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Recently, a cell-culture independent protocol for detection of enteroviruses from clinical specimen was recommended by theWHO
for surveillance alongside the previously established protocols. Here, we investigated whether this new protocol will show the
same enterovirus diversity landscape as the established cell-culture dependent protocols. Faecal samples were collected from sixty
apparently healthy children in Ibadan, Nigeria. Samples were resuspended in phosphate buffered saline, RNAwas extracted, and the
VP1 gene was amplified using WHO recommended RT-snPCR protocol. Amplicons were sequenced and sequences subjected to
phylogenetic analysis. Fifteen (25%) of the 60 samples yielded the expected band size. Of the 15 amplicons sequenced, 12 were
exploitable. The remaining 3 had electropherograms with multiple peaks and were unexploitable. Eleven of the 12 exploitable
sequences were identified as Coxsackievirus A1 (CVA1), CVA3, CVA4, CVA8, CVA20, echovirus 32 (E32), enterovirus 71 (EV71),
EVB80, and EVC99. Subsequently, the last exploitable sequence was identified as enterobacteriophage baseplate gene by nucleotide
BLAST.The results of this study document the first description of molecular sequence data on CVA1, CVA8, and E32 strains present
in Nigeria. The result further showed that species A enteroviruses were more commonly detected in the region when cell-culture
bias is bypassed.

1. Introduction

Enterovirus infections have been associated with an array
of clinical manifestations that range from aseptic meningitis
through type 1 diabetes to acute flaccid paralysis (AFP)
among others [1]. However, these clinically manifest infec-
tions represent <10% of the actual burden of enterovirus
infections and have been estimated to amount to about 10–
15 million cases annually in the United States alone [2]. The
remaining over 90% of such infections are asymptomatic [3].

Enteroviruses are nonenveloped viruses with a diameter
of 20–30 nM. Within the virion is a positive sense, single
stranded RNA genome that is approximately 7,500 nt long.

The genome has one open reading frame (ORF), the polypro-
tein product of which is autocatalytically cleaved into struc-
tural (VP1–VP4) and nonstructural (2A–3D) proteins. The
ORF is flanked on both ends by untranslated regions (UTRs)
and a poly-A tail at the 3󸀠-end.

Enteroviruses belong to the genus Enterovirus in the
family Picornaviridae, order Picornavirales. Classification of
enteroviruses used to be based on virion particle structure,
tissue culture growth properties, and pathogenesis in humans
and animals [4]. However, classification is now based on
virus genomics [4] and most especially phylogeny of the VP1
protein [5–16]. Based on the recent classification (http://www
.picornaviridae.com/), there are 12 species in the genus, four
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(Enterovirus species A–species D [EVA-EVD]) of which were
previously known as “human enteroviruses.” At the time of
writing, EVA contained 25 serotypes made up of 11 CVAs,
10 numbered enteroviruses, and four (4) enteroviruses iso-
lated from nonhuman primates. EVB contained 63 serotypes
consisting of one (1) CVA, six (6) CVBs, 28 echoviruses,
27 numbered enteroviruses, and one (1) enterovirus isolated
from a nonhuman primate. EVC contained 23 serotypes con-
sisting of nine (9) CVAs, three (3) poliovirus serotypes, and
eleven (11) numbered enteroviruses. EVD contained five (5)
serotypes consisting only of numbered enteroviruses (http://
www.picornaviridae.com/).

Besides the fact that EVB has the highest number of
serotypes, it is also the most commonly detected [15–21]. It
has however been suggested that this phenomenon (called
the EVB bias) might be an artefact of the strategy used for
enterovirus isolation and might not be truly representative of
the enterovirus diversity landscape [21, 22].

Almost all previous studies documenting enterovirus
diversity in Nigeria [15, 16, 23, 24] clearly showed the pre-
ponderance of EVB. However, all such studies have been cell-
culture based andmainly used theRDcell linewhich has been
suggested to be the EVBbias [15–21], for enterovirus isolation.
The only study that did differently [22] usedMCF 7 and LLC-
MK2 cell lines for enterovirus isolation and documented an
increase in the detection rate of enterovirus species C (EVC)
members.

