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Abstract: Background: Lactic acidosis is the most common cause of anion gap metabolic acidosis
in the intensive care unit (ICU), associated with poor outcomes including mortality. We sought to
compare machine learning (ML) approaches versus logistic regression analysis for prediction of
mortality in lactic acidosis patients admitted to the ICU. Methods: We used the Medical Information
Mart for Intensive Care (MIMIC-III) database to identify ICU adult patients with lactic acidosis
(serum lactate ≥4 mmol/L). The outcome of interest was hospital mortality. We developed prediction
models using four ML approaches consisting of random forest (RF), decision tree (DT), extreme
gradient boosting (XGBoost), artificial neural network (ANN), and statistical modeling with forward
stepwise logistic regression using the testing dataset. We then assessed model performance using
area under the receiver operating characteristic curve (AUROC), accuracy, precision, error rate,
Matthews correlation coefficient (MCC), F1 score, and assessed model calibration using the Brier
score, in the independent testing dataset. Results: Of 1919 lactic acidosis ICU patients, 1535 and 384
were included in the training and testing dataset, respectively. Hospital mortality was 30%. RF had
the highest AUROC at 0.83, followed by logistic regression 0.81, XGBoost 0.81, ANN 0.79, and DT
0.71. In addition, RF also had the highest accuracy (0.79), MCC (0.45), F1 score (0.56), and lowest
error rate (21.4%). The RF model was the most well-calibrated. The Brier score for RF, DT, XGBoost,
ANN, and multivariable logistic regression was 0.15, 0.19, 0.18, 0.19, and 0.16, respectively. The RF
model outperformed multivariable logistic regression model, SOFA score (AUROC 0.74), SAP II score
(AUROC 0.77), and Charlson score (AUROC 0.69). Conclusion: The ML prediction model using RF
algorithm provided the highest predictive performance for hospital mortality among ICU patient
with lactic acidosis.
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1. Introduction

Lactic acidosis is the most common cause of anion gap metabolic acidosis in the
intensive care unit (ICU) [1,2], and it is associated with poor clinical outcomes [1,3–6].
While ICU patients with lactic acidosis typically have classic type A lactic acidosis due
to tissue hypoperfusion, certain patients with liver disease, cancer, or predisposing drug
use (such as metformin, salicylate) can also have coexisting type B lactic acidosis [7,8].
Lactic acidosis (serum lactate ≥4 mmol/L) is associated with high mortality in various ICU
settings, including sepsis, trauma, or cardiac surgeries [3,4,9–25]. Hence, the incorporation
of ICU admission lactate levels in illness severity scores has been proven to improve
predictive performance for in-hospital mortality [26,27].

Recently, artificial intelligence (AI) and machine learning (ML) have been increasingly
utilized for precision medicine [28,29], including prediction of clinical outcomes among
critically ill patients [30–34]. Due to the ability of ML to cope with nonlinear, complex,
and multidimensional data [31,35], recent studies have demonstrated that ML approaches
using ICU data provided high predictive performances that outperformed traditional
analysis [32,33]. While the use of lactate levels in mortality prediction among critically
ill patients has been investigated [26,27], data on mortality risk prediction among the
subgroup of ICU patients with lactic acidosis are limited. Given the heterogeneity of
impacts of lactic acidosis on clinical outcomes in a variety of different patient characteristics
and ICU settings (such as lactic acidosis in patients with trauma, cardiac surgery, and septic
shock) [9–20], an ML-based mortality prediction model for ICU patients with lactic acidosis
can provide a novel individualized approach to clinical decision making for critically ill
patients.

In this study, we aimed to develop and then assess various ML-based prediction model
performances in predicting mortality of ICU patients with lactic acidosis in comparison to
the traditional statistical model.

2. Methods
2.1. Patient Population

The Mayo Clinic Institutional Review Board approved this observational study (IRB
number-21-009222). We used the Medical Information Mart for Intensive Care III (MIMIC
III) database to conduct this study. MIMIC-III provides deidentified comprehensive clinical
data from ICU patients at Beth Israel Deaconess Medical Center in Boston, Massachusetts,
United States between 2001 and 2012 [36]. The database is widely accessible to researchers
internationally under a data use agreement. If patients had multiple ICU admissions, we
analyzed only the first admission.

Inclusion criteria were (1) age ≥18 years and (2) presence of lactic acidosis at ICU
admission, defined as the first serum lactate measured within 48 h of ICU admission of
≥4.0 mmol/L. The exclusion criteria were (1) no serum lactate measurements within 48 h
of ICU admission or (2) being admitted to the ICU for ≤24 h.

