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Generic decoding of seen and imagined objects
using hierarchical visual features
Tomoyasu Horikawa1 & Yukiyasu Kamitani1,2

Object recognition is a key function in both human and machine vision. While brain decoding

of seen and imagined objects has been achieved, the prediction is limited to training

examples. We present a decoding approach for arbitrary objects using the machine vision

principle that an object category is represented by a set of features rendered invariant

through hierarchical processing. We show that visual features, including those derived from a

deep convolutional neural network, can be predicted from fMRI patterns, and that greater

accuracy is achieved for low-/high-level features with lower-/higher-level visual areas,

respectively. Predicted features are used to identify seen/imagined object categories

(extending beyond decoder training) from a set of computed features for numerous object

images. Furthermore, decoding of imagined objects reveals progressive recruitment of higher-

to-lower visual representations. Our results demonstrate a homology between human and

machine vision and its utility for brain-based information retrieval.
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B
rain decoding through machine learning analysis of
functional magnetic resonance imaging (fMRI) activity
has enabled the interpretation of mental contents, including

what people see1,2, remember3–7, imagine8–12 and dream13. Most
previous studies have relied on a classification-based approach,
where a statistical classifier (decoder) is trained to learn a
relationship between fMRI patterns and the target contents to be
decoded. Such approaches entail a fundamental constraint on the
number of possible outputs. Namely, the outputs are limited to
the classes used for decoder training, preventing the decoder from
predicting any classes that are not used in training.

Recent studies have overcome this limitation by designing
decoders for retinotopically organized, image-level features14–16.
This method enables the decoding of novel visual images not
presented during training sessions. Kay et al.14 built an encoding
model consisting of retinotopically organized Gabor wavelet
filters. They used a visual image database and the predicted brain
activities produced by an encoding model. The measured brain
activity was then decoded by determining the visual image in the
database corresponding to the predicted brain activity most
similar to the measured brain activity. This technique has also
been used to identify remembered artworks from the early visual
cortical activity17. Miyawaki et al.16 constructed a modular
decoding model consisting of multi-scale local decoders
(modules) that predicted the contrast of local image patches.
The model enabled reconstruction of arbitrary visual images from
brain activity by combining the outputs of the local decoders
despite having been trained with brain activity for a small number
of random images.

While visual image identification14,15,17 and reconstruction16

are suitable for decoding according to image-based similarity,
they do not provide explicit information regarding the object a
person is seeing or imagining. The possible objects we may see or
imagine in daily life are countless, and object-based information
is often more directly relevant to our visually guided behaviour
than image-based information. Establishing methods for
decoding generic object categories from brain activity would
provide practical benefits for technologies utilizing information
decoded from brain activity and may increase understanding of
the way the human brain represents a vast number of objects.

In this study, we aim to decode seen and imagined object
categories, including those not used in decoder training from
fMRI signals measured while subjects either viewed or imagined
object images. We extended the modular decoding approach
originally developed for visual image reconstruction16 to the
decoding of generic object categories.

To tailor the modular decoding approach to the objectives of
this study, we assumed that an object category can be represented
by a set of visual features with several invariances. These features
correspond to those proposed for the object recognition challenge
in machine vision18–24 (Fig. 1a), which aims at enabling a
computer to recognize objects in images according to their
category names. The selection of visual features is a critical aspect
of this approach because even if images depict the same object,
they do not necessarily have pixel-wise similarity as a result of
varying rotation, scale, position and other visual attributes. Thus
objects may be more suitably represented using mid- or high-level
visual features which are invariant to such image differences
rather than the low-level features (for example, local contrast13 or
Gabor wavelet filter14,15,17) used for visual image reconstruction
and identification.

We tested a total of 13 candidates of visual feature types/layers
constructed from four models (Fig. 1a, see Methods section):
a convolutional neural network (CNN) model20 (CNN1–CNN8),
HMAX model21–23 (HMAX1–HMAX3), GIST24, and scale
invariant feature transform18 combined with the ‘Bag of

Features’19 (SIFTþBoF). Some of the models emulate the
hierarchical structure of the human visual system (CNN and
HMAX), while others are designed for scene recognition (GIST)
and object recognition (SIFTþBoF) in machine vision. These
visual feature types/layers have multiple levels of complexity, and
it has been reported that representations of these model outputs
are statistically similar to visual cortical activity21,22,25–30.

