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ABSTRACT

How type 2 Topoisomerase (TopoII) proteins relax
and simplify the topology of DNA molecules is one
of the most intriguing open questions in genome and
DNA biophysics. Most of the existing models neglect
the dynamics of TopoII which is expected of proteins
searching their targets via facilitated diffusion. Here,
we show that dynamic binding of TopoII speeds up
the topological relaxation of knotted substrates by
enhancing the search of the knotted arc. Intriguingly,
this in turn implies that the timescale of topological
relaxation is virtually independent of the substrate
length. We then discover that considering binding bi-
ases due to facilitated diffusion on looped substrates
steers the sampling of the topological space closer to
the boundaries between different topoisomers yield-
ing an optimally fast topological relaxation. We dis-
cuss our findings in the context of topological sim-
plification in vitro and in vivo.

INTRODUCTION

The topological regulation of DNA in vivo is a vital process
that allows genes to be transcribed and cells to divide (1).
The crucial role of Topoisomerases in mediating this regu-
lation is now well established, and indeed they are among
the most conserved proteins across living organisms (2).
Most surprisingly, type IIA Topoisomerase (TopoII) has
been found to reduce the topological complexity of naked
DNA below equilibrium in vitro (3). At the same time, re-
cent works strongly suggest that yeast and even human
DNA is itself surprisingly topologically simple in vivo (4–6).
While these fascinating findings have recently been partially

explained in terms of a synergistic interaction of TopoII
with Structural Maintenance of Chromosomes (SMC) pro-
teins (7–11), a comprehensive model of TopoII-only topo-
logical regulation is still lacking.

Most of the existing large-scale polymer models of DNA
and genome organisation mimic TopoII-bound regions by
allowing inter-segment crossing at the expense of a modest
amount of energy (comparable with the thermal one) and
satisfy detailed balance (12–17). A notable exception are
the models accounting for hooked juxtapositions and/or
violating detailed balance by restricting the directionality
of strand-crossing (18–21) or by requiring a kinetic proof-
reading (22). However, none of these models consider the
binding/unbinding dynamics of TopoII and how its poten-
tial bias in binding preference (e.g. to regions with large
local DNA density) may affect the efficiency of TopoII to
resolve DNA topology. To the best of our knowledge, ad-
dressing the question of how binding statistics and kinetics
affect topological relaxation and topological steady states
remains unexplored using large-scale polymer models. Mo-
tivated by this, we specifically investigate the effect of dy-
namic binding of TopoII and its transitory binding biases
due to, for instance, generic facilitated diffusion on locally
looped substrates (23–27).

The key discovery of this work is that both (un)binding
kinetics and biased binding patterns to regions of large lo-
cal DNA density dramatically shorten the timescale over
which the topology of the substrates is relaxed to its steady
state. Importantly, we find that the precise values of the
(un)binding rates are not important as long as they are
larger than the relaxation rate of the substrate. As we argue
below, this may be thus a relevant regime in vivo, where the
relaxation dynamics of the genome is dramatically slow (28–
30). Note that in this work, we are not looking for a model
of TopoII that can maintain the knotting probability below
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equilibrium at steady state, but rather focus on the effects
of TopoII dynamic and facilitated (un)binding to/from the
substrate. To the best of our knowledge this aspect has never
been systematically and quantitatively investigated in either
simulations or experiments.

By using a simplified 2D random walk model on idealised
knot spaces, we argue that dynamic and biased binding en-
hance the sampling between knot types thereby speeding
up the unknotting process. Strikingly, due to the (sublin-
ear) scaling behaviour of the knotted region with polymer
length (31,32), we also find that these binding mechanisms
naturally yield a rate of topological relaxation that is virtu-
ally independent on the substrate length. Pleasingly, this is
in line with recent experiments showing that the topologi-
cal complexity of DNA in vivo is broadly independent on its
length (4).