Recently, Nix et al.’s [25] cell-culture independent proto-
col for direct detection of enteroviruses from clinical spec-
imen was recommended [4] for enterovirus surveillance
alongside the previously established protocols [26, 27]. In this
study, we investigated whether this strategy will show the
same enterovirus diversity landscape as the established cell-
culture dependent protocols [26, 27] and document a prepon-
derance of EVAs in Southwestern Nigeria.

2. Methodology

2.1. Sample Collection and Storage. Faecal samples were col-
lected from sixty (male = 37, female = 23) apparently healthy
children aged 1 to 10 years attending public primary schools in
Ibadan, Nigeria. Samples were collected from the pupils after
approval and consent were secured from the school admin-
istration and the guardian or parents of the children, respec-
tively. Stool samples were collected from each of the children
into appropriately labelled sterile collection bottles. Samples
were then transported to the laboratory in the Department of
Virology, College of Medicine, University College Hospital,
Ibadan, Nigeria, in a cooler filled with ice packs to maintain
a temperature of about 4∘C. On arrival at the laboratory, the
stool specimens were stored at −20∘C until analysis.

2.2. Sample Processing. About one gram of each stool spec-
imen was diluted in 3mL phosphate buffered saline (PBS),
1mL chloroform, and one gram of glass beads. The mixture
was then vortexed for 20 minutes and thereafter centrifuged
at 3000 rpm for 20 minutes. Subsequently, 2mL of the super-
natant was aliquoted in 1mL volumes into cryovials. One vial
was stored at −20∘C while the other was analysed further.

2.3. RNA Extraction and cDNA Synthesis. JenaBioscience
RNA extraction kit (Jena Bioscience, Jena, Germany) was
used for viral RNAextraction according to themanufacturer’s
instructions. Script cDNA synthesis kit (Jena Bioscience,
Jena, Germany) was used for cDNA synthesis according to
the manufacturer’s instructions. However, instead of random
hexamers, primers AN32, AN33, AN34, and AN35 [25] were
used for cDNA synthesis.

2.4. Enterovirus VP1 Gene Seminested PCR (snPCR) Assay.
Primers were made in 25 𝜇M concentrations and PCR was
done in 30 𝜇L reactions. The first-round PCR contained 2𝜇L
of each of primers 224 and 222 (Nix et al., 2006), 6 𝜇L of
Red Load Taq, 10 𝜇L of cDNA, and 10 𝜇L of RNase-free water.
Thermal cycling was done in a Veriti thermal cycler (Applied
Biosystems, California, USA). Thermal cycling conditions
were 94∘C for 3 minutes followed by 45 cycles at 94∘C for 30
seconds, 42∘C for 30 seconds, and 60∘C for 60 seconds with
ramp of 40% from 42∘C to 60∘C. This was then followed by
72∘C for 7 minutes and held at 4∘C till being terminated. The
second-round PCR was carried out with the first-round PCR
product as template, with similar thermal cycling conditions
except for the extension time that was reduced to 30 seconds,
and the primers were substituted with AN89 and AN88 [25],
respectively. Subsequently, PCR products were resolved on
2% agarose gel stained with ethidium bromide and viewed
using a UV transilluminator.

2.5. Nucleotide Sequencing. All amplicons were shipped to
Macrogen Inc., Seoul, South Korea, for purification and
sequencing of only the bands of the expected size. Primers
AN88 and AN89 were used for sequencing. Afterwards, the
enterovirus genotyping tool [28] was used for enterovirus
species and genotype determination.

2.6. Phylogenetic Analysis. To align the sequences described
in this study with reference sequences downloaded from the
GenBank, the ClustalW program in the MEGA 5 software
[29] was used with default settings. Afterwards, neighbour-
joining trees were constructed with the Kimura-2 parameter
model [30] and 1,000 bootstrap replicates using the same
MEGA 5 software.

2.7. Nucleotide Sequence Accession Numbers. All the sequen-
ces reported in this study have been deposited in GenBank
under accession numbers KT717062–KT717072.

3. Results

3.1. RT-snPCR Result. A total of 15 (25%) of the sixty (60)
stool samples screened yielded the expected band size for the
enterovirus VP1 gene detection RT-snPCR screen (Table 1).
Of the 37 and 23 samples collected from the male and female
participants, respectively, 11 (29.73%) and four (17.39%)
yielded the expected band size (Table 1).

