β-ARRESTIN
Most of the 7TM-receptor crystal structures published so far have
focused on G protein activation, as the ligands employed have
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FIGURE 3 | Activation of a 7TM receptor. The active β2-adrenergic
receptor with TM-5 and -6 or -7 highlighted in blue according to their
importance for receptor interaction with G protein or β-arrestin,
respectively. The structures are visualized with Molsoft Browser Pro©.

been known as G protein agonists. Furthermore, most crystals
have been obtained with truncated and/or otherwise modified
receptors. Although β-arrestin has been crystallized in complex
with the phosphorylated C-terminal tail of vasopressin (118), no
structure of β-arrestin (or the protein kinase A or C, PKA or
PKC, or the G protein-coupled receptor kinases, GRKs, responsi-
ble for C-terminal receptor phosphorylation) in complex with an
entire 7TM-receptor has yet been crystallized. As such, the required
ligand-induced receptor conformation priming β-arrestin is dif-
ficult to delineate. However, recently published structures of the
β1-adrenergic receptor (119) and the serotonin 5-HT2B receptor
(120) have been in complex with agonists, which preferentially ini-
tiate β-arrestin-signaling. The structure of ergotamine (ERG) in
complex with either 5-HT2B or 5-HT1B was compared, and ERG
acts as a β-arrestin-biased agonist on 5-HT2B but unbiased agonist
(equal potency and efficacy in G protein- and β-arrestin-signaling)
on 5-HT1B. This enabled the authors to pinpoint molecular
characteristics in the β-arrestin-favorable receptor conformation.
By comparing the two structures with the β2-adrenergic recep-
tor/agonist/G protein structure, they were able to deduce, which
domains of the two serotonin receptors adopted an active-like con-
formation. They discovered large changes both in overall helical
rearrangements as well as in micro-switches [amino acid sequence
motifs that are highly conserved in the class A 7TM-receptor fam-
ily, i.e., PIF (Pro–Ile–Phe) in TM-3, -5, and -6, D/ERY (Asp/Glu–
Arg–Tyr) in TM-3, and NPxxY (Asn–Pro–x–x–Tyr) in TM-7]. For
example, in the β2-adrenergic receptor:agonist:G protein complex,
the PIF motif was seen to significantly change conformation from
the inactive structure and while all these changes also occurred in
5-HT1B, only the active-like conformation of ProV:16/5.502 and
IleIII:16/3.40, but not PheVI:09/6.44, was observed in 5-HT2B. In
addition, the ionic lock formed by the D/ERY motif in inactive 5-
HT receptor structures was broken in 5-HT1B but not in 5-HT2B.

2Amino acid positions are given according to the Baldwin-Schwartz-, followed by
the Ballesteros-Weinstein nomenclature (124, 125).

In contrast, both serotonin receptors (5-HT1B and 5-HT2B) dis-
played active-state conformations of the conserved NPxxY motif
in TM-7, but with more pronounced activation features in the
5-HT2B receptor. Importantly, overall helical changes indicated
that whereas the 5-HT2B/ERG structure showed less pronounced
active-like changes in TM-6, TM-7 appears to be in a more active
conformation than in the 5-HT1B/ERG structure. Accordingly, the
authors deduced that while TM-6 is extremely important for G
protein binding [in agreement with the active structures of the
β2-adrenergic receptor (116, 121)], TM-7 is highly involved in β-
arrestin coupling (Figure 3). Along those lines, it was observed that
the β-arrestin-biased β1-adrenergic receptor agonists, carvedilol
and bucindolol compared to unbiased β1-adrenergic agonists such
as isoprenaline, interacted with additional residues in TM-7 and
ECL-2 (119, 122).

The molecular mechanisms that occur in G protein and/or
beta-arrestin recruitment are further substantiated in a recent
publication concerning the delta-opioid receptor (123). Here the
authors addressed the role of a transmembrane asparagine residue
(N131 in position III:11/3.35). When substituting this with alanine
(N131A), the receptor lost the ability to signal through Gαi, but
constitutively (124, 125) recruited β-arrestin. Thus, this mutation
generated a receptor with biased signaling as compared to WT
delta-opioid receptor; a phenomenon that at the molecular level
was coupled to loss of the sodium ion coordination in the mutated
receptor.