MATERIALS AND METHODS

we model a torsionally relaxed (nicked) DNA plasmid
about L = 3.6 kb-long as a bead-spring polymer made of
N = 500 beads (each bead having size � = 2.5 nm = 7.3 bp)
connected in a ring. Inter-bead interactions are modelled
with a purely steric truncated and shifted Lennard–Jones
(LJ) repulsion

ULJ(r ) = 4ε
[
(σ/r )12 − (σ/r )6] + ε (1)

for r < rc = 21/6� and 0 otherwise. The TopoII-bound seg-
ment is modelled by allowing a 50 beads (L = 360 bp)-
long segment to undergo strand-crossing with a small en-
ergy penalty (A = 2kBT). This is done by modelling the in-
teractions between this and all the other beads with a soft
potential

Us(r ) = A(1 + cos (πr/rc)) (2)

for r < rc = 21/6� and 0 otherwise. Note that to over-
come this soft potential a bead must pay an energy penalty;
this means that chain-crossing events occur according to
a Boltzmann probability. Importantly, only the TopoII-
bound segment displays soft interactions with the other
beads, whereas the rest of the chain preserves fully repulsive
LJ interactions thus preventing strand-crossing events that
involve more than two strands. Each bead is connected to
its two neighbors along the ring by using a FENE potential

UF ENE(r ) = −0.5 K R2
0 log

[
1 − (r/R0)2

]
(3)

with K = 30�/�2 and R0 = 1.6�. Finally, the semiflexible
nature of DNA is modelled via a Kratky–Porod potential

Ubend (r ) = kBTl p

σ
(1 + cos θ ) (4)

where � is the angle defined by two consecutive bond vectors
along the polymer and lp = 20� = 50 nm is the persistence
length (33).

We have chosen the length of the TopoII-bound segment
to be 50 beads � 125 nm (or about two persistence lengths)
for computational efficiency as shorter segments (for in-
stance, 10 beads � 25 nm) yield qualitative similar results
but display slower kinetics and hence require longer simula-
tions. We also mention that we have performed simulations

in which the TopoII region would remain strongly bent dur-
ing the topological simplification time and we could not see
any appreciable difference with the non-bent case (see Sup-
plementary Figure S6). The dynamical update of the ‘soft’
segment is done by updating the position of the TopoII in
one of the following ways: either by a random jump, by dif-
fusion, by a jump to the segment with maximum local cur-
vature or by a jump to the segment of maximum local den-
sity. We have also compared these dynamic biased binding
models against their static versions (see Supplementary Fig-
ure S5). We note that to avoid numerical instabilities we
model TopoII unbinding by first increasing the soft energy
barrier to A = 20kBT for a short time and then by switching
the segment back to fully repulsive LJ potential.

For these different models of TopoII binding dynamics
we study the relaxation of the knotting probability PK(t)
to its equilibrium value starting from a DNA molecule
pre-knotted into a 51 torus knot (unless otherwise stated).
The averages of the relaxation process are performed over
at least 64, and up to 400, independent replicas. We fol-
low the topology of the polymer by computing its Alexan-
der determinant using the kymoknot software (34,35) and
compute the knotting probability PK(t) by counting the
number of replicas that are knotted at a given time. We
recall that we work always with only one TopoII bound
on the ring at any one time, so the knotting relaxation
curves should be considered a lower bound in the case the
protein was present in stoichiometric excess. On the other
hand, it is always possible in an in vitro experiment, to
tune the stoichiometry so that only one TopoII (on aver-
age) is bound to each plasmid at any one time. Since the
knotting probability is computed over a binary value (ei-
ther knotted or unknotted), the errors on the mean are ob-
tained by the blocking method (36), i.e. by randomly assign-
ing simulation replicas to different partitions, computing
the mean knotting probability for each partition and finally
computing the standard error of the mean (SEM) across
partitions.

The molecular dynamics with implicit solvent (Langevin)
simulations are evolved within the LAMMPS (37) engine
coupled to custom-made C++ codes to perform the dy-
namic update of the TopoII region. (We provide sample
codes in a GitHub repository, see below). Note that we pre-
equilibrate the chains at fixed topology (i.e. without TopoII)
for at least one relaxation time of the chain, i.e. 105 � B,
where � B is the Brownian time (see Supplementary Fig-
ures S1– S5).