Using these visual features, we present a new approach called
‘generic object decoding,’ in which arbitrary object categories
are decoded from human brain activity (Fig. 1b). We used the
online image database, ImageNet31, and trained regression
models (decoders) to predict visual features extracted by the
computational models from brain activity recorded by fMRI
while subjects viewed natural images (150 categories). The trained
decoders were then used to predict feature vectors of seen and
imagined objects that were not used in decoder training from the
fMRI activity patterns. By comparing the predicted feature vector
with the category-average feature vectors calculated from images
in the image database, we identify seen and imagined object
categories from those defined in a database (15,372 categories in
ImageNet31). Because arbitrary object categories are represented
in this feature space, the identified categories are not limited to
those used in training.

Here we first demonstrate that visual feature values of seen
objects calculated by the computational models can be predicted
from multiple brain areas, showing tight associations between
hierarchical visual cortical areas and the complexity levels of
visual features. In addition, we show that stimulus-trained
decoders can be used to decode visual features of imagined
objects, providing evidence for the progressive recruitment of
hierarchical neural representations in a top-to-bottom manner.
Finally, we test whether the features predicted from brain activity
patterns are useful for identifying seen and imagined objects for
arbitrary categories.

Results
Generic object decoding. Our objective was to decode arbitrary
object categories (not included in model training) from human
brain activity measured using fMRI. First, we extracted feature
values from object images using a total of 13 visual feature types/
layers (CNN1–8, HMAX1–3, GIST and SIFTþBoF; B1,000
units for each feature type/layer). We thereby represented an
object image by a feature vector of each feature type/layer
(Fig. 1a). Second, decoders were trained to predict the vectors of
visual features of seen objects from brain activity patterns
(Fig. 1b). Third, using the trained decoders, a feature vector was
predicted from brain activity measured while seeing or imagining
an object that was not used in decoder training. Finally, the
predicted feature vector was used to identify a seen/imagined
object by calculating the similarity between the predicted and the
category-average feature vectors calculated from an annotated
image database.

To test the feasibility of generic decoding of seen and imagined
objects from brain activity, we conducted two fMRI experiments:
an image presentation experiment, and an imagery experiment
(Fig. 2). In the image presentation experiment, fMRI signals were
measured while subjects viewed a sequence of object images
(Fig. 2a). The image presentation experiment consisted of two
sessions: the training image session and the test image session.
In the training image session, 1,200 images from 150 object
categories (8 images from each category) were each presented
once. In the test image session, 50 images from 50 object
categories (one image from each category) were each presented
35 times. In the imagery experiment, fMRI signals were measured
while subjects imagined about 1 of the 50 object categories
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(10 times for each category), which were the same as those in the
test image session (Fig. 2b). The categories in the test image
session and the imagery experiment were not used in the training
image session. While we show results with fMRI signals averaged
across all trials (35 trials for the test image session and 10 trials
for the imagery experiment), quantitatively similar results were
obtained with a much smaller number of averaged samples (see
Supplementary Information).

We performed our analysis for each combination of feature
types/layers and brain regions of interest (ROIs; V1–V4, the

lateral occipital complex (LOC), fusiform face area (FFA),
parahippocampal place area (PPA), lower visual cortex (LVC;
V1–V3), higher visual cortex (HVC; covering regions around
LOC, FFA and PPA) and the entire visual cortex (VC; covering all
of the visual subareas listed above); see Methods section and
Supplementary Fig. 1 for definitions of the ROIs).

A set of linear regression functions (sparse linear regression
(SLR) model32) was used to predict visual feature vectors
(B1,000 feature units for each feature type/layer; see Methods
section) from the fMRI signals in each ROI. A unit decoder was
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Figure 1 | Generic object decoding. (a) Visual feature extraction from natural images using computational models. Visual features were calculated

from natural images using CNN (CNN1–8), HMAX (HMAX1–3), GIST and SIFTþBoF. (b) Overview of generic object decoding. fMRI activity was measured

while subjects viewed natural images. Decoders were trained to predict the values of the visual features for presented images/objects from multi-voxel

fMRI signals. Given measured fMRI activity, a feature vector was predicted and it is used to identify the seen or imagined object by comparing it with the

feature vectors of numerous objects in an annotated image database including those not used for decoder training.
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Figure 2 | Experimental design. (a) Image presentation experiment. Images were presented in the centre of the display with a central fixation spot.