2.2. Data Collection

We abstracted data on patient characteristics, comorbidities, vital signs, organ support,
and laboratory results for prediction model development. As our goal was to develop and
assess a prediction model for mortality in lactic acidosis patients based on the available
data at the time of ICU admission, we only used data that were present within 48 h of ICU
admission for analysis. When multiple values existed, we selected the closest vital sign or
laboratory value to lactic acidosis occurrence. We excluded laboratory results with more
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than 10% missing data. Otherwise, we imputed missing data through multiple imputation
using Random Forest (RF).

2.3. Model Development

In order to utilize ML models to predict the risk of in-hospital mortality in ICU patients
with lactic acidosis, we followed the TRIPOD to build these ML models (Online Supple-
mentary) [37]. Spearman’s rank correlation was applied to assess the separate correlation
of variables in the dataset and demonstrate no significant correlations (Supplementary
Figure S1). Numeric data were normalized to have a standard deviation of 1 and a mean of
0 [38]. The overall study cohort was randomized into a training (80%) and testing dataset
(20%) as per the Pareto principle [39]. We used the training dataset to develop ML models.
The testing cohort was blinded to all methods until the final evaluation. As a reference
model, we used multivariable logistic regression analysis. We conducted forward stepwise
variable selection using criteria of p < 0.20 for entry cut-off.

ML models include decision tree (DT), RF, extreme gradient boosting (XGBoost), and
deep learning. RF and XGBoost are both DT ensemble algorithms [40,41]. However, RF
forests rely on bagging, which is a democratic process to “elect” the best decision among
the subgroups of trees [40]. XGBoost is based on a gradient descent–boosting process,
which is an ensemble of weak learners that is reinforced depending on the quality of the
assessment [41]. We used deep learning based on a multi-layer feedforward artificial neural
network (ANN) that is trained with stochastic gradient descent using back-propagation.

For DT analysis, the number of terminal nodes was determined considering the scree
plot showing the relationship between the tree size and coefficient of variance. The decision
tree was pruned based on cross-validated error results using the complexity parameter
associated with the minimal error (Supplementary Figure S2). For the RF model, the num-
ber of trees was 500, which yielded the lowest error rate (Supplementary Figure S3), and
mtry value was calculated by the square root of the number of variables [42]. For XGBoost
and ANN, we created a hyperparameter tuning grid to identify the best combination
of hyperparameters using cross-validation methods [43]. Detailed hyperparameters are
provided in the Online Supplementary data.

2.4. Model Evaluation and Calibration

Model performance was assessed with area under the receiver operating characteristic
curve (AUROC), accuracy, precision, error rate (ERR), Matthews correlation coefficient
(MCC), and F1 score in the testing dataset [44–46]. The formula for each measure is
provided in the Online Supplementary data. The Brier score was used to evaluate model
calibration [47].

2.5. Explanations of the Features in the ML-Based Prediction Model That Drive Patient-Specific
Predictions of Mortality

After we identified ML model with highest predictive performances, we applied the
Shapley additive explanations (SHAP) values to explain which features initiate patient-
specific estimates. In addition, we also applied the local interpretable model-agnostic
explanations (LIME) approach to approximate a complex nonlinear model to a linear
model near variables of interest.

2.6. Statistical Analysis

All analyses were performed using R, version 4.0.3 (RStudio, Inc., Boston, MA, USA;
http://www.rstudio.com/ (accessed on 15 January 2021)). We used the “rpart” package
for DT, “randomForest” and “randomForestExplainer” for RF, “caret” package for XGBoost
and grid search, “h2o” package for ANN and SHAP, “LIME” for LIME, and the “missForest”
package for missing data imputation [48].

http://www.rstudio.com/
http://www.rstudio.com/
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3. Results

A total of 1919 ICU patients with lactic acidosis were eligible for analysis. Of these,
1535 and 384 were included in the training and testing dataset, respectively. Table 1 shows
the clinical characteristics of patients in the training and testing datasets. Clinical character-
istics between the training and testing datasets were comparable. Hospital mortality was
also similar between training and testing datasets (29.8% vs. 29.7%; p = 0.97).

Table 1. Patient characteristics in the training and testing datasets.