To map our simulation timescales to real time we consider
the Brownian time of a bead, i.e. � B = �2/D = 3��w�3/kBT
= 40 ns (assuming �w = 1 cP as the viscosity of water) find-
ing that the chain relaxation time is about � R � 105� B �
4 ms. We can also compare our effective dissociation con-
stant with that found in the literature for TopoII as follows.
Consider an off-rate koff = 10−5τ−1

B = 250 s−1 and an es-
timate for the diffusion-controlled on-rate kon � 4�(D1 +
D2)(a1 + a2) � 5 × 109M−1s−1 with D1 = kBT/(3��wa1) �
10�m2/s, D2 � D1, a1 = 40 nm the size of TopoII (38,39)
and a2 = 10 nm the size of the target DNA site. These yield
an equilibrium dissociation constant Kd = koff/kon � 50 nM
which is in line with the value found for TopoII on relaxed
DNA (36 nM) (40).
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We note that papers in the literature attempting to mea-
sure the residence time of TopoII in vivo using fluores-
cence recovery after photobleaching (FRAP) report values
in the 1–20 s range, or koff � 0.1 − 1s−1 (41,42). In vivo,
we can take this into account using the nucleoplasm vis-
cosity �n = 1000 cP (1000× water viscosity (43)) which
gives kon � 2 × 107M−1s−1; in turn we obtain Kd = 5 −
50 nM, which is again in line with typical dissociation con-
stant for TopoII (40). In spite of this, FRAP results are
known to vary widely depending, among other things, on
the size of the bleached spot and the kinetic model used
to fit the FRAP curves (44). More precise measurements
on the residency time of TopoII on DNA would be highly
welcomed.

We highlight that even if the dissociation constant were
smaller, e.g. Kd � 0.1 nM due to small unbinding rates koff =
τ−1

j � 0.1 − 1s−1in vitro (water viscosity) the fact that the
relaxation time of a DNA molecule grows as ∼N2 in dilute
conditions and as ∼N3 in dense conditions (45), ensures that
there must be regimes in which � j ≤ � R for sufficiently long
DNA molecules. Even more interestingly, it is well accepted
that the relaxation time of genomes may be on the order of
minutes or hours (28–30). All this renders our findings for
� j ≤ � R relevant for the topological relaxation of large DNA
molecules both in vitro and in vivo.

RESULTS

Random dynamic binding

To model the (un)binding kinetics of TopoII (from) to a
DNA substrate, we consider a simplified scenario in which
there is always one TopoII bound, and analyse the relax-
ation of the knotting probability for different rates at which
TopoII is relocated.

For a random (un)binding process, the constraint that
there is only one TopoII bound is equivalent to the situa-
tion in which TopoII randomly ‘jumps’ at rate kj (with kj = 0
being the static case) measured in (inverse) Brownian times
� B = �2/D0 (see Materials and Methods). From our sim-
ulations, a rate as little as kj = 10−4τ−1

B already appears to
give a significant deviation from the static case. Rates equal,
or larger than, kj = 10−2τ−1

B have reached the maximum re-
laxation efficiency (see Figure 1 B). Since the longest relax-
ation time of the chain under consideration (N = 500 beads
and lp = 20� in this figure) is about 105� B (see Materials
and Methods and SI), it means that about 10 ‘jumps’ within
one relaxation time are enough to significantly speed up the
topological simplification with respect to a static TopoII.

For instance, for a N � 300 kb-long DNA molecule in free
solution with Rg � 2 �m (46) and diffusion coefficient D �
0.1 �m2/s (46) one finds a relaxation time τR = R2

g/D � 20
s. This implies that a residency time of 2 s, or a koff � 0.5 s−1

(Kd � 0.1 nM) would display a strong enhancement of the
topological simplification compared with a perfectly immo-
bile TopoII. This may be tested experimentally as residency
time of TopoII on DNA is expected to be salt dependent
(see also Conclusions section).

Motivated by the notion of facilitated diffusion, namely
a target search made by alternated rounds of 3D and 1D

diffusion (24,25,47,48), we also test whether and to what ex-
tent a purely curvilinear (1D) diffusion of TopoII impacts
on the topological simplification rate. Similarly to the case
of random jumps, we update the position of the only TopoII
bound by sliding it randomly along the substrate every k−1

d
time step, i.e. with a diffusion constant D = 0.5kd�2. We
find that larger diffusion rates (kd ≥ τ−1

B ) are needed to re-
lax as efficiently as random jumps (Figure 1 C). This entails
that facilitated diffusion combining 3D jumps and 1D slid-
ing (48) may be the best strategy to simplify the topology of
the substrate.

