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Abstract

Background: Clostridium difficile is a spore-forming obligate anaerobe that can remain viable for extended periods,
even in the presence of antibiotics, which contributes to the persistence of this bacterium as a human pathogen
during host-to-host transmission and in hospital environments. We examined the structure and function of a gene
product with the locus tag CDR20291_0991 (cdPadR1) as part of our broader goal aimed at elucidating transcription
regulatory mechanisms involved in virulence and antibiotic resistance of the recently emergent hypervirulent

C. difficile strain R20291. cdPadR1 is genomically positioned near genes that are involved in stress response and
virulence. In addition, it was previously reported that cdPadR1 and a homologue from the historical C. difficile

strain 630 (CD630_1154) were differentially expressed when exposed to stressors, including antibiotics.

Results: The crystal structure of cdPadR1 was determined to 1.9 A resolution, which revealed that it belongs to the
PadR-s2 subfamily of PadR transcriptional regulators. cdPadR1 binds its own promoter and other promoter regions
from within the C. difficile R20291 genome. DNA binding experiments demonstrated that cdPadR1 binds a region
comprised of inverted repeats and an AT-rich core with the predicted specific binding motif, GTACTAT(N,)ATTATA(N)
AGTA, within its own promoter that is also present in 200 other regions in the C. difficile R20291 genome. Mutation of
the highly conserved W in a4 of the effector binding/oligomerization domain, which is predicted to be involved in
multi-drug recognition and dimerization in other PadR-s2 proteins, resulted in alterations of cdPadR1 binding to the
predicted binding motif, potentially due to loss of higher order oligomerization.

Conclusions: Our results indicate that cdPadR1 binds a region within its own promoter consisting of the binding motif
GTACTAT(N)ATTATAN)AGTA and seems to associate non-specifically with longer DNA fragments in vitro, which may
facilitate promoter and motif searching. This suggests that cdPadR1 acts as a transcriptional auto-regulator, binding
specific sites within its own promoter, and is part of a broad gene regulatory network involved, in part, with
environmental stress response, antibiotic resistance and virulence.
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Background

Epidemiological trends indicate clinical acquisition of
Clostridium difficile as the primary route of human infec-
tion by this bacterium [1]. The risk of C. difficile becoming
a community-acquired infection is likely to increase with-
out the development of better identification and more ef-
fective treatment [2]. The genome of C. difficile has been
described as “highly dynamic” based on the prevalence of
horizontal gene transfer [3]. The impact of a genome that
readily changes in response to environmental stress could
be a major indicator of C. difficile pathogenicity [3]. C.
difficile produces spores that allow it to be viable for
extended periods, even in the presence of antibiotics,
which could explain the persistence of this human patho-
gen during host-to-host transmission and in the hospital
environment [4]. Transcription factors orchestrate the
regulation of survival, proliferation, virulence, and anti-
biotic resistance mechanisms of human pathogens. As
part of our larger goal aimed at elucidating structure and
function of transcription regulatory mechanisms involved
in virulence and antibiotic resistance of human pathogens,
we focused on protein targets from a hypervirulent strain
of C. difficile (R20291). Herein, we present our results on
a member of the PadR family of transcription regulators
(product of CDR20291_0991) that we have named
cdPadR1.

The first described PadR proteins are transcriptional re-
pressors for genes encoding phenolic acid decarboxylase
(padC) that de-repress padC when phenolic acids are
present in toxic amounts [5]. The PadR transcription regu-
lator from Bacillus subtilis is a prototypical PadR-family
member protein that binds the padC promoter in the ab-
sence of phenolic acid in vitro; binding is lost when exposed
to phenolic acids [6, 7]. Unlike the prototypical PadR, the
PadR family transcription regulators AphA [8], LmrR [9],
and bcPadR [10] from Vibrio cholerae, Lactococcus lactis,
and Bacillus cereus, respectively, are involved in the regula-
tion of virulence and antibiotic efflux mechanisms. The
prototypical PadR and the PadR-like transcription regulator
AphA are within a subfamily of PadR proteins (PadR-s1)
which contain multiple o-helices in the C-terminal
domain [10]. Another, less studied subfamily of PadR
family proteins (PadR-s2), contains a single a-helix in the
C-terminal effector binding/oligomerization domain [10].
The PadR-s2 proteins, which include the bcPadRs [10]
and LmrR [11], have been structurally characterized and
are involved in multiple drug recognition. The BC4206
gene product, bcPadR1, was upregulated 8.7-fold in the
presence of enterocin treatment in B. cereus ATCC14572
when compared to an untreated control [12]. This PadR-
like protein binds its own promoter and that of the gene
BC4207, which encodes a membrane protein predicted to
be involved in enterocin AS-48 resistance [12]. Binding of
bcPadR1 to the predicted promoter region was not
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affected by the addition of AS-48 in vitro [10]. The PadR-
like family protein of L. lactis, LmrR, binds the promoter
region of an ABC-type multidrug transporter, LmrCD, and
interacts with the compound Hoechst 33342 and the anti-
biotic daunomycin [9]. The crystal structure of apo-LmrR
revealed a hydrophobic pore between o4 of the dimer
mates [11]. Additional structures of LmrR bound to
Hoechst 33342 and daunomycin, separately, demonstrated
that this pore is integral to inhibitor interaction [11]. The
conformational change instigated at a4 is predicted to
interfere with DNA binding due to an increase in distance
between o3 of the dimer mates [13]. This hydrophobic pore
is not present in bcPadR structures determined to date.