3.2. Virus Identification. Of the 15 amplicons subjected to
sequencing, only 12 were exploitable. The remaining 3 were
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Table 1: Samples positive for the enterovirus VP1 nested RT-PCR screen and the identity of enteroviruses detected in these samples.

S. number Sample ID Gender Age (years) VP1 RT-PCR Serotype Species
1 5 F 3 Positive Unexploitable
2 10 M 5 Positive Unexploitable
3 11 M 6 Positive CVA1 Species C
4 15 M 2 Positive CVA8 Species A
5 16 M 5 Positive EVB80 Species B
6 20 M 2 Positive CVA8 Species A
7 36 M 4.5 Positive CVA20 Species C
8 41 M 1.5 Positive EV71 Species A
9 43 F 1.5 Positive EV71 Species A
10 44 M 1.5 Positive Unexploitable
11 45 M 1.5 Positive CVA4 Species A
12 46 F 3.5 Positive CVA3 Species A
13 48 F 4.5 Positive Phage baseplate
14 50 M 10 Positive E32 Species B
15 59 M 10 Positive EVC99 Species C

unexploitable due to the presence of multiple peaks in their
electropherograms. Eleven (11) of the 12 exploitable sequences
were successfully typed by the enterovirus genotyping tool
(EGT) as Coxsackievirus A1 (CVA1) (1 strain), CVA3 (1
strain), CVA4 (1 strain), CVA8 (2 strains), CVA20 (1 strain),
echovirus 32 (E32) (1 strain), Enterovirus A71 (EVA71) (2
strains), EVB80 (1 strain), and EVC99 (1 strain) (Table 1).
Subsequently, the last exploitable sequence was subjected to a
BLAST search and found to be most similar to an enterobac-
teriophage baseplate gene (Table 1). Based on the eleven (11)
typed strains, enterovirus species A, B, C, and D accounted
for 54.55%, 18.18%, 27.27%, and 0% of the detected strains.

3.3. Phylogenetic Analysis. With respect to CVA1, the sequen-
ces obtained from GenBank and the one described in this
study clustered into five different groups with strong boot-
strap support (Figure 1(a)). The CVA1 sequence of Nigerian
origin described in this study clustered with sequences from
Eurasia (Figure 1(a)). In the CVA3 phylogram, there are three
distinct clusters with strong bootstrap support (Figure 1(b)).
Within cluster 2, the Nigerian CVA3 detected in this study
clustered with another CVA3 previously detected in Nigeria
in 2003 [15] (Figure 1(b)). Just like for CVA3, the Nigerian
CVA4 detected in this study clustered with another CVA4
previously detected in Nigeria in 2003 [15] (Figure 1(c)).

The twoCVA8 sequences described in this study clustered
with one another, with strong bootstrap support.These CVA8
sequences did not appear to be too closely related to any
of the CVA8 sequences in the phylogram (Figure 2(a)). The
CVA20 sequence described in this study, on the other hand,
did not cluster with that previously detected in the region
in 2012 (Figure 2(b)). Rather, it clustered with other CVA20
sequences recently described inCentral AfricanRepublic [19]
and Cameroon [21] (Figure 2(b)).

The E32 sequence described in this study did not cluster
with other E32 sequences recently described in Central Afri-
can Republic [19] and Cameroon [21] (Figure 3(a)). Rather,

it clustered with E32 sequences recently described in India
[31]. On the other hand, both EV71 sequences described in
this study clustered together with strong bootstrap support
in genotype E (Figure 3(b)). Though this genotype consisted
only of sequences from sub-Saharan Africa [15, 19, 21],
the EV71 sequences described in this study clustered with
the EV71 from Cameroon [21] while the EV71 previously
described in Nigeria in 2004 clustered with that fromCentral
African Republic [19] (Figure 3(b)).

The single EVB80 sequence described in this study clus-
tered, with strong bootstrap support, with others we recently
found in 2014 in Nigerian children diagnosed with AFP
(unpublished data). Contrary to the situation with EVB80,
the EVC99 sequence described in this studywas very different
from the one we recently found in 2014 in Nigerian children
diagnosed with AFP (unpublished data). Though they were
both found in Nigeria in 2014, they appear to be most closely
related to EVC99 sequences from Cameroon [21], but with
different genotypes.