To better understand and quantify the observed enhance-
ment in topological simplification, we compute two topo-
logical observables: (i) the rate (number of events per unit
time) 	t at which topology-changing strand-crossing oper-
ations occur, without discriminating between events that
reduce or increase the knot complexity and (ii) the max-
imum value attained by the Alexander determinant |A(x)|
evaluated at –1 (a topological invariant of the system and
also known as knot determinant (49)) during the course of
each simulation, denoted as Max|A( − 1)|. We note that up
to 6-crossing knots, its value is directly correlated to the
knot complexity (50,51). These observables are schemati-
cally shown in Figure 1 D. Practically, the rate 	t is mea-
sured by counting the number of times we observe a change
in topology during the course of a simulation (indicated
schematically by red arrows in Figure 1D) and by dividing
that number by the total simulation time. Max|A( − 1)| is in-
stead computed by taking the maximum of the Alexander
determinant evaluated at –1 over the course of each sim-
ulation and excluding the initial 51 topology (skematically
shown by the ‘MAX’ horizontal dashed lines in Figure 1
D). These two topological observables yield complemen-
tary information. The former, 	t, is a measure of how often
the system attempts to simplify its topology while the lat-
ter, Max|A( − 1)|, is a measure of how widely the substrate
explores the attainable topological space.

In Figure 1E, one can appreciate that both the diffusive
and jump models yield a smaller 	t compared to the static
one. Thus, interestingly, dynamic binding of TopoII gives
rise to processes in which the knot type of the substrate
changes less frequently than in the case of static TopoII.
We explain this by noting that a static TopoII allows for
rapid and repeated strand-crossing events which increase
the rate 	t. On the other hand, faster jumping rate reduce
the probability of repeated strand-crossing events, hence
	t becomes smaller. At the same time, we also report that
Max|A( − 1)| depends on the underlying binding process
and the corresponding rates (Figure 1F). In particular, it
is smaller for fast diffusion and for moderately fast (com-
pared with the Brownian time) random jumps. This obser-
vation is less straightforward to explain. We argue that this
is due to the fact that binding of TopoII effectively creates
a locally denser region of the substrate because the bound
region starts to behave as an ideal phantom chain rather
than a self-avoiding walk. This change in local statistics of
the chain affects the knotting probability and increases the
chances of creating complex topologies. On the contrary,
in the case in which TopoII frequently changes its posi-
tion along the chain, there is no time for the chain to lo-
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Figure 1. Unknotting is faster for dynamic TopoII. (A) Sketch of the system: one TopoII remains bound to the DNA and changes location by either
random jumps (green) at rate kj (units of τ−1

B ) or via diffusion (orange) at rate kd (units of �2/�B). (B) The larger the jumping rate of TopoII, the faster
the relaxation of PK(t). (C) The relaxation of PK(t) is also faster for more diffusive TopoII, albeit the effect is milder than in (B). (D) Sketch of how we
compute 	t and Max|A( − 1)|. (E) 	t is model and rate dependent and decreases for larger jumping/diffusion rates. (F) Max|A( − 1)| also decreases for
more dynamic binding or faster diffusion. Smaller 	t and Max|A( − 1)| indicate slower but more precise evolution of topology towards the steady state,
overall rendering the simplification process more efficient.

cally crumpled and change its statistics to that of a phan-
tom chain and hence prevents the formation of complex
knots, a behaviour mirrored by the lower values displayed
by Max|A( − 1)|.

In summary, the behavior of 	t and Max|A( − 1)| suggest
that dynamic binding of TopoII yields more precise relax-
ation pathways involving fewer topology-changing strand-
crossings. This may be explained as follows: once TopoII
lands on a segment embedded within a physically knot-
ted region (or knotted arc) (31,32), there is an entropic
gain in relaxing the substrate to its topological equilib-
rium. On the other hand, if TopoII lands on a region
that is not physically knotted and sufficiently swollen,
then the chances of generating a topology-changing strand
crossing in a short time (before TopoII moves some-
where else) is low. Furthermore, the limited residence
time hinders repeated topology-changing strand-crossing
events.

Finally, we should stress that in static models of TopoII,
the rate-limiting step for the topological evolution of the
substrate is the diffusion dynamics of the knotted region
(i.e. the knot has to find the TopoII-bound segment).
In analogy with reptation polymer dynamics, this pro-
cess scales as ∼(N − lk)2/Dk with lk being the length of
the knot and Dk � D0/lk its curvilinear diffusion (45,52).
On the other hand, for dynamic TopoII, it is the pro-
tein that ‘finds’ the knot first, in a much shorter timescale
�N/kj.