Characteristics All
(n = 1919)

Training Set
(n = 1535)

Testing Set
(n = 384) p-Value

Age (years) 61.8 ± 17.1 61.5 ± 17.0 63.0 ± 17.3 0.13

Male sex 1118 (58) 889 (58) 229 (60) 0.54

Race

0.85
White 1560 (81) 1246 (81) 314 (82)
Black 152 (8) 124 (8) 28 (7)

Hispanic 79 (4) 56 (4) 14 (4)
Other 128 (7) 100 (7) 28 (7)

ICU type

0.75

Cardiac ICU 206 (11) 164 (11) 42 (11)
Cardiac surgery ICU 467 (24) 375 (24) 92 (24)

Medical ICU 605 (32) 475 (31) 130 (34)
Surgical ICU 295 (15) 243 (16) 52 (13)

Trauma/surgical ICU 346 (18) 278 (18) 68 (18)

Elixhauser Comorbidities
Congestive heart failure 456 (24) 370 (24) 86 (22) 0.48

Valvular disease 352 (18) 282 (18) 70 (18) 0.95
Pulmonary circulation disorders 133 (7) 110 (7) 23 (6) 0.42

Peripheral vascular disease 286 (15) 227 (15) 59 (15) 0.78
Hypertension 884 (46) 694 (45) 190 (49) 0.13

Paralysis 55 (3) 36 (2) 19 (5) 0.006
Neurologic disorders 174 (9) 131 (9) 43 (11) 0.10

Chronic pulmonary disease 266 (14) 204 (13) 62 (16) 0.15
Uncomplicated diabetes 385 (20) 307 (20) 78 (20) 0.89

Complicated diabetes 73 (4) 61 (4) 12 (3) 0.44
Hypothyroidism 134 (7) 108 (7) 26 (7) 0.86

Liver disease 291 (15) 240 (16) 51 (13) 0.25
Peptic ulcer 1 (0.05) 1 (0.05) 0 (0) 0.62
AIDS/HIV 27 (1) 21 (1) 6 (2) 0.77
Lymphoma 52 (3) 41 (3) 11 (3) 0.83

Metastatic cancer 136 (7) 105 (7) 31 (8) 0.40
Solid tumor 128 (7) 103 (7) 25 (7) 0.97

Rheumatoid arthritis 41 (2) 36 (2) 5 (1) 0.20
Coagulopathy 500 (26) 395 (26) 105 (27) 0.52

Obesity 97 (5) 74 (5) 23 (6) 0.35
Weight loss 68 (4) 55 (4) 13 (3) 0.85

Fluid and electrolyte disorders 843 (44) 676 (44) 167 (43) 0.85
Blood loss anemia 36 (2) 29 (2) 7 (2) 0.93
Deficiency anemia 275 (14) 232 (15) 43 (11) 0.05

Alcohol abuse 199 (10) 168 (11) 31 (8) 0.10
Drug abuse 70 (4) 57 (4) 13 (3) 0.76
Psychosis 71 (4) 60 (4) 11 (3) 0.33

Depression 104 (5) 78 (5) 26 (7) 0.19
Chronic kidney disease 25 (1) 23 (1) 2(1) 0.13

Body weight (kg) 81.7 ± 21.0 81.9 ± 20.7 81.4 ± 22.1 0.72
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Table 1. Cont.

Characteristics All
(n = 1919)

Training Set
(n = 1535)

Testing Set
(n = 384) p-Value

Vital signs
Temperature (F) 97.2 ± 2.2 97.2 ± 2.2 97.4 ± 2.0 0.23

Heart rate (per minutes) 97 ± 21 97 ± 21 97 ± 22 0.47
Systolic blood pressure (mmHg) 117 ± 26 117 ± 26 117 ± 24 0.86
Diastolic blood pressure (mmHg) 62 ± 15 62 ± 15 62 ± 15 0.91

Mean blood pressure (mmHg) 81 ± 21 82 ± 22 80 ± 18 0.32
Respiratory rate (per minutes) 17 ± 9 17 ± 9 17 ± 9 0.95

Oxygen saturation (%) 97 ± 5 97 ± 5 97 ± 5 0.18
Glasgow coma score 7.9 ± 4.9 8.3 ± 4.9 7.8 ± 4.9 0.05

Vasopressor use 1230 (64) 984 (64) 246 (64) 0.99

Ventilator use 1608 (84) 1285 (84) 323 (84) 0.85

Any renal replacement therapies 54 (3) 44 (3) 10 (3) 0.78
Hemodialysis 35 (2) 29 (2) 6 (2) 0.67