4. Discussion

4.1. Enterovirus Detection Rate. Considering that only eleven
of the samples could be unequivocally shown to contain
enteroviruses, the results of this study show enterovirus
detection rate of 18.3% (11/60) in apparently healthy school
aged children in Ibadan, Southwestern Nigeria.This is higher
than the 5.5% and 10% described in previous studies from
apparently healthy school aged children in Southwestern [15]
and Northeastern [24] Nigeria, respectively. This might be a
reflection of the impact of using different detection protocols.
While direct detection of enterovirus genome from the
clinical sample was used in this study, the other studies [15,
24] used a cell-culture based algorithm, particularly a combi-
nation of RD and L20b cell lines, as previously recommended
by the WHO [27]. This might therefore suggest that the cell-
culture independent protocol of Nix et al. [25] for direct
detection of enteroviruses from clinical specimen might be
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Figure 1: Phylogenetic relationship of recovered CVA1 (a), CVA3 (b), and CVA4 (c) strains. The phylogram is based on alignment of the
partial VP1 sequences. The newly sequenced strains and previous strains from the region are highlighted with black triangles or diamonds
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Figure 2: Phylogenetic relationship of recovered CVA8 (a) and CVA20 (b) strains. The phylogram is based on alignment of the partial VP1
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respectively. The GenBank accession number of the strains is indicated in the phylogram. Bootstrap values are indicated if >50%.
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F HG421068.1|EV71 MAD-72341-04 GENOTYPE F
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Figure 3: Phylogenetic relationship of recovered E32 (a) and EV71 (b) strains. The phylogram is based on alignment of the partial VP1
sequences. The newly sequenced strains and previous strains from the region are highlighted with black triangles or diamonds and circles,
respectively. The GenBank accession number of the strains is indicated in the phylogram. Bootstrap values are indicated if >50%.
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more sensitive than the WHO cell-culture based protocol
[27]. However, such conclusion cannot be reached unequiv-
ocally, because the samples analysed in this study were not
simultaneously screened using both the RD and L20b cell line
based and the cell-culture independent protocols.

4.2. Enterovirus Species Diversity Landscape. The results of
this study showed that species A enteroviruses were more
commonly detected (54.55%) than members of the other
enterovirus species (Table 1). This contradicts the findings of
previous studies from the region [15, 16, 23, 24] which gave
the impression that species B enteroviruses were the most
commonly circulating. The true meaning and significance of
this contradiction is difficult to determine considering that
the same samples were not subjected to cell culture using
the protocols previously documented in the region. However,
this finding might be better descriptive of the enterovirus
diversity landscape in the region because it bypasses cell-
culture bias.

It can however be argued that the picture of the enter-
ovirus diversity landscape painted by this cell-culture inde-
pendent assay may just be a reflection of the primer specifici-
ties. Consequently, the tilt in the landscape towards species
A members might not be a true reflection of the diversity
landscape. However, considering that, as opposed to species
A, C, and Dwhich all individually have less than 30 serotypes
documented, species B has over 60 serotypes documented
(http://www.picornaviridae.com/), more species B members
would have been considered during the primer design
process [7, 9, 25, 32]. As a result, the primers should be
biased towards species B rather than other species. Hence,
the preponderance of species A enterovirus members in this
population is unlikely to be as a result of primer bias.

4.3. Enterovirus Serotypes Detected. The results of this study
showed the presence of nine (9) different serotypes of non-
polio enteroviruses (CVA1, CVA3,CVA4,CVA8,CVA20, E32,
EVA71, EVB80, and EVC99) in apparently healthy, school
aged children in Ibadan, Southwestern Nigeria, in 2014
(Table 1). This study documents the first description of
molecular sequence data on CVA1, CVA8, and E32 strains
present in Nigeria. Though this is also the first publication of
molecular sequence data of EVB80 and EVC99 fromNigeria,
we had previously detected EVB80 and EVC99 in children
with AFP in 2014 (unpublished data). Furthermore, we had
previously described CVA20 in environmental samples in
2012 [33] and as for CVA3, CVA4, and EV71, molecular
sequence data of strains circulating over ten (10) years ago
were previously described [15].

