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A new pair of 2,2ʹ-diamino-1,1ʹ-binaphthyl linked porphyrin dimers, (R)-/(S)-H, were
synthesized to study their supramolecular interactions with a pair of chiral diamines
((R)-/(S)-PPDA) by using UV-Vis absorption, fluorescence and NMR titrations. The
spectroscopic titrations indicated that sandwich-type 1:1 complexes were formed at
low guest concentration and then transformed to 1:2 open complexes at high guest
concentration. The supramolecular interactions afforded sensitive circular dichroism
responses, and the CD signs of the 1:1 complexes are decided by the stereostructure
of chiral diamine guests. Moreover, due to the shortened linking units, (R)-/(S)-H show
more sensitive and predicable CD response than the previously reported hosts (R)-/(S)-H1
and this can be reasonably explained by DFT molecular modeling. The present results
suggest (R)-/(S)-H are promising for chiral optical sensing.
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INTRODUCTION

Chiral phenomenon widely exists in nature such as proteins, polysaccharides and nucleic acids,
playing an important role in the development and evolution of life. Modulating the chirality of
supramolecular system is pivotal owing to its significance in chemistry (de Jong et al., 2004; Liu
et al., 2014; Liu et al., 2015) and material science (Jung et al., 2013; Dou et al., 2020; Wang and
Feng, 2018). Supramolecular chirality modulation is crucial for understanding the stereostructure
and function of chiral compounds (van Dijken et al., 2014; Liu et al., 2016). In addition,
supramolecular chirality modulation has important applications in molecular recognition (Wang
et al., 2017; Wu et al., 2019), asymmetric catalysis (Dydio et al., 2011; Hong et al., 2016),
chiroptical devices (Wang et al., 2019) and medicines (Weatherly et al., 2017; Li et al., 2019; Ma
et al., 2019).

1,1ʹ-binaphthyl derivatives are one of the most important class of C2-symmetric compound. The
pure enantiomers of 1,1ʹ-binaphthyl derivatives have inherent chiral induction abilities due to their
rigid C2 symmetrical structures. In addition, the structures of 1,1ʹ-binaphthyl derivatives are highly
tunable since the 2-, 3-, 4-, 6-, 7-, 8- and 9-positions can be systematically modified by introducing
functional groups. As a result, they have found extensive applications in the development of
optoelectric materials (Yu et al., 2011), optical sensors for molecular recognition (Yu et al., 2013) and
asymmetric catalysis (Chen et al., 2003).

On the other hand, porphyrins are highly involved in supramolecular chirality systems owing to
the unique photonic and electronic activities (Peng et al., 2008; Stefanelli et al., 2019; Mondal and
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Rath, 2020). In particular, covalently linked bisporphyrin hosts
can bind with guest molecules via non-covalent interactions, and
their CD spectra are sensitive to the corresponding allosteric
effects (Hu et al., 2018; Dhamija et al., 2020). As a result, achiral
bisporphyrins can be applied to the exciton coupled circular

dichroism (ECCD) protocol for determining the absolute
configurations of chiral guest molecules (Hayashi et al., 2015;
Hu et al., 2017).

Furthermore, by connecting two porphyrin monomers with
chiral spacers, chiral bisporphyrins can be obtained, which are of

SCHEME 1 | Structures of (R)-/(S)-H, (R)-/(S)-H1 and (R)-/(S)-PPDA.
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significance for the development of chiral discrimination systems.
In this respect, we reported 1,1′-bi-2-naphthol (BINOL) linked
porphyrin dimers for the study of intermolecular chirality
modulation and chiral discrimination toward a range of model
diamines (Lu et al., 2017a). The results indicated that the
enantioselectivity and chiral sensing properties of chiral
bisporphyrin hosts can be gradually tuned by varying the
connecting units between porphyrin and BINOL moieties.

Herein, we present new dimeric porphyrin hosts (R)-/(S)-H,
which were formed by linking two porphyrin units via a (R)- or
(S)-2,2ʹ-diamino-1,1ʹ-binaphthyl (Scheme 1). The
supramolecular complexation and intermolecular chirality
modulation with (R)-/(S)-PPDA were studied by electronic
absorption, fluorescence, 1H NMR and CD spectroscopies with
the help of DFT calculations. The importance of the linking units
in bisporphyrin hosts for chiral recognition was revealed by
comparing with the previously reported hosts (R)-/(S)-H1 (Lu
et al., 2017b).

RESULTS AND DISCUSSION

Synthesis and Characterization
The new chiral bisporphyrins (R)-/(S)-H were synthesized by
Buchwald-Hartwig reaction of (R)- or (S)-2,2ʹ-diamino-1,1ʹ-

binaphthyl with the mono-brominated Zn(II) porphyrinate.
The target compounds were obtained with moderate yields
(34–35%) and adequately characterized by Mass, NMR and
UV-Vis absorption spectral data (see the experimental section
and the Supporting Information for details, Supplementary
Scheme S1 and Supplementary Figures S1,S2).