The genome of hypervirulent C. difficile R20291 contains
the protein coding sequence for three PadR-like family
proteins (cdPadR1, CDR20291_1187, CDR20291_3068).
The function of cdPadR1 is of interest due, in part, to its
similarity to previously described bcPadRs and LmrR and
the response of these transcription regulators to multiple
inhibitors. Importantly, differential expression studies have
linked c¢dPadR1 and a homologue from historical C.
difficile strain 630 (CD630_1154) to regulatory networks
that allow C. difficile to efficiently respond to environmen-
tal changes and, thus, survive within a host. This response
is not necessarily due to direct interaction with stressors,
but may be part of an overall regulatory cascade. Ger-
mination of C. difficile strain 630 endospores lead to the
differential expression of 92 different transcriptional regu-
lators, ~74 % of which were up-regulated as detected by
microarray and validated by qRT-PCR [14]. Included in
this list of differentially expressed transcription regulators
is the cdPadR1 homologue CD630_1154, which was
2.3-fold up-regulated during germination [14]. This sug-
gests that the expression of one or more of these proteins
required to bring an endospore out of dormancy may be
regulated by CD630_1154. Another study linked the dif-
ferential expression of this cdPadR1 homologue to acid
and alkali shock, oxygen exposure, and subinhibitory con-
centrations of metronidazole (Mtz) as detected by micro-
array analyses in C. difficile strain 630 [15].

Herein, we investigated the PadR-s2 protein from C.
difficile strain R20291, cdPadR1. In this paper, we report
the crystallization and X-ray crystal structure of cdPadR1
at 1.9 A resolution. We also demonstrate cdPadR1 binding
to its own gene promoter in a manner conducive to auto-
regulation. Additionally, we show that c4PadR1 binds the
promoters of three additional regulatory signaling proteins
and that a ¢dPadR1 binding motif is present upstream of
100 genes in C. difficile R20291.

Methods

Protein expression and purification

Residues 1-109 of cdPadR1 (locus tag CDR20291_0991)
were amplified from gDNA using forward primer
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Pr3 -EAK (5'- TTCAGGGATCCATGCAGTTAAA
TAAAGAAGTGTTAAAAGG-3') and reverse primer
Pr4-EAK (5'-TTAAGCTGCAGTTAATCCACCTCTCC
CAAAAATTG-3’) primers, each of which contained a 5
nucleotide overhang followed by restriction digestion sites
for BamHI (forward) or Pstl (reverse) for digestion and
ligation into the expression vector. cdPadR1 was expressed
in Escherichia coli Rosetta™ using the pQE80L (Qiagen)
vector system modified to encode a Strep II"-tag on the
N-terminus [16]. cdPadR1 was isolated by batch purifica-
tion over Streptactin SuperFlow Plus resin (Qiagen). All
buffers were prepared according to the manufacturers’
guidelines. Cell lysis, column equilibration, and wash
buffer contained 50 mM NaH,PO, and 300 mM NaCl
(pH 8.0 using NaOH). Elution buffer contained 50 mM
NaH,PO,, 300 mM NaCl, and 2.5 mM d-desthiobiotin
(pH 8.0 using NaOH). Subsequent purification of the
cdPadR1 dimer was accomplished by size exclusion chro-
matography in buffer containing 20 mM Tris (pH 8.0 with
NaOH) and 150 mM NaCl, using a Superdex 200 Increase
10/300 GL column connected to an AKTA Pure 25 (GE
Healthcare). Fractions corresponding to a dimer were con-
centrated using Amicon® concentration units (Millipore)
primed with glycerol and buffer exchanged into 10 mM
Tris (pH 8.0) and 100 mM KCl. The molecular weight
(MW) was determined by coupling SEC with multi-angle
light scattering (MALS) and outputs were analyzed by the
ASTRA software (Wyatt Technology).

Crystallization of cdPadR1

Crystals were initially obtained by vapor diffusion using
a MCSG Crystallization Suite (Microlytic) (3 M NaCl
and 0.1 M HEPES pH 7.5) with a final protein concen-
tration of 1.5 mg mL™. Crystal growth was optimized at
room temperature by hanging drop vapor diffusion with
the drops containing 3 pL protein solution (4 mg mL’
'edPadR1 in 100 mM KCI, 10 mM Tris pH 8.0) and 1
pL reservoir solution (3.1 M NaCl, 100 mM HEPES [pH
7.5]). Crystals were transferred into drops containing an
equal volume of 2X reservoir solution and 40 % glycerol
for cryoprotection. Crystals in cryosolution were incu-
bated over original well solution for 5 min before
freezing in a liquid nitrogen gas stream for cryogenic
data collection.

Data collection and structure determination

X-ray diffraction data were collected using a MAR-
mosaic325 CCD detector at the Stanford Synchrotron
Radiation Lightsource (SLAC National Accelerator
Laboratory) on beam-line BL14-1. The data were proc-
essed with XDS and XSCALE [17]. The XDS output files
were converted to .mtz format using CCP4 [18]. The struc-
ture of Clostridium thermocellum PadR-like family protein
(CtPadR, PDB ID 1XMA) was used as the starting model
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for molecular replacement using Phaser-MR [19]. The
individual coordinates of the preliminary model were gen-
erated in AUTOBUILD [20], were refined and rebuilt using
the model in COOT [21] and any positions with strong
densities outside of the model were accounted for.
Structure alignments were performed in COOT and all
structure/alignment figures prepared using PyMOL [22].
Residues 1-9, 41, and 107-109 were not modeled due to
the absence of electron density. Coordinates have been de-
posited with the Protein Data Bank (www.rcsb.org) with
PDB ID 5DYM. Data collection and refinement statistics
are shown in Table 1.

Construction of cdPadR1"/***

The tryptophan 94 (W94) codon (TGG) of cdPadR1 was
converted to alanine (GCG) by overlapping PCR [23].
The sequence of forward and reverse primers used to
generate the alanine codon substitutions in cdPadR1
were 5 -GAAACAAGAAGCGAGATTTATTAAAAAG-3’
and 5'-CTTTTTAATAAATCTCGCTTCTTGTTTC-3',
respectively. The resulting plasmid was confirmed by
sequencing, and the resulting protein variant was overex-
pressed and purified in the same manner as performed for
the native cdPadR1.