Biased and facilitated binding

Motivated by the fact that TopoII has been proposed to co-
localise with DNA regions of large curvature (19,20,53), we
explore a model in which the protein binds preferentially
to regions with high bending. Additionally, we also investi-
gate the case in which TopoII preferentially binds regions of
large local density. These two binding modes are motivated
by the fact that, in general, any protein that displays a weak
non-specific binding affinity to DNA is expected to undergo
facilitated diffusion (48) which can create transient bind-
ing biases to regions of crumpled or looped DNA (24) (i.e.
with large density) or, as we argue here, knotted DNA due
to its (weakly) localised (54), or even metastable tight (55),
nature.

To couple the binding dynamic process with these geo-
metric features (i.e. curvature and local density) we define
the region of maximum local curvature as the portion of
the polymer around the bead of index imaxcurv such that

imc = argmax
i

⎡
⎣

lT/2∑
j=−lT/2

1 − ti+ j ti+ j+1

|ti+ j ||ti+ j+1|

⎤
⎦ (5)

where lT = 50 is the length of the TopoII region, ti ≡ r i+1 −
r i is the tangent vector at bead i (periodic conditions on the
index j are implicit). Similarly, the region of maximum local
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density is defined as

imd = argmax
i

⎧⎨
⎩

N∑
j=1

�(R − |r i − r j |)
⎫⎬
⎭ (6)

where �(x) = 1 if x > 0 and 0 otherwise and we take R =
50
 with 
 = 0.588 as expected for a chain with excluded
volume interaction (45). Interestingly we find that for a 51
topology spanning about 50% of the polymer (N = 500, lp
= 20�), imc and imd are located within the physically knotted
region about 60% and 85% of the times, respectively (Fig-
ure 2 B). We highlight that both these biases violate detailed
balance because they systematically move TopoII to imc and
imd without any intermediate steps. These models can thus
be interpreted as extreme realisations of thermodynamic bi-
ases due to, for instance, conformation-driven docking (53)
and transient enrichment in locally folded regions due to
facilitated diffusion (24,48). Indeed, while on ideal uniform
substrates the binding rate is given by the Smoluchowski
constant kon = 4�(D1 + D2)(a1 + a2), within a coiled sub-
strate this binding rate depends on the typical distance be-
tween neighbouring segments l � � 1/3. Thus, on timescales
shorter than the chain relaxation time, a TopoII with non-
specific attraction to DNA will undergo a significant over-
sampling of large density regions before exploring the rest of
the substrate (24). Even more intriguingly, simulations show
that permanently looped or crumpled regions may act as
sinks for weakly sticky proteins searching their target (25).
To link this to the specific case of TopoII, we highlight that
TopoII has two DNA-binding sites (associated to the ‘gate’
and ‘transfer’ DNA segments (56)) and will thus minimise
its free energy if both are bound to DNA. This can be most
easily achieved in regions with increased local concentra-
tion of DNA, which offer a larger amount of binding site
per unit volume.

In Figure 2C, we compare the relaxation of the knotting
probability for these different mechanisms: random static,
random jumps or jumps biased to regions of maximum cur-
vature or maximum density (with same jumping rate). In-
triguingly, the fastest relaxation is achieved when TopoII
preferentially binds to regions of maximum density (see
Figure 2D for the decay time). We also note that we have
checked the case in which we place a static TopoII in re-
gions of maximum density or curvature at time 0 and let
the simulation evolve. These yield the same result as static
TopoII randomly placed along the contour (see Supplemen-
tary Figure S5). To exclude that the observed difference in
relaxation rate depends on the size of the polymer, we addi-
tionally checked that the steady state radius of gyration of
the ring is the same in the different models (see Supplemen-
tary Figure S7).

Measuring 	t and Max|A( − 1)| confirms that biases
towards regions of maximum curvature enhance the sim-
plification efficiency by reducing the number of topology-
changing operations while rendering them more accurate,
i.e. both 	t and Max|A( − 1)| decrease. On the other hand,
dynamic binding to regions of maximum density yields
a qualitatively different relaxation pathway. As shown in
Figure 2C and D, we find that, although the number of
topology-changing operations per unit time 	t is much

larger than for any of the other models, this feature is only
accompanied by a mild increase in Max|A( − 1)| with re-
spect to the others. In other words, binding to regions of
high local density facilitates frequent strand-crossing oper-
ations but this is not accompanied by a significant enhance-
ment of the knot complexity; on the contrary, it appears that
most of these operations are still simplifying the topology.