UV-Vis Spectrophotometric and
Fluorescence Titration
The interactions of (R)-/(S)-PPDA with host (R)-/(S)-H were first
monitored by UV-Vis spectrophotometric titration at 298 K in
CHCl3 (Figure 1 and Supplementary Figure S3). Upon adding
(S)-PPDA to (R)-H gradually, the B absorption band increased and
the absorption maxima redshifted from 425 to 428 nm at the lower
guest concentration range (0–67 equiv). An isosbestic point appears
at 426 nm, suggesting the domination of a host-guest complex.
Considering the ditopic feature of (S)-PPDA and (R)-H, a 1:1
sandwich host-guest complex ((R)-HI(S)-PPDA) can be put
forward, where a PPDA binds to the two porphyrin moieties by
Zn-N coordination (Lu et al., 2017a). The sandwich complexes were
found stable up to 67 equiv of (R)-/(S)-PPDA were added, and the
association constants (Kassoc) of (R)-HI(S)-PPDA and (R)-HI(R)-
PPDA were evaluated as 3.87 × 104M−1 and 2.88 × 104M−1,
respectively (Thordarson, 2011) (Figure 1B and Supplementary

FIGURE 2 | (A) The fluorescence titration profiles of (R)-H with (R)-PPDA [(R)-H] � 1.5 × 10–6 M; [(R)-PPDA]/[(R)-H] � 0–67, λEx � 415 nm. (B) The Benesi-
Hildebrand plot monitored at 604 nm.

FIGURE 1 | (A) UV-Vis titration profiles of (R)-H with (S)-PPDA. [(R)-H] � 1.5 × 10–6 M; [(S)-PPDA]/[(R)-H] � 0–670. (B) Changes in ΔA at 420 nm for evaluating
Kassoc, the solid line represents the non-liner least square fit for 1:1 complexation.
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Figure S4). These association constant values are significantly lower
than those of the previously reported hostH1 with PPDA (Lu et al.,
2017a), which is obviously due to the decreased length and flexibility
of the linking units in the present bisporphyrin host H. Therefore,
further addition of (R)-PPDA or (S)-PPDA (67–670 equiv) to the
host (R)-H may trigger the conversion to 1:2 open complexes (R)-
H@[(R)-PPDA]2 and (R)-H@[(S)-PPDA]2 respectively, which can
be supported by the further 2 nm redshift of the Soret band and the
decrease in its intensity.

The fluorescence response behaviors of the chiral porphyrin
dimer (R)-H toward (R)- and (S)-PPDA were also recorded at
298 K in CHCl3 with the excitation at 415 nm. When a solution of
(R)-H (1.5 × 10–6M) was treated with (R)-PPDA (0–67 equiv), the
fluorescence intensity greatly decreased with a redshift from 604 nm
to 617 nm (Figure 2A). The Benesi-Hildebrand plot (Figure 2B)
shows a linear relationship in the [G]/[H] range of 0–67 equiv, also
suggesting a 1:1 stoichiometry for the stable supramolecular complex
(R)-HI(R)-PPDA. The Kassoc was estimated to be 2.39 × 104M−1

for (R)-HI(R)-PPDA (Hariharan et al., 2007; Jiao et al., 2018). The
titration profiles of (R)-H with (S)-PPDA resemble those of (R)-H
with (R)-PPDA, and the Kassoc for (R)-HI(S)-PPDA was obtained
as 4.09 × 104M−1 (Supplementary Figure S5,S6). The Kassoc values
are in good agreement with those obtained from the UV-Vis
spectrophotometric titration.

1H NMR Titration
The binding of (S)-PPDA to the chiral bisporphyrin hosts was also
probed by 1H NMR spectroscopy at 298 K in CDCl3 (Figure 3 and
Supplementary Figure S7). Upon the addition of 0.4 equiv of (S)-
PPDA to (S)-H, the signals of the free host completely disappeared,

suggesting the fast exchange between free and bound (S)-H
molecules. Meanwhile, the signals of (S)-PPDA moved to high
field (from δ 2.97–1.25 to δ −2.78 to −7.38 ppm). The
complexation induced shift (CIS) values of the bound guest (S)-
PPDA (Δδ � δbonded PPDA −δfree PPDA) are in the range of −5.33 to
−9.56 (Table 1), which are reasonably close to those of a diamine
tweezered by a dimeric Zn(II) porphyrin (Pintre et al., 2012; Lu et al.,
2017a). The observations further support the formation of the 1:1
sandwich complex (S)-HI(S)-PPDA, where the diamine molecule
is shielded by the two porphyrin rings. Compared with the 1HNMR
titration results of (S)-H1 with (S)-PPDA (Lu et al., 2017a), the
proton signals of PPDA in (S)-HI(S)-PPDA were broad and weak
due to the low binding affinities of (S)-PPDA with (S)-H.
Furthermore, the CIS values (|Δδ|) of almost all the (S)-PPDA
protons were much larger than those in (S)-H1I(S)-PPDA, which
indicated that the PPDA guest was shielded by stronger ring-current
effect from the two porphyrin rings in (S)-H. These observations can
be attributed to the different length and flexibility of the linking units
between binaphthalene and porphyrin for (S)-H1 and (S)-H.