Electrophoretic Mobility Shift Assay (EMSA)

Double stranded DNA fragments for EMSA were ge-
nerated by suspending custom complementary ssDNA
(LifeTechnologies) in annealing buffer (10 mM Tris [pH
8.0] and 50 mM NaCl) and heating to 95 °C for 5 min
followed by slowly cooling to room temperature. DNA
was quantified with the Quant-IT™ Broad Range DNA
assay and a Qubit® fluorimeter (Invitrogen). Template
dilutions for EMSA stock solutions were dependent on
the size of the DNA fragment and ranged from 0.5 uM
(100 bp fragment) to 2.5 pM (20 bp fragment). Binding
reactions were performed at room temperature. Each re-
action mixture contained 20 mM Tris pH 8.0, 120 mM
KCl, 12.5 % glycerol, 10 mM MgCl,, 5 mM DTT, and
125 pg mL™" heparin. Heparin concentration was in-
creased to 400 pug ml™* for competition studies. A 1:10
dilution of DNA stock was added to all reactions and a
cdPadR1 concentration 2.5-40-fold greater than that of
final DNA concentration was added to start the binding
reaction. A protein-free control was also included.
EMSAs were performed in 8 % polyacrylamide gels and
TB running buffer (89 mM Tris base and 89 mM boric
acid) at 200 V and 20-100 mA with run time ranging
from 20 min (20 bp fragments) to 30 min (100 bp
fragments). Gels were stained with SYBR® Gold Stain
(Invitrogen). Image coloration was inverted for ease of
viewing. A list of oligonucleotides examined, including
location on the genome, sequences, and GC content (%)
can be found in Additional file 6: Table S1.
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Table 1 Data collection and refinement statistics

Data collection statistics (SSRL BL14-1)

Wavelength A 12
Space group P4,2,2
Unit cell dimensions
a b c® 924,924, 404
a By 90
Resolution (A) 344-1920-19)7°
R erge 0019 (0.38)
l/o[l] 203 (2.2)
Completeness (%) 99 (95)
Redundancy 20 (2.0
Wilson B (A) 3311

Refinement statistics
Resolution range (A)

No. of reflections

344-1920-19

Total 28484 (2641)

Unique 14302 (1332)
Rivork (%) 021 (0.29)
RY.. (%) 0.23 (0.34)
No. of atoms

Total (non-H) 842

Water molecules 34
Mean overall B factors

Protein 493

Solvent 433
RMSDs

Bond length (A) 0.008

Bond angles (°) 1.03
Ramachandran plot

9% most favored residues 96

% outliers 0

PDB code 5DYM

Statistics for data in the highest resolution shell are given in parentheses
meerge = (z’obs - Iavg)/zlavg
chork= (ZFobs - Fealcd)/ZFobs

Rfee Was calculated using the test set obtained by randomly selecting 10 % of
the data

Motif Analysis

GLAM2 was utilized to find a representative cdPadR1 motif
[24]. The sequence surrounding Boxes 1 & 2 (5'-GTACTA
TACATTATAGAGTAGTAG-3') and Boxes 3 & 4 (5'-
AGAGTACTATGTATTATTATAGTAAAT-3’) were used
as input sequences for the GLAM2 analysis. The GLAM?2
search was done using the default parameters and allowed
the motif sites to be on either the plus or minus strand.
The direct GLAM2 output was used as the input for
GLAM2 Scan using the C. difficile R20291 genome. Motifs
were allowable on either the minus or plus strand of the
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genome and 200 alignments were allowed. The identified
motifs were then mapped onto the C. difficile R20291 gen-
ome sequence in Geneious v8 [25]. The motifs were then
manually curated to determine whether they were located
within an open reading frame, an intergenic promoter re-
gion or between convergent genes.

Results and discussion

Crystal structure of recombinant cdPadR1

cdPadR1 shares 100 % amino acid sequence identity with
the PadR-like transcription regulator, CD630_1154, in
the historical C. difficile strain 630 (Fig. 1), both of
which were differentially expressed under conditions of
environmental stress [15]. cdPadR1 crystallized in space
group P4:2;2 and, following X-ray data collection, the
structure was solved by molecular replacement using the
PadR family protein from C. thermocellum (CtPadR) as a
search model (PDB ID 1XMA). CtPadR and cdPadR1
share 42 % amino acid sequence identity (Fig. 1) and,
based on 3D prediction programs [26, 27], were expected
to have high structural similarity (RMSD =17 A). The
model was refined to a final crystallographic R-factor of
21.0 % (Reree = 23.0 %) (Table 1).

One molecule of cdPadR1 was present in the asym-
metric unit and consists of an N-terminal winged helix-
turn-helix (WHTH) domain (residues 6—80) and a single
a-helical C-terminal domain (residues 81-106) (Fig. 2a).
This small C-terminal domain places cdPadR1 in the
PadR-s2 subfamily of PadR transcriptional regulators
described previously [10]. cdPadR1 forms a dimer with a
2-fold crystallographic axis of symmetry (Fig. 2b), similar
to the bcPadRs (PDB IDs 4ESB and 4ESF) and LmrR
(PDB ID 3F8B), both of which are PadR-s2 family
proteins. The dimeric state of cdPadR1 is retained in so-
lution as determined by size exclusion chromatography
(Additional file 1: Figure S1). The recognition helices
(a3/a3’) are positioned ~34 A apart (Fig. 2b) consistent
with symmetrical binding to two “half-sites” approxi-
mately 10 bp in length [28]. Dimerization of cdPadR1
buries approximately 1100 A* solvent-accessible surface
area (16 %) of the approximately 7000 A? total solvent-
accessible area per subunit [29]. Residues on helices al,
a2, and a4 that interact to form the cdPadR1 dimer
interface are conserved across structural homologues
(Fig. 1). The RMSD values for the cdPadR1 structural
homologues bcPadR1, bcPadR2, apo-LmrR, LmrR-
H33342, and LmrR-daunomycin are 1.6 A 16 A, 214,
2.9 A, and 3.3 A, respectively [27].