In addition to the published structures,dynamic studies, such as
structure–function studies or spin labeling, have indicated, which
receptor domains are involved in G protein and β-arrestin bind-
ing. For example, a study employing site-specific 19F-NMR labels
in the β2-adrenergic receptor showed that the cytoplasmic ends
of TM-6 and TM-7 adopt two conformational states depending
on whether the receptor is in complex with β-arrestin-biased lig-
ands or non-biased ligands. Hence, unbiased agonists primarily
induce shifts toward the active state of TM-6, while β-arrestin-
biased agonists predominately impact the conformational states
of TM-7 (31). In the chemokine world, mutational studies have
primarily been used to gain knowledge about domains relevant for
activation. A mutagenesis study in CCR5 showed that mutation of
R126 in the DRY motif (in the bottom of TM-3) to a neutral amino
acid abolished CCR5-mediated G protein activation, but induced
a higher level of receptor phosphorylation and β-arrestin cou-
pling, thus producing a β-arrestin-biased receptor (126). Lack of
G protein activation, while retaining β-arrestin coupling, resem-
bles the signaling pattern of the atypical chemokine receptor as
discussed above. Interestingly, these receptors often differ from
conventional chemokine receptors in the highly conserved DRY-
LAIV motif. However, it has been shown on several occasions that
“correction”of the variations in the DRYLAIV motif in the atypical
chemokine receptors does not induce G protein-signaling through
these receptors. For example, replacing the ACKR3 ICL-2 with that
of CXCR4 – and thus exchanging DRYLSIT with DRYLAIV – did
not enable ACKR3 to activate the G protein-dependent signaling
pathways (127). Moreover, modifications of the DRYLAIV motif
are also seen in the chemokine receptors XCR1 and CXCR6, which
have been shown to signal through pertussis toxin-sensitive Gαi

protein (128, 129). Thus, lack of or a mutated DRYLAIV motif
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does not represent a reliable indicator for the lack of G protein
coupling, and indeed, the chemokine receptors that lack the con-
served arginine in the DRY motif [like the CXCL receptor encoded
by equine herpesvirus 2 (ORF74-EHV2)] also signal through G
proteins (130, 131). Similarly, a recent study showed that this con-
served arginine indeed is dispensable for G protein-signaling in
the β2-adrenergic receptor (132).

HELICAL MOVEMENTS AND MICRO-SWITCHES INVOLVED IN
CCR5 ACTIVATION OF DIFFERENT SIGNALING PATHWAYS
We have recently described transmembrane residues of impor-
tance for G protein-signaling and β-arrestin binding in CCR5 (133,
134). In brief, insertion of a steric hindrance mutation in either the
center of TM-5 (L203F, in position V:13/5.47) or in TM-7 (G286F,
in position VII:09/7.42) resulted in constitutive Gαi activity and
increased the affinities of endogenous chemokines. A computa-
tional model of [G286F]-CCR5 revealed that the conserved trypto-
phan in TM-6 (W248 in CCR5, part of the CWxP-motif) changed
orientation away from TM-7 compared to WT. The essential role of
W248 in CCR5 activation was supported by complete inactivity of
[W248A]-CCR5. Thus, the altered positioning of W248 – induced
by G286F – led to a constraint of a more agonist-prone nature. On

the other hand, a conformational change of a conserved hydropho-
bic residue in position III:16/3.40 in TM-3 (I116 in CCR5) was
observed in an in silico model of [L203F]-CCR5. Furthermore, a
sliding movement of Y244 in TM-6 (position VI:09/6.44) toward
TM-5 was observed. In vitro, [I116A]-CCR5 displayed the same
level of constitutive activity as [L203F]-CCR5, whereas [Y244A]-
CCR5 could not be activated. This could indicate that I116 serves a
gating function for Y244 movement toward L203, which is impor-
tant for G protein-signaling. A similar role of these two residues
was previously described for other class A 7TM receptors [i.e.,
the ghrelin receptor, GPR119, NK-1, and the β2-adrenergic recep-
tor (135)]. Both ligand-dependent and -independent β-arrestin
recruitment was eliminated in [G286F]- and [W248A]-CCR5,
indicating biased signaling. In contrast, [I116A]- and [L203F]-
CCR5 were able to recruit β-arrestin both in the presence and
absence of agonist. Thus, tampering with the interplay between
TM-3 and -5 increases the level of both Gαi signaling and β-
arrestin recruitment, while manipulation of the interface between
TM-6 and -7 increases G protein-signaling, reduces β-arrestin
recruitment and hence, induces biased signaling (Figure 4).

In the abovementioned CCR5-studies, characterization of con-
stitutive activity and activation in response to small molecule

FIGURE 4 | Biased activity in CCR5. (A,B) Dose–response curves showing
the aplaviroc-mediated activation and inhibition of CCR5 WT (purple),
[L203F]-CCR5 (dark blue), and [G286F]-CCR5 (light blue) in G protein and
β-arrestin-signaling. Aplaviroc was tested with (full lines) or without (dotted

lines) the endogenous ligand CCL3. (C,D) Computational models of the WT
and mutant receptors depicting the difference in side chain conformations of
important amino acids. (E,F) Helical wheel diagrams showing the positions of
relevant amino acids.
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ligands on signaling revealed that the CCR5 antagonist aplavi-
roc underwent an efficacy switch, i.e., from being antagonist in G
protein-signaling on WT to an agonist on [L203F]- and [G286F]-
CCR5. However, as this switch was not observed in β-arrestin
recruitment aplaviroc acted as a biased agonist on these mutants
(Figure 4), indicating that receptor domains can regulate cou-
pling to different pathways independently as also observed in
the delta-opioid receptor. Using compounds like aplaviroc for
structure–function experiments provides valuable tools to gain
knowledge of the specific receptor domains and ligand structures
that induce biased signaling.