Circular Dichroism Response
The electronic circular dichroism (CD) spectra of (R)-H and (S)-H
were recorded in chloroform at 298 K. In the porphyrin Soret band

TABLE 1 | 1H NMR signals of (S)-PPDA and the complexation induced shift values
(Δδ � δbonded PPDA − δfree PPDA), at 298 K in CDCl3.

Proton Free (S)-PPDA δ/ppm (S)-HI(S)-PPDA δ/ppm Δδ/ppm

N-H 1.25 −6.89 −8.14
N-H′ 1.25 −7.38 −8.63
H1 2.82 −5.63 −8.45
H2 2.78 −6.68 −9.46
H3 2.97 −6.68 −9.65
H4 2.55 −2.78 −5.33
H5 2.49 −4.87 −7.36

FIGURE 4 | CD spectra of bisporphyrin hosts (R)-/(S)-H in CHCl3 at
298 K.

FIGURE 3 | 1H NMR spectra of (S)-H (0.75 mM) in the presence of (S)-
PPDA.

Frontiers in Chemistry | www.frontiersin.org February 2021 | Volume 8 | Article 6112574

Lu et al. Intermolecular Chirality Modulation

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


region, split Cotton effects are observed at 430 and 418 nm with
opposite signs for (R)- and (S)-H. (R)-H shows negative CD couplets,
while (S)-H exhibits positive CD couplets, forming perfect mirror
images in the CD spectra (Figure 4). The sign of CD couplets can be

directly correlated to the chirality of the linkage by the exciton coupled
circular dichroism (ECCD) theory (Pescitelli et al., 2014).

The binding of (R)- and (S)-PPDA to the bisporphyrin hosts (R)-/
(S)-Hwas further investigated by CD spectroscopy. Upon addition of

FIGURE 6 | DFT optimized structures of (S)-H, (S)-HI(S)-PPDA and (S)-HI(R)-PPDA.

FIGURE 5 | CD spectra of (R)-H in the absence (black) and presence (red) of PPDA (67 equiv): (A) (S)-PPDA, (B) (R)-PPDA; CD spectra of (S)-H in the absence
(black) and presence (red) of PPDA (67 equiv): (C) (R)-PPDA, and (D) (S)-PPDA).
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(S)-PPDA (0–67 equiv) to (R)-H, the CD signals at 430 and 418 nm
decreased, new signals appeared at 442 and 428 nm (Figure 5A).
Notably, the negative Cotton effect of (R)-H is transformed to a
positive Cotton effect with about 10 nm red shift and decreased
amplitude. The remarkable CD inversion can be assigned to the
binding-induced allosteric effects along with the formation of 1:1
complex (R)-HI(S)-PPDA. In comparison, the titration of (R)-H
with (R)-PPDA induced only a red shift and decrease of the negative
CD couplets, while no CD inversion was observed along with the
formation of (R)-HI(R)-PPDA (Figure 5B). These changes were
slightly different with the CD response of (R)-H1 in the presence of
(S)-/(R)-PPDA (Lu et al., 2017a). For (R)-H1,when titrated with (S)-
PPDA the CD signals transformed to a positive Cotton effect with a
red shift (13 nm) and increased amplitude, when titrated with (R)-
PPDA the CD signals also showed a similar red shift and a
remarkably decreased amplitude. The titration results of (S)-H
with (R)-/(S)-PPDA are similar to that of (R)-H. The obtained
CD spectra of (S)-HI(R)-PPDA and (S)-HI(S)-PPDA are the
mirror images of those of (R)-HI(S)-PPDA and (R)-HI(R)-
PPDA, respectively (Figure 5).

According to the CD spectral changes induced by the
supramolecular binding for (R)-/(S)-H and (R)-/(S)-H1 (Lu
et al., 2017a), it is obvious that (S)-PPDA induces positive CD
couplets, while (R)-PPDA leads to negative CD couplets, thus
the final CD signs of the 1:1 host-guest complexes are
dominated by the stereostructure of diamines. When the
bisporphyrin binds a diamine with different chirality, CD
inversion will be observed. Nevertheless, for (R)-/(S)-H1, we
noted that the formation of (R)-H1I(R)-PPDA and (S)-
H1I(S)-PPDA resulted in extremely small CD amplitudes,
which could make it difficult for determining the CD signs
(Lu et al., 2017a). While for (R)-/(S)-H, after the formation
of (R)-HI(R)-PPDA and (S)-HI(S)-PPDA, the CD signals
still have moderate intensity and the CD signs can be easily
determined, which is favorable for chiral optical sensing.