The primary helices involved in dimerization are ol
and a4. The amino acid sequence pairwise identities be-
tween ol of cdPadR1 and bcPadR1, bcPadR2, and LmrR
are 26 %, 35 %, and 21 %, respectively. The amino acid
sequence pairwise identity between a4 of cdPadR1 and
bcPadRs (22.2 and 33.3 % for bcPadR1 and bcPadR2,
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CdPadR_0991
CD630_1154
4ESF (bcPadR2)
4ESB (bcPadR1)
3F8B (LmrR)
1XMA (CtPadR)

CdPadR_0991
CD630_1154
4ESF (bcPadR2)
4ESB (bcPadR1)
3F8B (LmrR)
1XMA (CtPadR)

al a2
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MOLNPYEV LKGRT DIS#T VEIT LIAKIS D[S Y G Y E I EVKI6]V IR i - Bor
IEEN L TRRENYE S EG CUR ERS R RIE TEEFE TR E@ND LG F - -39
WIHS QRSN VifNsG Chld visds [ £ 3V FeRgs TR K HG F - -37
A P K AR~ O TNV TN [ CEY EVECH I [HOEKEAS N G 4
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a4

CdPadR_0991
CD630_1154 [T
4ESF (bcPadR2) NEAMR QEELFW
4ESB (bcPadR1) BDEELEQMSEFK
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1XMA (CtPadR)
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BPEMIKYYEOKCBEBERELT
Fig. 1 Amino acid sequence alignment of cdPadR1 from Clostridium difficile R20291 (CDR20291_0991) and 630 (CD630_1154) with structural
homologues listed by accession number as follows: 4ESB (bcPadR2) from Bacillus cereus ATCC 10987 [
14579 [10], 3F8B (LmrR) from Lactococcus lactis MG1363 [11], and 1XMA (CtPadR) from Clostridium thermocellum (unpublished). cdPadR1 and
CD630_1154 share 100 % amino acid sequence identity. Conserved residues are shaded black. Alpha helices are indicated by black bars and
B-sheets are indicated with black arrows. The highly conserved W residue is demarcated with a black asterisk (¥)

D-109

LLQGESRWS HP[JEAY-775

KKVERJK FVKELESNGDN-115

101, 4ESF (bcPadR1) from B. cereus ATCC

respectively) is higher than the identity between o4 of
cdPadR1 and LmrR (15 %). Helix a4 and a4’ of cdPadR1
bend toward each other (Fig. 2b) and interact via a
coiled-coil, whereas a4 and a4’ of LmrR do not display
a significant bending towards each other at the C-
terminus (Fig. 3a, red). In addition, LmrR contains fewer
residues involved in dimerization at the C-terminus of
the helix than cdPadR1 and bcPadRs. cdPadRl, like
bcPadRs and ctPadR, has a closed dimeric interface,
unlike the hydrophobic pore wherein aromatic drug-
interaction occurs in LmrR (Fig. 3b). The known struc-
tural homologues of cdPadR1l contain a conserved W
located within residues 91-96 in the o4 helix region that
is predicted to be involved in both dimerization and
drug binding [10, 11]. The distance between the con-
served W residues in the a4 helix dimer mates for
cdPadR1, bcPadR1 (4ESB), apo-LmrR (3F8B), LmrR-
H33342 (3F8C), and LmrR-daunomycin (3F8F) was mea-
sured using Chimera [30]. Distances were determined
from the centroids of the phenol rings (P-P), indole rings
(I-1), and indole-to-phenol (I-P) of the conserved a4 W
residues. The P-P, I-I, and I-P distances between
cdPadR1 W94 and W94 are 5.4 A, 9.2 A, and 7.4 A, re-
spectively. These distances are similar to those of
bcPadR1 (P-P=56 A, -1=9.1 A, and [-P =74 A). The
P-P distance is ~2 A greater for the apo-LmrR (P-P = 6.9
A), LmrR-H33342 (P-P=7.2 A), and LmrR-daunomycin
(P-P =74 A) structures when compared to the distance
between phenol centroids in cdPadR1. The increased

distance between a4 and o4’of LmrR allows for aromatic
inhibitor interaction via m-stacking between the W96
and W96 residues [11]. The lack of a drug-binding
pocket in cdPadR1 suggests that any differential expres-
sion of the CD630 homologue (CD630_1154) during
Mtz exposure would, most likely, be due to a regulatory
cascade effect rather than direct interaction of cdPadR1
with Mtz. It was suggested that changes in the orienta-
tion of a4 and a4’in a drug-bound state effects the pos-
ition of the DNA recognition helices, rotating them
away from each other [11]. This, presumably, would
cause a change in DNA-binding. Previous work revealed
that LmrR binds two sites within the /mrCD promoter,
one region containing the predicted -10 and -35 sites
and the other containing the inverted repeats ATGT/
ACAT separated by 10 nucleotides and that this is con-
sistent with a “conserved” binding motif among other
PadR-like regulators with an eight nucleotide linker be-
tween the inverted repeats ATGT/ACAT [9, 31]. The
recognition helices (a3/ a3’) are positioned ~34 A apart
in cdPadR1 (Fig. 2b), which is consistent with symmet-
rical binding to two “half-sites” comprised of inverted re-
peats ~10 bp apart; it is important to note that this
distance does not account for DNA secondary structure.
DNA binding behavior was explored for cdPadR1l to
determine if it functions similarly to previously studied
PadR family transcription regulators and to begin eluci-
dating the regulatory networks of cdPadR1 in hyperviru-
lent C. difficile in vitro.
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A

wHTH
domain

Fig. 2 Overall structure of cdPadR1. a Ribbon representation of cdPadR1
monomer with a rainbow color gradient from the N-terminus (blue) to
the C-terminus (red). Alpha helices and 3-sheets are labeled numerically.
The winged helix-turn-helix (wHTH) DNA binding domain is indicated.
b The cdPadR1 structure is shown perpendicular to the two-fold axis of
symmetry with the DNA recognition helices indicated (a3/a3). The
dimer mate is shown in gray. Distance between a3/a3' was estimated
in PyMOL [22]. Another view is shown after a 90° forward rotation
which results in a view along the two-fold axis facing a4/a4" with the
conserved W residue (sticks)

cdPadR1 binding to its own promoter

A 100 bp region upstream of cdpadR1 (P.qpaar:/Pr27)
was used in EMSA assays to determine if cdPadR1 binds
its own promoter (Fig. 4a). The presence of five bands
with differing mobility indicated that protein-DNA com-
plexes of varying stoichiometry were produced. This
may be the result of multiple binding sites and/or higher
order oligomerization upon DNA binding (Fig. 4b). In-
creasing the concentration of c¢dPadR1 in the reaction
resulted in a variation of the migration pattern until an
observed saturation point at the slowest mobility com-
pared to other bands was achieved (40-fold cdPadR over
DNA or 4 uM cdPadR1, Fig. 4b, far right). cdPadR1
binding to Peyymar; (Pr27) is consistent with auto-
regulation of its own expression.