CONCLUSION
The experimental results discussed in this review illustrate that
biased signaling is a complex phenomenon and that it exists to a
large degree in the chemokine system. Biased signaling can occur
in different forms; signaling can vary (1) with the ligand, (2) with
the receptor, and (3) with the tissue or cell type (or species). All
three factors should be taken into consideration when designing,
developing, and testing new compounds targeting a component in
the chemokine system as well as in the overall 7TM-receptor fam-
ily. For example, when testing a potential pharmaceutical product
in vitro, it is not enough to assess its properties against only one
endogenous agonist, nor is it sufficient to measure the activity
through one signaling pathway. Furthermore, if the target of inter-
est is expressed in diverse tissues it is necessary to ensure that the
observed response is identical in other tissues or cell types. In many
cases bias is not absolute, i.e., full activation of one pathway and
no activation of another. Often, there is activation in all pathways
tested and varying efficacies and/or potencies can be defined as a
bias. This variation can of course be caused by a natural prefer-
ence, but it can also be due to cell type (if the different outputs are
measured in different cell types) or sensitivity of the assay type.
Therefore, it is important to compare efficacies and/or potencies
within the assay and cellular systems and thus obtain a bias output
that is relative.

The chemokine system is an obvious target for biased ligands
due to the high degree of redundancy where multiple ligands bind
to the same receptor and therefore potentially elicit an array of
intracellular signaling patterns. Thus, designing a selective com-
pound for one signaling pathway would in theory lower the side
effects that would arise when inhibiting/activating all signaling
pathways. The redundancy of the chemokine system is how-
ever impedimental when designing chemokine-targeting drugs,
as (1) other ligand–receptor combinations can have a compen-
sating function, and (2) as drugs may be selective for one, but
not all chemokines for a given receptor [e.g., in CCR1, where
small molecule ligands acted as positive allosteric modulators with
respect to CCL3, but at the same time competed against CCL5
(136)]. Furthermore, small drug-like substances may act differ-
ently on homologous chemokine receptors, as observed in CCR1
and CCR5, where a chloro-terpyridine-based compound acted
as agonist with no allosteric properties on CCR1, but with the
opposite phenotype on CCR5 (137). This compound was devel-
oped from the bipyridine and phenanthroline-based non-selective
CCR1, -5, and -8 ago-allosteric compounds (137, 138).

Chemokines mainly interact with extracellular receptor regions
(68), and therefore the two conformationally constraining disul-
fide bridges have a major impact on chemokine binding (113,
115, 139). Yet, the roles of these bridges vary – even between
homologous chemokine receptors like CCR1 and CCR5 (139)
and thereby contribute to the explanation for why small drug-
like substances act differently on (1) different chemokines for
the same receptor (136) or (2) different chemokine receptors
(137, 138). These pharmacodynamic challenges combined with
the redundancy of the chemokine system may be central for
the lack of success when it comes to the development of anti-
inflammatory compounds targeting chemokine receptors. Biased
ligands could be a solution with a directed action on a specific
chemokine-receptor domain, and thereby preferential targeting
of a single intracellular pathway. This more focused action could
potentially eliminate lack of drug efficiency caused by redundancy
and chemokine cross-talk, and also eliminate side effects stem-
ming from unspecific activation of a variety of cellular signaling
pathways.

Interestingly, biased ligands have been developed in other
receptor systems, especially in the cardiovascular system. For
example, carvedilol is an unspecific β-blocker with especially good
clinical efficacy. It has been shown to be an inverse agonist in Gαs-
signaling while it stimulates phosphorylation of the C-terminal
tail and concomitant β-arrestin recruitment and internalization
as well as ERK1/2 activation in HEK-293 cells (140). Furthermore,
carvedilol has been shown to transactivate epidermal growth factor
receptor (EGFR, a receptor tyrosine kinase) and mediate ERK1/2
activation in a G protein-independent fashion (141). The trans-
activation of EGFR has been shown to be cardioprotective (142),
whereas chronic β-adrenergic receptor coupling to Gαs is thought
to be cardiotoxic (143) and this might explain the unique clinical
profile of carvedilol.

In conclusion, deciphering the mechanisms behind biased sig-
naling, including which receptor domains and ligand composi-
tions are responsible for activation of one effector molecule over
another is crucial when designing and developing potent and
specific 7TM-receptor pharmacotherapeutics. In the chemokine
system, signaling bias is abundant in all three forms: ligand, recep-
tor, and tissue (cell/species) bias. With this continuous uncovering
of signaling bias in the chemokine system, it becomes clear that
the apparent redundancy, which seems inevitably coupled with
this system, may be a superficial phenomenon. Instead, the con-
cept of promiscuity may be more correct, and it would be prudent
to consider that promiscuous chemokines and their receptors
likely have context-defined and separate roles, including the pos-
sibility for different functional outcomes of seemingly redundant
interactions.
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