CRRT 22 (1) 18 (1) 4 (1) 0.83

Acute kidney injury 1401 (73) 1117 (73) 284 (74) 0.64

Laboratory data
BUN (mg/dL) 27 ± 21 27 ± 20 28 ± 23 0.28

eGFR (mL/min/1.73 m2) 68 ± 31 68 ± 31 67 ± 29 0.65
Sodium (mEq/L) 138 ± 5 138 ± 6 139 ± 5 0.38

Potassium (mEq/L) 4.4 ± 0.9 4.3 ± 0.9 4.4 ± 0.9 0.45
Chloride (mEq/L) 106 ± 7 107 ± 6 106 ± 7 0.79

Bicarbonate (mEq/L) 20 ± 5 20 ± 5 20 ± 5 0.81
Anion gap (mEq/L) 18 ± 6 18 ± 5 18 ± 6 0.57

Total calcium (mg/dL) 8.2 ± 1.2 8.2 ± 1.2 8.2 ± 1.1 0.91
Ionized calcium (mmol/L) 1.1 ± 0.2 1.1 ± 0.2 1.1 ± 0.1 0.60

Phosphate (mg/dL) 4.1 ± 1.8 4.1 ± 1.7 4.2 ± 1.9 0.29
Magnesium (mg/dL) 1.9 ± 0.5 1.9 ± 0.5 2.0 ± 0.5 0.60

Lactate (mmol/L) 6.2 ± 2.6 6.2 ± 2.6 6.1 ± 2.5 0.45
Glucose (mg/dL) 179 ± 89 179 ± 88 180 ± 91 0.89

Hemoglobin (g/dL) 10.6 ± 2.3 10.6 ± 2.4 10.6 ± 2.3 0.98
WBC (109 cells/L) 14.1 ± 8.3 14.0 ± 8.6 14.2 ± 7.2 0.73

Platelet (109 cells/L) 170 ± 103 178 ± 102 187 ± 105 0.13
pH 7.31 ± 0.12 7.31 ± 0.12 7.31 ± 0.12 0.94

pCO2 (mmHg) 39 ± 11 39 ± 11 39 ± 11 0.96
pO2 (mmHg) 209 ± 133 209 ± 133 210 ± 134 0.80

INR 1.8 ± 1.0 1.8 ± 1.1 1.8 ± 1.0 0.98
PTT (second) 49 ± 30 49 ± 30 48 ± 31 0.82

Culture data
Positive blood culture 197 (10) 158 (10) 39 (10) 0.94
Positive urine culture 205 (11) 171 (11) 34 (9) 0.19

Positive sputum culture 284 (15) 220 (14) 64 (17) 0.25

Hospital death 571 (30) 457 (30) 114 (30) 0.97

Abbreviations: AIDS, Acquired Immune Deficiency Syndrome; AKI, Acute Kidney Injury; BUN, Blood Urea Nitrogen; CCU, Coronary
Care Unit; CHF, Chronic Heart Failure; Cl, Chloride; CRRT Continuous Renal Replacement Therapy; CSRU, Cardiac Surgery Recovery
Unit; DBP, Diastolic Blood Pressure; eGFR, estimated Glomerular Filtration Rate; GCS, Glasgow Coma Scale; Hb Hemoglobin; HR, Heart
Rate; ICU, Intensive Care Unit; IHD, Intermittent Hemodialysis; INR, International Normalized Ratio; K, Potassium; MAP, Mean Arterial
Pressure; Mg, Magnesium; MICU, Medical Intensive Care Unit; Na, Sodium; pH, potential hydrogen; pCO2, partial pressure of carbon
dioxide; pO2, partial pressure of oxygen; PT, Prothrombin time; PTT, Partial Thromboplastin Time; PVD, Peripheral vascular disease; RR,
Respiratory Rate; RRT, Renal Replacement Therapy; SAPS II Score, Simplified Acute Physiology Score II; SPO2, Saturation of Peripheral
Oxygen; Systolic Blood Pressure; SICU, Surgical Intensive Care Unit; WBC, White Blood Cell.

The ERRs and AUROCs of all ML models and the multivariable logistic regression
model for mortality prediction in the test data set are shown in Table 2 and Figure 1. RF
showed the lowest ERR (21.4%) and the highest accuracy (0.79), precision (0.72), MCC score
(0.45), F1 score (0.56), and AUROC (0.83, 95% confidence interval (CI) 0.79–0.87). While the
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decision tree demonstrated a simple algorithm to follow (Figure 2), it had the highest ERR
(26.7%) and lowest accuracy (0.73), precision (0.59), MCC score (0.30), F1 score (0.44), and
AUROC (0.71, 95%CI 0.66–0.77) among all ML models (Figure 1).