To further define the binding sites for cdPadR1 binding
to Pegpaars, Palinsight was used to identify inverted repeats
within Pr27 characteristic of those bound by transcrip-
tional regulators containing a HTH motif [32-34]. Two

C. difficile R20291 cdPadR1 L. lactis LmrR

Fig. 3 Differences between cdPadR1, bcPadR1 (PDB ID 4ESB), and
apo-LmrR (PDB ID 3F8B). a Superposition of cdPadR1 (blue), bcPadR1
(cyan), and LmrR (red) in cartoon representation with the conserved W
indicated (sticks). b Surface representations of cdPadR1 and apo-LmrR
along the two-fold axis facing a4/a4" (orientation same as Fig. 3c),
which highlights the hydrophobic pore in LmrR and the closed dimeric
interface of cdPadR1

sets of inverted repeats (Box 1/2 and 3/4) were identified
with a TACT(N;;.10)AGTA sequence motif (Fig. 4a). A
series of smaller dsDNA fragments within the 100 bp
P dpaar: were designed to test the role of these inverted re-
peats in cdPadR1 binding to P.y,,qr; (Fig. 4a). A 64 bp
fragment containing both sets of inverted repeats (Pr32)
showed four shifts of varying stoichiometry similar to that
seen for Pr27 (Fig. 4c). However, full saturation, as seen
for Pr27, was not achieved suggesting that additional
space on the DNA for higher order oligomerization is
needed to see complete shifting to one higher molecular
weight complex. When c¢dPadR1 bound a 61 bp fragment
that contained only one set of inverted repeats (Pr31)
three shifted complexes were observed (Fig. 4d). This is
consistent with the loss of a full binding site and add-
itional space on the DNA for higher order oligomerization
as noted for Pr31.

We further narrowed cdPadR1 binding to two small
regions of P.y,uar; (Pré8 and Prl22) each containing
one set of inverted repeats TACT(N1;.12)AGTA (Fig. 4a).
cdPadR1 bound the 21 (Pr68) and 30 bp (Pr122) regions
of P.gpaar; with a single stoichiometry as visualized
using EMSA (Fig. 4e and f, respectively). Additionally, a
variety of dsDNA fragments representing various sub-
regions of the original 100 bp P.,.4r; (Pr27) were ex-
amined and, unless the fragment contained the predicted
inverted repeats TACT(N;;.12)AGTA, no binding was
observed (Fig. 4g). It was noted that the Ny;.1, spacer re-
gion within the inverted repeats was AT rich. To deter-
mine whether the AT richness contributes to localized
bending of the DNA that facilitates binding we replaced
the TTATA in Pr68 with a GCCTG sequence (Pr101).
Indeed, significant binding of cdPadR1 to Pr101 was not
observed (Additional file 2: Figure S2) suggesting that
the AT-rich spacer is important for binding. It should be
noted that a fragment containing the AT rich portion
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but lacking the intact TACT/AGTA (Pr42) was not
bound by cdPadR1 (Fig. 4a and g). This indicates that
the AT rich sequence is not the direct binding site for
cdPadR1. Additionally, varying the length of the spacer
between the TACT/AGTA inverted repeat in Pr68 did
not interfere with binding (Additional file 2: Figure S2)
suggesting that flexibility of the DNA region between
the inverted repeat rather than the length is more im-
portant for cdPadR1 binding.

To summarize, cdPadR1l binding to P.g.qr; is de-
pendent upon a TACT/AGTA inverted repeat sequence.
Two such sequences are present in the 100 bp P.ypaari-
investigated in this study. These two inverted repeats are
responsible for two sequence-specific interactions between
cdPadR1 and its promoter that can account for two shifted
complexes. Additional shifted complexes may be the re-
sult of higher order oligomerization of cdPadR1l once
bound to DNA or a decrease in the constraints on se-
quence specificity. Although constraints on the spacing

between the TACT/AGTA inverted repeats do not appear
to be tight, there does appear to be a requirement for AT
richness within the spacer. The placement of the inverted
repeat within P.4,,4z; is consistent with auto regulation.
cdPadR1 and the cdPadR1 homologue CD630_1154 both
contain TACT/AGTA with an 11 nucleotide spacer 25 bp
upstream of the open reading frame (ORF). Additionally,
both promoter regions contain TACT(N;,)AGTA 52 bp
upstream of their respective ORFs and overlapping the
predicted -35/-10 promoter region, which suggests a simi-
lar binding function for each of these genes to their re-
spective promoters.