4.4. Enterovirus Regional Confinement Hypothesis. The dis-
covery of EV71 genotype E in Nigeria in 2004 [15, 23] and
the subsequent detection of more members of the genotype
in Central African Republic [19] and Cameroon [21] led to
the hypothesis that certain enteroviruses strains circulating
in sub-Saharan Africa might be confined to the region
(the regional confinement hypothesis [RCH]). The recent
discovery of EV71 genotype F in Madagascar [34] further

supports the RCH. It was postulated that paucity of data
on enterovirus genotypes circulating in the region may be
responsible for the delayed discovery of these EV71 genotypes
[19, 21]. However, subsequent to the discovery of EV71
genotype F, it has recently been shown that both genotypes
might have diverged from their independent, most recent
common ancestors in the 1990s [34].

The EV71 strains detected in this study belonged to
genotype E (Figure 3(b)), further confirming the RCH. Fur-
thermore, CVA3 (Figure 1(b)), CVA4 (Figure 1(c)), CVA20
(Figure 2(b)), and EVC99 (Figure 4(b)) also showed evidence
in support of the RCH. However, though regionally confined,
the actual EV71 clade recovered in Nigeria in 2004 appears to
have been replaced by a new clade (Figure 3(b)). In similar
light, though regionally confined, the EVC99 strain detected
in this study is different from that we recently detected in a
child diagnosed with AFP (unpublished data) (Figure 4(b)).
This therefore suggests the simultaneous circulation of two
distinct clades of EVC99 in the country. On the other
hand, genotype replacement has been observed for CVA20
(Figure 2(b)). However, the same cannot be said for CVA3
and CVA4 due to paucity of molecular sequence data from
the region on these genotypes. Though the isolates of CVA3
and CVA4 detected in this study are similar to those detected
over 10 years ago from the same region (Figures 1(b) and 1(c)),
characterizing more isolates from the intervening years will
help better understand the evolutionary dynamics of these
serotypes.

The E32 isolate described in this study appeared to be
more closely related to isolates from southeast Asia than those
from sub-Saharan Africa (Figure 3(a)). On the one hand,
this calls to question the RCH. However, on the other hand,
it brings to the fore another salient underdiscussed issue
concerning enterovirus identification that gives newcomers
to the field some headache. Sequences of the VP1 gene are
usually used for enterovirus identification. However, while
the most appropriate strategy would be to amplify the entire
VP1 gene, most protocols amplify either the 5󸀠- or the 3󸀠-
end. For the newbie, it can be quite confusing to find out
whether the partial VP1 gene is from the 5󸀠- or the 3󸀠-end
of the gene. However, the enterovirus genotyping tool [28]
helps to resolve this by giving a graphic view of the physical
location on any VP1 gene (complete or partial) submitted as
query sequence, thereby helping to determine whether the
sequence in question is the complete gene or 5󸀠- or 3󸀠-end
of the gene (Tables 2(a) and 2(b)).

Nix et al.’s [25] protocol is an upgrade of Oberste et al.’s
[7, 9] protocol and amplifies the 5󸀠-end of the VP1 gene.
Consequently, sequences generated using this protocol can
only be compared to those generated using similar protocols
that amplify the 5󸀠-end or complete VP1 gene. Sequences
generated from protocols that amplify the 3󸀠-end of the VP1
gene like those of Oberste et al. [6], Casas et al. [10], and
Caro et al. [12] or any iteration of these are of no value for
phylogenetic analysis of VP1 gene sequences generated using
Nix et al.’s [25] protocol. This is because it will be impossible
to align partial VP1 sequences generated using Nix et al.’s [25]
protocol with those from protocols that amplify the 3󸀠-end of
the gene.
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 KF413031.1|EVB80 NIV072243-1
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 GQ176196.1|EVB80 10987

 JN204079.1|EVB80 N-790
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Figure 4: Phylogenetic relationship of recovered EVB80 (a) and EVC99 (b) strains. The phylogram is based on alignment of the partial VP1
sequences. The newly sequenced strains and previous strains from the region are highlighted with black triangles and circles, respectively.
The GenBank accession number of the strains is indicated in the phylogram. Bootstrap values are indicated if >50%.
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Table 2: Enterovirus genotyping tool (EGT) identification of isolates and graphic view of the region of the enterovirus genome represented
by the query nucleotide sequence(s). This graphic view was generated by the enterovirus genotyping tool [28]. (a) shows CVA20 sequences
while (b) shows E32. Column 1 shows the sequence ID (or accession number); column 2 shows the number of nucleotide sequences; column
3 shows the species to which the isolate belongs; column 4 shows the serotype of the isolates; column 5 shows a hyperlink (report) to more
information on the alignment generated by the software (note: the hyperlink is generated afresh for every sequence data imputed into the
enterovirus genotyping tool and is a temporary link that ceases to exist not long after a guest leaves the EGT); and column 6 shows a graphic
view of the region of the enterovirus genome represented by the query sequence.