Table 2. Comparison of evaluation and calibration among the different models.

Model Error Rate of
Test Data Set Accuracy Precision MCC F1 Score AUROC in

the Test Set Brier Score

Random forest
model 21.4% 0.79 0.72 0.45 0.56 0.83

(0.79–0.87) 0.15

Decision tree 26.7% 0.73 0.59 0.30 0.44 0.71
(0.66–0.77) 0.19

XGBoost 25.0% 0.75 0.60 0.36 0.52 0.81
(0.76–0.85) 0.18

ANN 25.0% 0.75 0.67 0.33 0.42 0.79
(0.74–0.84) 0.19

Multivariable
logistic regression 22.9% 0.77 0.67 0.41 0.54 0.81

(0.79–0.83) 0.16

SOFA score 25.5% 0.74 0.67 0.30 0.39 0.74
(0.68–0.80) 0.17

SAPS II score 23.2% 0.77 0.71 0.39 0.49 0.77
(0.71–0.82) 0.17

Charlson score 28.4% 0.72 0.73 0.16 0.13 0.69
(0.63–0.74) 0.19

MCC: worst value −1 and best value +1. F1 score, accuracy, and precision: worst value 0 and best value 1. The Brier score is a combined
measure of discrimination and calibration that ranges between 0 and 1, where the best score is 0 and the worst is 1. ANN, artificial neural
network; MCC, Matthews correlation coefficient; AUROC, area under the receiver operating characteristic curve; SOFA, Sequential Organ
Failure Assessment; SAPS II, Simplified Acute Physiology Score.
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analysis. WBC, White Blood Cell; INR, International Normalized Ratio; RR, Respiratory Rate; MAP, Mean Arterial Pressure;
GCS, Glasgow Coma Scale.

The results of multivariable logistic regression analysis with stepwise variable selec-
tion are shown in Table 3. The AUROC of the multivariable logistic prediction model with
forward stepwise variable selection was 0.81 (95%CI 0.79–0.83). We also compared our
predictive models with Sequential Organ Failure Assessment (SOFA) score, Simplified
Acute Physiology Score (SAPS II) score (acute severity score) and Charlson score (comor-
bidity score). The RF model outperformed the multivariable logistic regression model,
SOFA score (AUROC 0.74), SAP II score (AUROC 0.77), and Charlson score (AUROC 0.69)
(Table 2).
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Table 3. Development of multivariable logistic regression model to predict mortality using stepwise variable selection in
the training dataset.

KERRYPNX Univariate Analysis Multivariable Analysis

Characteristics OR (95% CI) p-Value OR (95% CI) p-Value

Age per 10 years 1.10 (1.03–1.17) 0.005 1.16 (1.07–1.26) 0.001

Male sex 0.93 (0.75–1.16) 0.52

Race
White 1 (reference) 1 (reference)
Black 1.05 (0.70–1.56) 0.83

Hispanic 0.37 (0.18–0.75) 0.006
Other 0.93 (0.59–1.46) 0.75

ICU type
Cardiac ICU 1.21 (0.85–1.73) 0.30 0.73 (0.48–1.12) 0.15

Cardiac surgery ICU 0.21 (0.15–0.30) <0.001 0.26 (0.16–0.42) <0.001
Medical ICU 1 (reference) 1 (reference) 1 (reference) 1 (reference)
Surgical ICU 0.56 (0.40–0.77) 0.001 0.67 (0.45–1.00) 0.05

Trauma/surgical ICU 0.43 (0.31–0.60) <0.001 0.82 (0.54–1.25) 0.35

Elixhauser Comorbidities 1.20 (0.93–1.54) 0.16
Congestive heart failure 0.51 (0.37–0.71) <0.001

Valvular disease 1.21 (0.80–1.83) 0.36
Pulmonary circulation disorders 0.80 (0.58–1.11) 0.18

Peripheral vascular disease 0.75 (0.60–0.94) 0.01
Hypertension 0.91 (0.43–1.89) 0.79

Paralysis 1.17 (0.80–1.71) 0.43
Neurologic disorders 0.98 (0.71–1.35) 0.90

Chronic pulmonary disease 0.95 (0.73–1.26) 0.74
Uncomplicated diabetes 0.69 (0.38–1.27) 0.24

Complicated diabetes 0.81 (0.52–1.27) 0.37
Hypothyroidism 1.80 (1.35–2.39) <0.001