cdPadR1 binds other gene promoters with the cdPadR1
motif

The dsDNA fragments containing TACT(N;;.1,)AGTA
from P _4p,ar; were analyzed for conserved binding
motif using GLAM2 [24]. GLAM2 was advantageous
over MEME because it allows for spacing/gaps in motif
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prediction since spacing between the inverted repeats
was not critical for binding. The best motif was 21 bp in
length with the sequence GTACTAT(N,)ATTATA(N)
AGTA and was designated cdPadR1 motif (Fig. 5a).
GLAM2Scan results indicated the presence of 200 po-
tential motif matches in the C. difficile strain R20291
genome with scores ranging from 13.6-18.7, not includ-
ing the P_4,.4r; sequences used for analysis (Additional
file 3: Table S2). Approximately half of these motifs are
either situated between two convergent genes or are
located within open reading frames (ORFs). Of those that
are located upstream of genes, approximately 6 % are
upstream of other transcription regulators and other regu-
latory proteins, such as two-component response regula-
tors, while another ~7 % are upstream of genes involved in
transport/efflux and sporulation. The genes predicted to be
involved in transport/efflux are the ABC transporter ATP-
binding proteins CDR20291_0159, _0296, _0551, _0553,
and _3203 (Additional file 4: Table S3). Two genes pre-
dicted to be involved in sporulation also contain the
¢dPadR1 binding motif upstream of the transcription start
site, a spore maturation protein (CDR20291_3377) and a
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spore coat assembly protein (CDR20291_0316) (Additional
file 4: Table S3). Over 50 % of the predicted binding motifs
were indicated to be either upstream genes of “hypothetical
proteins”, within open reading frame, or between conver-
gent genes. Exemplar promoters from this list were selected
for analysis using EMSA to determine binding of cdPadR1
to these promoter fragments in vitro (Fig. 5b and c). A
30 bp and 100 bp dsDNA fragment was selected for
each promoter region and contained at least one pre-
dicted cdPadR1 motif (Fig. 5b and c). Pr132 and Pr133
contain the cdPadR1 motif located 45 base pairs upstream
of CDR20291_2322 (IcIR family transcription regulator
CDS) (cdPys00). Pr135 and Pr136 contain the cdPadR1
motif located 116 base pairs upstream of CDR20291_1882
(two-component system response regulator CDS) (cdP ;gg0).
Pr137 and Pr138 contain the cdPadR1 motif located 25
base pairs upstream of CDR20291_1590 (ArsR family tran-
scriptional regulator CDS) (cdP;s9p). cdPadR1 bound all of
the selected promoters in vitro (Fig. 5c). The 30 bp pro-
moters (Pr132, Pr135, Pr137) yielded two discrete bands.
However, this phenomenon has also been observed on oc-
casion for the short dsDNA fragment containing one set of
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Fig. 5 Example analysis of predicted cdPadR1 binding motif (cdPadR1 motif) as verified by EMSA. a Motif identified by GLAM2 analysis [24] of
small dsDNA fragments from within the cdPadR1 promoter (Pr68 and PR122). b cdPadR1 motifs present in three exemplar promoters compared
to the cdPadR1 motif. Nucleotides that are in agreement with the reference cdPadR1 motif are highlighted. Pr132 and Pri133 are upstream of
CDR20291_2322 (IcIR family transcription regulator CDS); Pr135 and Pr136 are upstream of CDR20291_1882 (two-component system response
regulator CDS); Pr137 and Pr138 are upstream of CDR20291_1590 (ArsR family transcriptional regulator CDS). b EMSAs of cdPadR1 binding 30 bp
(green arrows) and 100 bp (red arrows) promoter regions that contain cdPadR1 motif. DNA only (-) reactions contained 100 nM either 30 or 100
bp dsDNA from promoters listed above. Reactions containing dsDNA and 4 uM cdPadR1 are noted with a plus (+) sign. Final DNA concentration
in both reactions was 100 nM. Bound complexes are indicated with black arrows
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inverted repeats from Pgqr; (Pré8, Additional file 5
Figure S3) and is not likely to represent multiple binding
events to a small dsDNA fragment [35]. This binding pat-
tern may be attributable to the presence of small amounts
of ssDNA, portions of the dsDNA with secondary struc-
ture, or conformational changes in the DNA upon binding
in a small subset of the complexes which are more pro-
nounced in shorter dsDNA fragments [35].

Gene regulatory networks play an integral role in the
physiology of microorganisms and their response to ever
changing environments [36, 37]. The binding of cdPadR1
to the promoters of genes encoding transcription regula-
tors and a DNA-binding response regulator, part of a two-
component signal transduction system, suggests it may
play a role in a gene regulatory network in C. difficile. The
c¢dPadR1 motif overlaps the predicted -10 region of
¢dP 590 and ¢dP 35, [38]. This positioning of a regulatory
binding site overlapping the -10 region is consistent with
repression via abrogation of the Sigma factor. In cdP;ggn,
the cdPadR1 motif is located approximately 30 bp up-
stream of the predicted -35 region [38]. Positioning of a
regulatory binding site upstream of the -35/-10 core pro-
moter elements is typically consistent with a role in activa-
tion of the promoter [39]. While additional studies are
necessary to determine the biological role of cdPadR1 in
activation or repression of these promoters, it is notable
that cdPadR1 is able to bind these promoters and likely
participates in a regulatory cascade in response to un-
determined stimuli.

cdPadR1 binds other promoter regions
Additional promoters from the cdpadR1 genomic neigh-
borhood were chosen to test for cdPadR1 binding based

Page 9 of 12

on gene expression studies. A promoter for a nitric
oxide reductase (norV, CDR20291_0994) and a SpoOB-
associated GTP-binding protein were selected. Nitric
oxide reductase has been linked to pathogenesis in other
microorganisms [40] and was 2-fold down regulated,
along with cdPadR1 when compared to the historical C.
difficile strain 630 [41]. Another representative promoter
for EMSA study from within cdPadR1 genome neighbor-
hood is upstream of a gene encoding a SpoOB-associated
GTP-binding protein (obg, CDR20291_1001) whose
homologue was 2-fold down regulated following pig loop
infection with the historical strain C. difficile 630 [42].
cdPadR1 bound P, and P, in vitro (Fig. 6d and e, re-
spectively). The migration patterns for P, and P, dif-
fer from that of P.y,,4r; (Fig. 6c). For all promoters
examined, slower migrating complexes appeared at in-
creasing protein concentrations, which suggests that
cdPadR1 binds to multiple sites in the upstream region
of the gene. However, the complexes formed when
cdPadR1 is incubated with promoters other than its own
are smaller and it appears that a level of saturation,
wherein only one large complex is formed, is not
reached as it is for P.y,.4r;. It is well understood that
transcription regulators bind a relatively limited set of
DNA sequences [43], a concept that we explored for
cdPadR1 and P .;p,qr; (Fig. 4), as well as a predicted
binding motif (cdPadR1 motif, Fig. 5). Both P, and
P, have only one half of the inverted repeat within the
cdPadR1 motif (Fig. 6a and b). However, it is unclear
whether only one half-site is sufficient to initiate binding
to these promoters or if perhaps the binding is non-
specific and related to local DNA structure or AT
content. Therefore, we examined binding specificity