(a) CVA20

Name Length Genus/species Serotype, subgenogroup Report Genome

DQ358078.1|CVA20 serotype CAV2 7444 Enterovirus C CVA20 Report

Region used
for typing

5
󳰀NCR VP2 VP1 2B 3A 3C

VP4 VP3 2A 2C 3B 3D
3
󳰀NTR

KF303091.1|CVA20 NIG 2012 660 Enterovirus C CVA20 Report

Region used
for typing

5
󳰀NCR VP2 VP1 2B 3A 3C

VP4 VP3 2A 2C 3B 3D
3
󳰀NTR

NIE2014 CV-A20 EV-C 354 Enterovirus C CVA20 Report

Region used
for typing

5
󳰀NCR VP2 VP1 2B 3A 3C

VP4 VP3 2A 2C 3B 3D
3
󳰀NTR

JX426682.1|CVA20 T08-213 305 Enterovirus C CVA20 Report

Region used
for typing

5
󳰀NCR VP2 VP1 2B 3A 3C

VP4 VP3 2A 2C 3B 3D
3
󳰀NTR

JX426681.1|CVA20 T08-166 303 Enterovirus C CVA20 Report

Region used
for typing

5
󳰀NCR VP2 VP1 2B 3A 3C

VP4 VP3 2A 2C 3B 3D
3
󳰀NTR

JX426680.1|CVA20 T08-112 303 Enterovirus C CVA20 Report

Region used
for typing

5
󳰀NCR VP2 VP1 2B 3A 3C

VP4 VP3 2A 2C 3B 3D
3
󳰀NTR

JX426679.1|CVA20 MAR-252 303 Enterovirus C CVA20 Report

Region used
for typing

5
󳰀NCR VP2 VP1 2B 3A 3C

VP4 VP3 2A 2C 3B 3D
3
󳰀NTR

JX426678.1|CVA20 MAR-250 305 Enterovirus C CVA20 Report

Region used
for typing

5
󳰀NCR VP2 VP1 2B 3A 3C

VP4 VP3 2A 2C 3B 3D
3
󳰀NTR

JX426677.1|CVA20 MAR-249 305 Enterovirus C CVA20 Report

Region used
for typing

5
󳰀NCR VP2 VP1 2B 3A 3C

VP4 VP3 2A 2C 3B 3D
3
󳰀NTR

(b) E32

Name Length Genus/species Serotype, subgenogroup Report Genome

JQ411108.1|E32 D614 M54-2009 259 Enterovirus B E32 Report

Region used
for typing

5
󳰀NCR VP2 VP1 2B 3A 3C

VP4 VP3 2A 2C 3B 3D
3
󳰀NTR

AF295475.1|E32 50 99 568 Enterovirus B E32 Report

Region used
for typing

5
󳰀NCR VP2 VP1 2B 3A 3C

VP4 VP3 2A 2C 3B 3D
3
󳰀NTR

AF295518.1|E32 PR 10 568 Enterovirus B E32 Report

Region used
for typing

5
󳰀NCR VP2 VP1 2B 3A 3C

VP4 VP3 2A 2C 3B 3D
3
󳰀NTR

HQ662326.1|E32 Mum-829 337 Enterovirus B E32 Report

Region used
for typing

5
󳰀NCR VP2 VP1 2B 3A 3C

VP4 VP3 2A 2C 3B 3D
3
󳰀NTR

HQ662323.1|E32 Mum-837 337 Enterovirus B E32 Report

Region used
for typing

5
󳰀NCR VP2 VP1 2B 3A 3C

VP4 VP3 2A 2C 3B 3D
3
󳰀NTR

JN203970.1|E32 N-990B 372 Enterovirus B E32 Report

Region used
for typing

5
󳰀NCR VP2 VP1 2B 3A 3C

VP4 VP3 2A 2C 3B 3D
3
󳰀NTR
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(b) Continued.