Liver disease 2.17 (0.92–5.15) 0.08
AIDS/HIV 3.12 (1.67–5.84) <0.001
Lymphoma 2.29 (1.53–3.41) <0.001

Metastatic cancer 0.74 (0.47–1.18) 0.21
Solid tumor 0.91 (0.43–1.89) 0.79

Rheumatoid arthritis 1.77 (1.39–2.25) <0.001 1.96 (1.22–3.15) 0.005
Coagulopathy 0.49 (0.27–0.90) 0.02

Obesity 0.97 (0.53–1.75) 0.91
Weight loss 1.92 (1.54–2.40) <0.001

Fluid and electrolyte disorders 0.90 (0.39–2.04) 0.80 0.49 (0.25–0.99) 0.04
Blood loss anemia 0.61 (0.43–0.85) 0.003
Deficiency anemia 0.94 (0.66–1.34) 0.72

Alcohol abuse 1.00 (0.56–1.79) 0.99
Drug abuse 0.50 (0.34–0.74) <0.001
Psychosis 0.64 (0.34–1.20) 0.16

Depression 0.92 (0.56–1.53) 0.76
Chronic kidney disease 0.49 (0.17–1.46) 0.20

Body weight per 5 kg 0.98 (0.96–1.01) 0.25

Vital signs
Temperature per 1 F 0.96 (0.91–1.01) 0.08

Heart rate per 10 times/minute 1.11 (1.05–1.16) <0.001
Systolic per 10 mmHg 0.92 (0.88–0.96) <0.001

Diastolic BP per 5 mmHg 0.97 (0.93–1.01) 0.09 1.05 (1.01–1.10) 0.03
Mean BP per 5 mmHg 0.97 (0.94–0.99) 0.02
Respiratory rate per 1

time/minute 1.05 (1.04–1.06) <0.001 1.02 (1.00–1.03) 0.04

Oxygen saturation per 1 percent 0.93 (0.91–0.95) <0.001
Glasgow coma score per 1 unit 1.00 (0.98–1.02) 0.91
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Table 3. Cont.

KERRYPNX Univariate Analysis Multivariable Analysis

Characteristics OR (95% CI) p-Value OR (95% CI) p-Value

Vasopressor use 2.19 (1.71–2.79) <0.001 2.11 (1.54–2.89) <0.001

Ventilator use 1.31 (0.96–1.79) 0.09 1.81 (1.21–2.70) 0.004

Any renal replacement therapies 1.36 (0.73–2.54) 0.33
Hemodialysis 1.68 (0.80–3.55) 0.17

CRRT 0.91 (0.32–2.56) 0.85

Acute kidney injury 3.45 (2.55–4.67) <0.001 2.10 (1.49–2.96) <0.001

Laboratory data
BUN per 1 mg/dL 1.03 (1.02–1.03) <0.001

eGFR per 10 mL/min/1.73 m2 0.90 (0.87–0.94) <0.001
Sodium per 1 mEq/L 1.00 (0.98–1.02) 0.72

Potassium per 1 mEq/L 1.03 (0.92–1.16) 0.60
Chloride per 1 mEq/L 0.95 (0.94–0.97) <0.001 0.97 (0.95–0.99) 0.01

Bicarbonate per 1 mEq/L 0.90 (0.87–0.92) <0.001
Anion gap per 1 mEq/L 1.14 (1.12–1.17) <0.001 1.04 (1.01–1.08) 0.009

Total calcium per 1 mg/dL 0.88 (0.80–0.96) 0.006
Ionized calcium per 1 mmol/L 0.06 (0.03–0.13) 0.06 0.19 (0.08–0.46) <0.001

Phosphate per 1 mg/dL 1.29 (1.21–1.37) <0.001
Magnesium per 1 mg/dL 1.48 (1.21–1.81) <0.001 1.54 (1.18–2.02) 0.002

Lactate per 1 mmol/L 1.25 (1.20–1.31) <0.001 1.11 (1.04–1.17) 0.001
Glucose per 1 mg/dL 1.00 (1.00–1.00) 0.14

Hemoglobin per 1 g/dL 1.06 (1.01–1.11) 0.02
WBC per 109 cells/L 1.01 (1.00–1.02) 0.13

Platelet per 109 cells/L 1.00 (1.00–1.00) 0.12
pH per 1 unit 0.04 (0.02–0.10) <0.001

pCO2 per 1 mmHg 0.99 (0.98–0.99) 0.04
pO2 per 1 mmHg 1.00 (1.00–1.00) <0.001 0.99 (0.99–1.00) 0.004