ol
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Fig. 6 EMSAs of cdPadR1 binding the cdpadR1 promoter (Pegpaar:), @ norV promoter (Pon), and b obg promoter (Py). The predicted -10 and -35
sites are indicated in blue boxes above the sequence. Orange arrows indicate the inverted repeats TACT/AGTA. ¢-e Final Pegpadar, Prors and Popg
(100 bp) concentration in the reaction was 0.1 uM. cdPadR1 was 5, 10, 20, and 40-fold excess over dsDNA. The minus (-) lane contains dsDNA and
no cdPadR1. Shifted DNA-protein complexes are annotated with a black arrow and unbound dsDNA migration is marked with a red arrow. f For
this EMSA, the final heparin concentration was 4-fold of the standard EMSA concentration used throughout this research. The + lane contains
40-fold excess cdPadR1 over dsDNA
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using increased amounts of heparin as a competitor for
cdPadR1 binding (Fig. 6f). When a 4-fold higher concen-
tration of heparin was present in the binding reaction of
cdPadR1 to P,y or Py, a shifted complex was no lon-
ger detected at 40-fold protein over dsDNA (Fig. 6f).
Under the same conditions, cdPadR1 still bound its own
promoter, though the larger complexes were no longer
detected. That cdPadR1, a small HTH DNA binding pro-
tein, would bind other 100 bp predicted promoter regions
non-specifically could be explained using the theoretical
model termed one-dimensional diffusion, or “sliding”.
During one-dimensional diffusion, the transcriptional
regulator searches for specific binding sites along the
DNA remaining in contact with the DNA due to non-
specific interactions [44—46]. It is, therefore, likely that a
more specific level of binding requires the full cdPadR1
motif. So, while cdPadR1 does, in fact, bind P,,,,,, and
other 100 bp AT-rich promoters in vitro (Additional file 6:
Table S1), no conclusions can be made regarding the regu-
lation of this or any other promoters tested based on
EMSA alone. Coupled with the recent expression studies,
however, in vitro binding assays suggest that further study
into the regulation of expression of these genes, especially
norV, is warranted.

Role of the conserved W residue in cdPadR1 DNA binding
It was suggested previously that the conformational
changes elicited by drug binding between a4/a4’ could
affect DNA binding and that a conserved tryptophan (W)
in o4 was directly involved in drug binding; an indirect
role of this W residue was indicated in DNA binding [11].
We examined the effect of this conserved W at residue 94
(W94) in cdPadRl on DNA binding in vitro (Fig. 7).
When W94 is replaced with an alanine (cdPadR1%“*%),
the majority of binding along with the higher order com-
plexes observed for cdPadR1™" binding to P ypaar: are
lost (Fig. 7). Dimerization was not effected as detected by
size exclusion chromatography coupled with multi-angle
light scattering detection (SEC-MALS, Additional file 1:

Qﬂp

AA AA

{1

100 bp>u (Y| LJ \.J u

Fig. 7 EMSA of cdPadR1"" and cdPadR1"*** binding P gpaanr-
Protein-free controls are indicated with a minus sign (-). 100 bp
PeapadaiDNA (0.05 uM) was used in EMSA to determine binding of
cdPadR1 to its own promoter at increasing concentrations (0.25, 0.50,
1.0, and 2.0 uM) of protein
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Figure S1). These results suggest that, while the conserved
W does not affect dimerization, it does inhibit DNA bind-
ing in vitro in a way that is not entirely clear while further
supporting a role of the conserved W in DNA binding.
The suggested mechanism by Madoori et al wherein the
DNA binding helices of LmrR putatively rotate away from
each other when the effector-binding/oligomerizatoin do-
main is perturbed at the conserved W residue is further
supported as the mechanism of lowered DNA binding
affinity by the results presented here.

Conclusion

We have determined the 1.9 A resolution crystal structure
of cdPadR1, which revealed that it is in the PadR-s2 sub-
family of PadR transcriptional regulators with other struc-
turally and functionally characterized PadR-like regulators
from B. cereus (bcPadR1 and bcPadR2) and L. lactis (LmrR).
In vitro protein-DNA binding experiments demonstrate
that cdPadR1 binds a region comprised of the inverted re-
peats TACT/AGTA and an AT-rich core, GTACTAT(N,)
ATTATA(N)AGTA, within its own promoter. These pre-
dicted binding sites are present in the cdPadR1 homologue
CD630_1154, suggesting that these transcription regulators
are functional homologues as well. cdPadR1 appears to be
part of a hierarchical gene regulatory network in C. difficile.
Furthermore, cdPadR1 non-specifically associates with lon-
ger DNA fragments that may facilitate promoter and motif
searching. Mutation of the highly conserved W in the a4
helical region, which is predicted to be involved in multi-
drug recognition and dimerization in LmrR, resulted in
alterations of cdPadR1 binding to the predicted binding
motif, potentially due to tighter constraints on spacing of
the inverted repeats as well as a loss of higher order
oligomerization. Complementary in vivo studies of cdPadR1
will allow for a better understanding of its regulatory
network.