DFT Molecular Modeling
To further rationalize the CD spectral change, DFT molecular
modeling was performed at the B97D/6-31G(D) level. As shown
in the optimized molecular structures (Figure 6 and Table 2), the
free host (S)-H exhibits a clockwise chiral twist (+83.24°) between the
coupled effective electric transition moments (EETMs) across the
C5/C15 of porphyrin rings, which is in line with the positive CD
couplets of (S)-H (Figure 4). The formation of stable (S)-HI(S)-
PPDA and (S)-HI(R)-PPDA induces significant changes in the

coupled EETMs. For (S)-HI(S)-PPDA, the twist angle between the
two coupled EETMs decreases from +83.24° to +39.57°, though the
clockwise direction is unchanged. In contrast, the twist angle
between the coupled EETMs for (S)-HI(R)-PPDA inverted to
anticlockwise (−41.43°), which is consistent with the observed CD
inversion phenomenon for this system. Moreover, the relative
distance between the two interacting porphyrin moieties (i.e. the
Zn-Zn distance) is also altered by the formation of 1:1 complexes.
The Zn-Zn distance is increased from 5.04 Å for (S)-H to 5.42 and
5.26 Å for (S)-HI(S)-PPDA and (S)-HI(R)-PPDA, respectively.
The CD amplitude is not only inversely proportional to the square of
interporphyrin distance, but also is a function of the twist angle
between the two coupled EETMs (Pescitelli et al., 2014). The
maximum CD amplitude appears at a twist angle of 70° (Nina
et al., 2012). The free host (S)-H possesses a larger Zn-Zn distance
(5.04 Å) and a twist angle (+83.24°) than the free host (S)-H1 (3.48 Å
and +21.22°), probably due to the relatively short linkage and rigid
structure. After the formation of supramolecular complexes with
(R)-/(S)-PPDA, the Zn-Zn distances of (S)-HI(S)-PPDA and (S)-
HI(R)-PPDA get slightly increased while the twist angles get
decreased, both leading to the decrease of the corresponding CD
amplitude. Thus, the observed decrease in CD intensity for the
supramolecular complexes (Figure 5) is in accordance with the
theoretical prediction.

However, this is not the case for (S)-H1 (Lu et al., 2017a). Upon
binding to (R)-/(S)-PPDA, the Zn-Zn distances increased significantly
from 3.48 ((S)-H1) to 6.10 ((S)-H1I(S)-PPDA) and 5.18 Å ((S)-
H1I(R)-PPDA) respectively, which can induce a decrease of the CD
amplitude. Meanwhile the twist angles also increased from +21.22° to
+50.52° ((S)-H1I(S)-PPDA) and −31.73° ((S)-H1I(R)-PPDA)
respectively, which may tend to an increase in the CD amplitude.
As a result, the prediction of CD amplitude change for (S)-H1
becomes complicated and uncertain due to the two opposite factors.

CONCLUSION

In summary, we have presented porphyrin dimers (R)-/(S)-H and
investigated their complexation abilities with (R)-/(S)-PPDA by
using UV-Vis absorption, fluorescence and NMR titrations. At
low guest concentration (0–67 equiv), 1:1 sandwich host-guest
complexes were formed. The intermolecular chirality modulation
process has been monitored by CD spectroscopy. The binding
process afforded obvious CD spectral change, and the CD signs
of 1:1 sandwich host-guest complexes are dominated by the
stereostructure of guest molecules. The sensitive CD responses
can be attributed to the short linking units and the binding-
induced allosteric effects according to the DFT molecular
modeling. The present results indicate that the chiral
bisporphyrin hosts have great potential as chiral optical probes.
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TABLE 2 | Parameters of the optimized molecular structures of (S)-H, (S)-HI(S)-
PPDA, (S)-HI(R)-PPDA, (S)-H1, (S)-H1I(S)-PPDA and (S)-H1I(R)-PPDA.

Parameter R (Å) Φ (°)

(S)-H 5.04 +83.24
(S)-HI(S)-PPDA 5.42 +39.57
(S)-HI(R)-PPDA 5.26 −41.43
(S)-H1a 3.48 +21.22
(S)-H1I(S)-PPDAa 6.10 +50.52
(S)-H1I(R)-PPDAa 5.18 −31.73
aAdopted from (Lu et al., 2017a).
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