INR per 1 unit 1.62 (1.43–1.84) <0.001 1.17 (1.03–1.33) 0.02
PTT per 1 s 1.01 (1.01–1.01) <0.001 1.01 (1.00–1.01) 0.003

Culture data
Positive blood culture 2.49 (1.79–3.48) <0.001
Positive urine culture 2.05 (1.53–2.74) <0.001

Positive sputum culture 1.90 (1.37–2.63) <0.001

Abbreviations: AIDS, Acquired Immune Deficiency Syndrome; AKI, Acute Kidney Injury; BUN, Blood Urea Nitrogen; CCU, Coronary
Care Unit; CHF, Chronic Heart Failure; Cl, Chloride; CRRT Continuous Renal Replacement Therapy; CSRU, Cardiac Surgery Recovery
Unit; DBP, Diastolic Blood Pressure; eGFR, estimated Glomerular Filtration Rate; GCS, Glasgow Coma Scale; Hb Hemoglobin; HR, Heart
Rate; ICU, Intensive Care Unit; IHD, Intermittent Hemodialysis; INR, International Normalized Ratio; K, Potassium; MAP, Mean Arterial
Pressure; Mg, Magnesium; MICU, Medical Intensive Care Unit; Na, Sodium; pH, potential hydrogen; pCO2, partial pressure of carbon
dioxide; pO2, partial pressure of oxygen; PT, Prothrombin time; PTT, Partial Thromboplastin Time; PVD, Peripheral vascular disease;
RR, Respiratory Rate; RRT, Renal Replacement Therapy; SPO2, Saturation of Peripheral Oxygen; Systolic Blood Pressure; SICU, Surgical
Intensive Care Unit; WBC, White Blood Cell.

The RF model was the most well-calibrated among all models (Supplementary
Figures S4–S10). The Brier score for RF, DT, XGBoost, ANN, and multivariable logistic
regression was 0.15, 0.19, 0.18, 0.19 and 0.16, respectively (Table 2). Variable importance
analysis of RF, the best model, was performed. The top important variables of RF combined
the mean decrease in Gini (how much each variable decreases the node impurity), decrease
in accuracy, and p values of the clinical indices include BUN, anion gap, lactate level, INR,
pO2, phosphate level, PTT, platelet count, pH, and baseline eGFR (Figure 3).

To identify the features that influenced the prediction model the most, we depicted the
SHAP summary plot of RF model (Figure 4) and the top 20 features of the prediction model.
This plot depicts how high and low features’ values were in relation to SHAP values in
the testing dataset. According to the prediction model, the higher the SHAP value of a
feature, the higher probability of mortality occurring. Additionally, we applied LIME into
RF model to illustrate the impact of key features at the individual level (Figure 5).
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patient is allocated one dot on the line for each feature. Dots are colored according to the values of features for the respective
patient and accumulate vertically to depict density. Red represents higher feature values, and blue represents lower feature
values. Abbreviations: AKI, acute kidney injury; BUN, blood urea nitrogen; CRRT, continuous renal replacement therapy;
HCO3, bicarbonate; ICU, intensive care unit; INR, international normalized ratio.
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Figure 5. Local interpretable model explainer (LIME) for 6 individual cases (case# 379 to 384) from the testing dataset.
Label “1” means prediction of mortality and label “0” means prediction of no mortality (survival). Probability shows
the probability of the observation belong to the label “1” or “0”. The five most influential variables that best explain the
linear model in that observation’s local region are provided and whether the variable causes an increase in the probability
(supports/blue bar) or a decrease in the probability (contradicts/red bar). The x-axis shows how much each feature added
or subtracted to the final probability value for the patient. Abbreviations: BUN, blood urea nitrogen; GCS, Glasgow Coma
Scale; PTT, partial thromboplastin time; pO2, partial pressure of oxygen.
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4. Discussion

Significant efforts have been invested into the development of predictive risk models
of mortality for ICU patients. Traditional statistical models such as logistic regression
analysis have been previously utilized to construct such prognostication tools [49–52].
In recent years, ML predictive algorithms have emerged as a method to handle high-
dimensional, unstructured, and complex structure data [28–34]. In this study, we compared
ML models and a conventional multivariable logistic regression model to assess the best-
performing model for in-hospital mortality among ICU patients with lactic acidosis. The
findings from our study suggest that the RF algorithm demonstrated superior performance
in prediction of mortality among critically ill patients with lactic acidosis compared to
other predictive tools.