Additional files

Additional file 1: Figure S1. (A) Chromatogram from size exclusion
chromatography (SEC) run performed on a Superdex 200 Increase 10/300
GL column connected to an AKTA Pure 25 (GE Healthcare). The black line
represents the calibration standard mix with molecular weights of
standards labeled. The blue and red lines indicate the elution profile for
cdPadR1"" and cdPadR1"**", respectively (13.5 kDa monomer size for
both). (B) Molar mass versus elution time of cdPadR1"" and cdPadR1"***
from SEC (as described) coupled with multi-angle light scattering (MALS)
detection. Red lines indicate MALS signal (LS) and green lines indicate
UV detection. cdPadR1"" and cdPadR1"** both dimers with molecular
weights (MW) of approximately 30 and 27 kDa, respectively (monomeric
cdPadR1 MW is 13.5 kDa). (PPTX 222 kb)

Additional file 2: Figure S2. EMSA of cdPadR1 binding different
fragments of Pegpadr;, that contain the inverted repeats TACT/AGTA
with 4 bp overhang on the 5" and 3" end of inverted repeats. Each
dsDNA contains a different number of nucleotides between TACT/AGTA
(addition of a central alanine). EMSAs were conducted as described for
100 bp and smaller dsDNA fragments in the materials and methods. A
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complete list of nucleotides tested is available in the table below the
EMSA gels. Inverted repeats are underlined. For Pr101, the AT rich region
that was mutated is indicated in bold. The - lane contains DNA only and
the + lane contains 10-fold cdPadR1 in excess over DNA. (PPTX 256 kb)

Additional file 3: Table S2. List of GLAM2Scan [24] results for scan

of the Clostridium difficile R20291 genome for cdPadR1 motif (Fig. 5a).
Thexlsx file includes the locus ID for the gene(s) nearest the motif
(column A); the gene annotation, if applicable, or the indication that this
motif is within an open reading frame (ORF) or between two convergent
genes (column B); the genomic placement (start, column C and end,
column D); indication of whether the motif is on the leading (+) or
lagging (-) strand (column E); the motif sequence generated by
GLAM2Scan (column F); and the score generated by GLAM2Scan that
indicates how well the sequence fits the cdPadR1 motif (column G).
(XLSX 49 kb)

Additional file 4: Table S3. List of GLAM2Scan [24] results for scan of
the Clostridium difficile R20291 genome for cdPadR1 motif (Fig. 5a) for
promoters upstream of genes predicted to be involved in transport/efflux
and sporulation. The xIsx file includes the locus ID for the gene(s) nearest
the motif (column A); the gene annotation (column B); the genomic
placement (start, column C and end, column D); indication of whether
the motif is on the leading (+) or lagging (-) strand (column E); the motif
sequence generated by GLAM2Scan (column F); and the score generated
by GLAM2Scan that indicates how well the sequence fits the cdPadR1
motif (column G). (XLSX 39 kb)

Additional file 5: Figure S3. EMSA of cdPadR1 binding the 21 bp
fragment (Pr68, Additional file 4: Table S1) that contains the inverted
repeats TACT/AGTA with 11 nucleotides in between from within its own
promoter. Protein-free controls are indicated with a minus sign (-). 21 bp
Pedpadri DNA (0.25 uM) was used in a reaction with increasing concentrations
of cdPadR1 (2.5, 5.0, and 10.0 uM). (PPTX 3693 kb)

Additional file 6: Table S1. Full list of oligonucleotides that were
annealed and used in EMSA studies with cdPadR1. The xIsx file includes
the arbitrary number assigned to each oligonucleotide (column A); the
genomic placement of the minimum nucleotide (column B); length in
base pairs (bp, column C); indication of binding (+) or no binding
detected (-) (column D); locus tag associated with the gene downstream
of the oligonucleotide (column E); the annotated gene downstream of
the oligonucleotide (column F); and the oligonucleotide sequence 5' to
3" (column G). (XLSX 50 kb)

Abbreviations

A: Alanine; A: Angstrom; be: Bacillus cereus; bcPadR1: Bacillus cereus locus 1D
BC4206; bcPadR2: Bacillus cereus locus 1D BCE3449; bp: Base pairs; C: Celsius;
CCD: Charged coupled device; cd: Clostridium difficile; cdP ;sep: Promoter for
locus ID CDR20291_1590; cdP ;455 Promoter for locus ID CDR20291_1882;
cdP 3,5 Promoter for locus ID CDR20291_2322; cdPadR1: Locus ID
CDR20291_0991; ct: Clostridium thermocellum; C-terminal: Carboxy-terminal;
DNA: Deoxyribonucleic acid; dsDNA: Double stranded deoxyribonucleic acid;
DTT: Dithiothreitol; EMSA: Electrophoretic mobility shift assay;

gDNA: Genomic deoxyribonucleic acid; GLAM2: Gapped local alignment of
motifs version 2; GTP: Guanosine triphosphate; H33342: Hoeschst 33342;
HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; HTH: Helix-turn-
helix; ID: Identification; I-I: Indole-indole; I-P: Indole-phenol; KCl: Potassium
chloride; L: Liter; LmrR: Lactococcal multidrug resistant transcription regulator;
M: Molar; MALS: Multi-angle light scattering; MCSG: Midwest Center for Structural
Genomics; MEME: Multiple Em for Motif Elicitation; MgCL,: Magnesium chloride;
mM: Millimolar; MW: Molecular weight; N: Any nucleotide; NaCl: Sodium chloride;
NaH,PO,: Sodium phosphate; NaOH: Sodium hydroxide; norV: Nitric oxide
reductase gene; N-terminal: Amino-terminal; obj: Gene encoding Spo0B;

ORF: Open reading frame; PadR: Phenolic acid decarboxylase regulator;

PadR-s1: Subfamily of the PadR protein family; PadR-s2: Subfamily of the PadR
protein family; Pcgpaqs;: Promoter of cdpadR1 (locus ID CDR20291_0991);

PDB: Protein Data Bank; Pp,,: Promoter of norV/ gene; Poyg: Promoter of obg
gene; P-P: Phenol-phenol; Pr: Promoter; gRT-PCR: quantitative reverse
transcriptase polymerase chain reaction; RMSD: root mean square deviation;
Spo0B: sporulation initiation phosphotrasferase B; ssDNA: single stranded
deoxyribonucleic acid; TB: tris-borate; W: tryptophan; wHTH: winged helix-turn-
helix; WT: wild-type; pL: microliter; puM: micromolar
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