Name Length Genus/species Serotype, subgenogroup Report Genome

JN203969.1|E32 N-900 375 Enterovirus B E32 Report

Region used
for typing

5
󳰀NCR VP2 VP1 2B 3A 3C

VP4 VP3 2A 2C 3B 3D
3
󳰀NTR

JN203968.1|E32 N-737 876 Enterovirus B E32 Report

Region used
for typing

5
󳰀NCR VP2 VP1 2B 3A 3C

VP4 VP3 2A 2C 3B 3D
3
󳰀NTR

There are a significant number of sequences of this sort in
GenBank and some of the sub-Saharan enterovirus sequences
fall into this category alongside those from other world
regions (Tables 2(a) and 2(b)). This dichotomy undermines
the capacity to better investigate the RCH with the data
at hand and necessitates the need to have a second look
at the adoption and use of Nix et al.’s [25] protocol and
other protocols that do not amplify the entire VP1 gene for
studies focused on investigating the RCH. This dichotomy
accounts for why the regional confinement of strains of E32,
as well as CVA1, CVA8, and EVB80, detected in this study
could not be exhaustively determined despite the availability
of sequence data from sub-Saharan Africa strains in the
nucleotide databases. Therefore, other cell-culture indepen-
dent protocols for direct detection of enteroviruses from
clinical samples like the ECRA recently described by Arita
et al. [35], which have the capacity to amplify the complete
VP1 gene, should be further investigated and developed to
tools that are affordable and field deployable, especially in
resource limited settings.

4.5. What Happens with Coinfections? Subsequent to the
completion of this study, it was observed that, in cases of
enterovirus coinfection, Nix et al.’s [25] protocol tends to
amplify the most prevalent genome. For example, when
further screened with enterovirus species specific primers,
it was discovered that sample number 45 (Table 1) also had
EVB88 in it (unpublished data). This was totally missed
by Nix et al.’s [25] panenterovirus RT-snPCR screen. On
the other hand, Nix et al.’s [25] panenterovirus RT-snPCR
screen is not completely infallible. Failure on the part of
the assay to amplify the gene of interest should not be
considered with absolute certainty that the sample is negative
for the virus of interest. For example, in another incident,
Nix et al.’s [25] panenterovirus RT-snPCR screen failed to
amplify the VP1 gene from an enterovirus isolate recovered
on RD cell line in our laboratory. However, when species
B and C specific RT-snPCR assays were used, echovirus
6 (E6) and poliovirus 1 (PV1) were detected, respectively.
Hence, as valuable as this assay is, it also has its weaknesses.
Consequently, strategies still have to be developed to improve
its sensitivity as well as integrate it into already established
enterovirus isolation protocols [26, 27]. In addition,Nix et al.’s
[25] protocol consistently amplified an enterobacteriophage
tail gene (Table 1) yielding a band that is similar in size to
that expected for enteroviruses. Hence, the presence of a band
in the expected range should be interpreted with caution
pending the sequencing of the amplicon.

4.6. Conclusions. The results of this study showed the pres-
ence of CVA1, CVA3, CVA4, CVA8, CVA20, E32, EVA71,
EVB80, and EVC99 in Ibadan, Southwestern Nigeria, in
2014. It thereby documents the first description of molecular
sequence data on CVA1, CVA8, and E32 strains present
in Nigeria. It further showed that species A enteroviruses
were more commonly detected in the region when cell-
culture bias is bypassed.The results of this study confirm that
enteroviruses can be detected directly from faecal suspension
using Nix et al.’s [25] protocol as proposed in the enterovirus
surveillance guidelines [4]. Furthermore, the amplicons pro-
duced from Nix et al.’s [25] panenterovirus VP1 RT-snPCR
assay are sufficient for sequencing and identification of the
enteroviruses present in such samples. It further shows that
Nix et al.’s [25] protocol tends to amplify the most prevalent
genome when mixtures are present and failure on the part
of the assay to amplify the gene of interest should not be
considered with absolute certainty that the sample is negative
for the virus of interest.
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