Modern ICUs and advances in electronic health records (EHRs) generate vast amounts
of complex and multidimensional data that provide valuable information on patient out-
comes. This has led to considerable advances in precision medicine [53]. While elevated
serum lactate levels have been shown to be associated with increased mortality [54–56]
and its incorporation improves predictive performance in traditional logistic regression
models among critically ill patients [26,27], mortality risk prediction among the subgroup
of ICU patients with lactic acidosis [54–56] is limited, especially utilizing ML approaches.
Furthermore, patients with lactic acidosis are heterogenous and the impact of lactic aci-
dosis on ICU mortality varies based on the clinical ICU setting, such as trauma, cardiac
surgery, and sepsis [54–56]. Given the heterogeneity of ICU patients with lactic acidosis
and the lack of adequate tools for patient-level prognostication, clinicians may often resort
to subjective gestalt judgment, which is prone to bias [57]. Thus, we investigated whether
ML methods improved mortality prognostication for ICU lactic acidosis in this study to
improve precision medicine. Our best model was reached using the RF algorithm, which
was associated with the highest AUROC and lowest ERR compared to all other models.
We acknowledged that AUROC has several flaws [58], and thus, we also investigated other
evaluation metrics including accuracy, precision, MCC, and F1 score. These confirmed the
robustness of our RF prediction model. Finally, the findings that the predicted probabilities
are close to the expected probability distribution supports that our RF model for mortality
predication among ICU patients with lactic acidosis is well-calibrated.

RF is a widely used ML approach that can effectively predict outcomes [40]. It
does this by utilizing additive combinations of trees that are built using different subsets
of data and variables [42,59]. This nonparametric and nonlinear machine learning RF
method can resist noise, and thus, it is expected to build accurate prediction models using
aggregated data [40,60]. As a type of robust nonparametric model, RF can simulate complex
relationships and it does not depend on data distribution, such as in logistic regression [40].
In addition, RF works well on large datasets, particularly when there are many categorical
independent variables and unbalanced data [42]. On the other hand, the logistic regression
analysis approach uses a generalized linear equation and the stepwise variable selection
method is based on the likelihood ratio test to describe the directed dependencies among a
set of variables. These approaches require that a number of statistical assumptions must
be met. Thus, logistic regression analysis possesses inherent bias and, consequently, low
variance due to the rigid nature from the shape of the line. Our RF prediction model also
outperformed acute severity scores (SOFA and SAPS II scores) and comorbidities score
(Charlson score) for prediction of ICU patients with lactic acidosis hospital mortality. In
addition, this study provided important information on variables in our RF model including
BUN, anion gap, lactate level, INR, pO2, phosphate level, PTT, platelet count, pH, and
baseline eGFR. These variables in the RF model for critically ill patients with lactic acidosis
using a MIMICIII database will help each institution develop their individualized RF model
to better prognosticate mortality risk. Additionally, we applied model-agnostic approaches
including feature relevant explanation through SHAP and local explanations through the
LIME approach [61], which demonstrated how our RF model can be used to explain how
each feature contributes to mortality prediction among patients with lactic acidosis.
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Although our study includes a large sample size of ICU patients with lactic acidosis
and ICU admission data, there are several important limitations. First, our models utilized
data obtained during the time of ICU admission in order to prognosticate mortality risk in
the early ICU course. Thus, events that markedly altered the prognosis for an individual
patient were not included. In addition, our study is retrospective and based on the MIMIC
III database, a large single-center tertiary care hospital in the United States. Hence, the
model might have been influenced by the specific clinical guidelines, practice, and treat-
ment decisions for that institution. A future validation study with the updated MIMIC-IV
database and external validation studies of ML prediction models are needed.

5. Conclusions

In conclusion, an ML prediction model using the RF algorithm (available online
as a shiny app at https://wisitc.shinyapps.io/RandomForestLacticAcid/ created on 15
September 2021)) provided the highest predictive performance for hospital mortality among
ICU patients with lactic acidosis. While future external validation studies are required, the
findings of our study provide support towards the utilization of RF algorithms to improve
risk stratification among critically patients with lactic acidosis.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/jcm10215021/s1, Figure S1: Correlation of variables in the dataset; Figure S2: Pruned DT based
on cross-validated error results using the complexity parameter associated with the minimal error;
Figure S3: Error rate of RF model by number of trees; Figures S4–S10: Calibration plot of among all
models; Supplementary method: detailed model development and TRIPOD checklist.
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