A simplified random walk kinetic model of DNA unknotting

To understand qualitatively how the dynamics of TopoII af-
fect its ability in exploring the possible topological spaces
(set of configurations with the same knot type) we present
a simple model in which each DNA configuration is de-
scribed by its 3N coordinates and the index of the monomer
where the TopoII is bound. When TopoII is bound we ex-
pect that the 3N + 1-dimensional space of configurations
is locally explored by geometrical changes of the coordi-
nates, i.e. by thermal motion of the polymer segments. On
the other hand, a spatial relocation of TopoII would corre-
spond to a significant ‘jump’ in the configurational space,
even if the knot type is preserved, i.e. it would correspond
to a jump within the same topological space. These features
can be described by an idealised two-dimensional stochastic
walk that explores a set of disks representing different knot
spaces, see Figure 3 and Movies in SI. Each point within
a disk represents one of the 3N + 1-dimensional configu-
rations with a given knot type. Those bearing a TopoII in
a position compatible with a topological change from knot
K1 to knot K2 are mapped to points close to the boundary
between disks representing the two knot types. Note that the
size of each disk pictorially represents the number of possi-
ble polymer configurations with that knot type. A larger size
corresponds to a knot type with larger entropy and hence
more available configurations. We also note that while the
dimensionality of the walk is important to determine its
statistics, below we shall be interested in the kinetics of the
sampling of these spaces. For instance, irrespectively of di-
mensionality d, a random walk with diffusion coefficient D
displays a mean squared displacement �r2(n) = 2dDn, with
the n the number of steps. This means that (at fixed dimen-
sionality d) faster walks explore the available space more
quickly, irrespectively of the dimension of the space.

With these assumptions, we perform stochastic simula-
tions in which 1000 random walks are initialised at the cen-
ter of the 51 disk, i.e. from the same polymer configuration
with knot type 51 that is far from being converted to a dif-
ferent knot type from a simple strand passage. The walks
are allowed to diffuse following a stochastic diffusive mo-
tion within the set of slightly overlapping disks. This purely
diffusional motion represents the DNA fluctuating in space
with TopoII statically bound at a given site and is termed
model (i). The motion of TopoII at fixed DNA configura-
tion is modeled instead by a random jump of the walker
within the current disk thus preserving the knot type. These
jumps take place with constant rate so that on average about
300 jumps are performed in a time unit. Model (ii) adds this
feature to the normal diffusion of model (i). Thus, we quali-
tatively associate model (i) with static TopoII and model (ii)
with random TopoII jumps. At sufficiently long times they
converge to the same equilibrium statistics because they are
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Figure 2. TopoII binding to regions of local maximum density is the most efficient simplification pathway. (A) Sketch of the model. (B) Boxplot showing
that, on a 51 knot spanning about half of the contour length of polymer, the bead with maximum local density is more than 80% of the times colocalised
with the knotted arc, in agreement with the weakly localised nature of the knot. (C) Knotting probability for different models and same jumping rate. (D)
Decay time � obtained from an exponential fitting e−t/� of the knotting probability curves in (C) at early times. (E) Rate of topology-changing operations.
(F) Average maximum value of Alexander determinant at –1.

both reversible processes, yet kinetics (ii) is expected to be
faster than (i) since it effectively displays a larger diffusion
coefficient. Hence, model (ii) would be faster at finding the
boundaries of the current disk (i.e. topological space), thus
yielding a faster topological relaxation process. The numer-
ical simulations of model (i) and model (ii) are indeed com-
patible with this observation (see Figure 3E and compare
grey with green curve). According to this picture TopoII
proteins performing random jumps should be found more
frequently at the boundaries between knot spaces and hence
have more chances to simplify DNA topology. Clearly, and
in agreement with the arguments we presented above, if the
time between two random jumps is comparable to the time
required by the walker to explore the full disk by simple dif-
fusion (conformational relaxation time at fixed knot type)
the topological simplification rate in presence of random
jumps would be the same than that of its static counterpart.

To mimic biases toward regions of maximum
curvature/density of the substrate, we make the as-
sumption that points near the boundaries of the disks
represent polymer configurations in which TopoII is bound
in such a way that a short diffusion of the polymer segments

can lead to a change in topology. This is implemented in
the 2D walker model by forcing jumps to land within a thin
annulus near the edge of the disk (model (iii)) and within
a thin vertical strip closest to the boundary of contiguous
disks (model (iv)) (see Figure 3C, D respectively and
corresponding the SI Movie). These biased jumps reflect
our working hypothesis, i.e. that the regions closest to
neighbouring knot spaces are populated by conformations
that are more likely to precede a change in topology; among
these, we argue there should be some in which TopoII is
bound at regions of large local curvature/density. Thus,
jumping to the annulus of a knot space or the vertical strip
near the neighbouring space enhances the chances for the
walker to make a topological transition. Model (iii) and
(iv) follow the same principles of the random jumps model
(ii) as they effectively give rise to an enhanced diffusion
coefficient. In contrast to model (ii) though, they display an
out-of-equilibrium irreversible dynamics as their jumping
rules explicitly violate detailed balance. In this respect it
is not surprising that both the kinetics and the long-time
steady state of the knotting probability of model (iii) and
(iv) are different from those displayed by the equilibrium
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D

C

B

E

Figure 3. A simplified model of topological sampling. (A–D) Example trajectories of walks within simplified topological spaces: (A) purely diffusive and
(B–D) with jumps either random or closer to the annulus or the vertical strip near the boundary of the disk. All simulations are initialised from within the
51 space (green disk). (E) Shows PK(t) curves generated by this simplified model which well capture the faster relaxation for walks with biased jumping.
Solid lines show the fits an exponential function e−t/� at early times. The inset shows the decay time � .

models. In particular, we find that both (iii) and (iv) models
yield faster topological relaxation kinetics (see purple and
cyan curves in Figure 3E) with model (iv) being the fastest
at fixed jumping rate.

To conclude, we find intriguing that a simplified model
of a random walk in abstract two-dimensional knot spaces
qualitatively capture the salient points that we observed
in the more complicated MD simulations (compare Fig-
ures 1B, C and 2C). This simplified models provides an in-
tuitive and physically appealing interpretation, within the
topological space representation, of the impact that differ-
ent dynamics of TopoII on DNA substrates may have on
their topological relaxation.

Dependence of topological simplification rate on substrate
length

Finally, we investigate the sensitivity of dynamic models
against substrate length N and flexibility. In Figure 4, we
show that, unlike the static model of TopoII, all the dy-
namic models yield relaxation curves that are very weakly
dependent of N and persistence length. Additionally, from
Figure 4D it is apparent that biasing the binding dynam-
ics towards region of maximum local density provides the
most efficient way of performing topological relaxation, es-
pecially for very long substrates.

We explain this weak dependence on substrate length
(reminiscent of some recent experiments in vivo finding
plateauing knot complexity at large DNA lengths (4)) as fol-

A B

C D

Figure 4. Dynamic simplification rate is independent on DNA length. (A)
Simplification curves for static TopoII. (B) Simplification curves for dy-
namic random jump, rate kj = 10−2τ−1

B . (C) Simplification curves for dy-
namic jump to max density, rate kj = 10−2τ−1

B . Inset shows the exponen-
tial fit e−t/� of one of the curves at short times. (D) Topological relaxation
timescale plotted for the different systems.
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lows. Physical knots tied on polymer chains display contour
lengths lk that scale with the length of the chain N as lk ∼
N� with 0 < � < 1 in dilute, good solvent conditions and
with � � 1 under isotropic confinement (31,32,54). For a
static TopoII, the topological relaxation time is bound to be
comparable to the (curvilinear) diffusion time of the knot-
ted portion � R ∼ (N − lk)2/Dc ∼ (N − lk)2lk/D0 ∼ N2 + �/D0,
in the limit N → ∞ and where D0 is the microscopic dif-
fusion of a bead. On the other hand, a jumping TopoII
only needs a timescale that scales as the (inverse) proba-
bility of landing on a segment that belongs to the knotted
portion, i.e. τT ∼ k−1

j (N/ lk) ∼ N1−θ . Clearly, this is a much
weaker scaling in polymer length N with respect to the static
case. Remarkably, the more delocalised the knot, the closer
� to unity (e.g. under strong isotropic confinement or in
bad solvent � � 1 (32,57)) and the starker the difference in
timescales, � R/� T ∼ N2� + 1.

DISCUSSION

Understanding the various mechanisms through which
Topoisomerase proteins regulate DNA and genome topol-
ogy remains an open challenge in biophysics. Type II Topoi-
somerase (TopoII) is an abundant nuclear protein (around
106 copies per cell (58)) and is often found to be en-
riched near specific elements (such as CTCF (59,60) and
cohesin (61)) in vivo. In spite of this, the effect of TopoII dy-
namic binding on the topological relaxation of in vivo and
in vitro substrates has not been properly addressed so far.
To tackle these outstanding questions, here we have stud-
ied some previously underappreciated yet realistic aspects
which may affect the action of TopoII on DNA: its dynam-
ics and biased binding towards regions of large curvature
or local density of the substrate. We discover that dynamic
binding, with realistic values of dissociation constant kD �
50 nM (40) (corresponding to unbinding times of the or-
der of 0.1–1 s, in fair agreement with FRAP data (41,42))
yields enhanced sampling of topological spaces which in
turn drives faster topological simplification.

Interestingly, we find that this enhanced topological re-
laxation is accelerated in the presence of binding biases to
regions of larger local density. We can justify these biases
using simple thermodynamic considerations. Indeed, since
TopoII has two DNA binding sites (associated with the
‘gate’ and ‘transfer’ segment (56)) it would be energetically
preferable to have them both bound to DNA at the same
time. This is most easily achieved in regions where there
is a larger density of DNA sites thus supporting the idea
that TopoII may have a thermodynamic preference to lo-
cally enrich regions of larger DNA density. We note that
this is a generic result, and any DNA binding protein with
n > 1 non-specific binding sites would follow the same be-
haviour, as also suggested by the bridging-induced attrac-
tion model (26,62). Accordingly, we do not need to invoke
any specific role for ATP in the search process. Instead, our
results are generic and our model will be able to complement
any other more detailed model dissecting the role of ATP in
the strand-crossing process (20,22). In line with this, we note
that our simulations – irrespectively of whether they model
static or dynamic TopoII––eventually converge to values of

knotting probability that are equal or greater than the one
expected in equilibrium (see Supplementary Figure S8).

Perhaps the most important and striking finding of this
work is that introducing dynamic binding renders the topo-
logical relaxation process independent on the substrate
length. To the best of our knowledge this aspect has never
been tested experimentally and could be realised with time-
resolved gel electrophoresis measurements of DNA topol-
ogy in vitro such as the ones performed in (63).

We further highlight that the recent findings of Valdes
et al. (4) suggest that in vivo chromatin attains a plateau in
the knotting probability around 8–10 kb. If this behaviour
were mirrored by the topological simplification rate, then
our results would imply that TopoII would have residence
times in vitro smaller or equal than � R � 0.1 s (obtained
using Rg � 0.29 �m and D � 1 �m2/s measured in vitro
in free solution (46)). In vivo, it is expected the effective
viscosity of the solution to be higher, e.g. �n � 100−1000
cP in the nucleus (28,43), thus yielding slower dynamics,
e.g. D � 0.01 �m2/s and in turn longer maximum un-
binding times � R � 10 seconds in line with FRAP data
(41,42).

Interestingly, our results may also be used to determine
the residency time of TopoII on a plasmid DNA substrate
at a bulk level as follows: by considering different popula-
tions of DNA knots with different lengths, we expect that
for DNA molecules whose τR(N) < k−1

off the topological re-
laxation rate should be dependent on the substrate length.
On the other hand, when τR(N) ≥ k−1

off then the topological
relaxation should become independent on the length. By
coupling kinetic (time course) measures of topological re-
laxation (63) with fluorescent single-molecule tracking (46)
it may thus be possible to quantify the residency time of
TopoII on DNA under different conditions, e.g. salt, crowd-
ing etc., at a bulk scale.

Finally, we note that in presence of crowding (64) or
bounded domains (65), the mean passage time (for instance,
mean unknotting time in the present problem) may be an
insufficient measure of the underlying process; further, tar-
get search in the genome has notoriously broad arrival
times (66). Interestingly, we find that the width of the distri-
butions of first unknotting times strongly depend on both
the binding kinetics and the search strategy (see Supplemen-
tary Figure S9) with the maximum density search strategy
being the one with narrower first unknotting times distri-
butions. It would be interesting to experimentally test this
prediction too in the future.

In conclusion, we argue that due to our surprising find-
ings, our work will become a necessary complement to pre-
vious models building towards a comprehensive framework
of TopoII action on DNA. Beyond bringing us closer to
a full appreciation of the many facets involving TopoII-
mediated topological simplification, we hope our simula-
tions will stimulate targeted experiments on this fascinating
long-standing problem.
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