The colour of the fixation spot changed from white to red for 0.5 s before each stimulus block started to indicate the onset of the block. Subjects maintained

steady fixation throughout each run and performed a one-back repetition detection task on the images, responding with a button press for each repetition.

(b) Imagery experiment. The onset of each trial was marked by a change in the fixation colour. Cue stimuli composed of an array of object names were

visually presented for 3 s. The onset and the end of the imagery periods were signalled by auditory beeps. After the first beep, the subjects were instructed

to imagine as many object images as possible pertaining to the category indicated by red letters. They continued imagining with their eyes closed (15 s)

until the second beep. Subjects were then instructed to evaluate the vividness of their mental imagery (3 s). Note that the actual cue consisted of an array

of 50 object names, while only subsets of the words are depicted in this figure because of space limitations.
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trained to predict the values of the feature vectors calculated from
the viewed images, using fMRI signals from the training image
session (that is, B1,000 decoders for each feature type/layer). The
trained decoders were then used to predict the vectors of each
feature type/layer for the test object categories from measured
fMRI signals in the test image session and the imagery
experiment.

Image feature decoding. We first investigated whether we could
decode the values of visual feature vectors for presented images
from brain activity. Decoding accuracy was evaluated by the
correlation coefficient between true and predicted feature values
of each feature unit (Fig. 3a). Correlation coefficients were
averaged across the units in each feature type/layer for multiple
ROIs and then averaged across five subjects. Because the

distribution of feature values and the number of feature units of
the original population differed between feature types/layers,
interpreting decoding accuracy differences across feature
types/layers was difficult. For example, when accuracy was
evaluated by normalized root mean square errors, the overall
pattern of accuracy across feature types/layers differed from the
pattern derived from correlations (Supplementary Fig. 2).
Therefore, in the following we focussed on the pattern of
accuracies across ROIs in each feature type/layer.

Figure 3b shows the decoding accuracy for features of
presented images in multiple ROIs. The predicted feature values
positively correlated with the true values for all feature–ROI
combinations (one-sided t-test after Fisher’s z-transform,
uncorrected Po0.05). Interestingly, the choice of feature
types/layers and ROIs affected the accuracy pattern. As observed
in the results for the CNN layers, higher-order features tended to
be better predicted from fMRI signals in higher rather than lower
ROIs, and lower-order features tended to be better predicted from
fMRI signals in lower rather than higher ROIs (analysis of
variance (ANOVA), interaction between layer and ROI, Po0.01).
Similar tendencies were also observed with HMAX (ANOVA,
interaction between feature type and ROI, Po0.01). Such
differences were also observed in the decoding accuracies
obtained from LVC and HVC (Supplementary Fig. 3). These
results reveal a tight association between hierarchical visual areas
and the complexity levels of visual features in image feature
decoding accuracy.

To understand more details about what each visual feature
represents, we synthesized preferred images that strongly
activated individual units in each CNN layer using the activation
maximization technique33–36 (Fig. 4; see Supplementary Fig. 4 for
more examples; see Methods section). The generated images
showed gradually increasing complexity, from simple edge-
detector-like representations to more complex shapes, textures
or object parts and to intact objects. Because CNN6–8 are fully
connected layers, position information about their preferred
pattern was lost. These preferred images of individual CNN
units resemble the critical features found in monkey
electrophysiological studies37.

Analyses of voxel weights learned by the image feature
decoders (trained with VC) showed differences in the spatial
distribution of predictive voxels between visual feature
types/layers. We used a linear regression model in which voxel
weights were estimated with sparseness priors32, resulting in a
small subset of voxels selected with non-zero weights (hence
relevant for decoding). Examples of voxel sets for a CNN2 unit
and a CNN8 unit are shown in Fig. 4b. While the voxels selected
for predicting a CNN2 unit were distributed mainly around
the lower visual areas (V1–V3), those for predicting a CNN8
unit were distributed around more anterior areas (Fig. 4b).
Distributions of predictive voxels for the visual feature
types/layers were consistent with the results of the image
feature decoding analysis using individual ROIs (Fig. 3b): voxels
in the lower/higher ROIs were more frequently selected
for predicting lower/higher visual features, respectively (Fig. 4c;
ANOVA, interaction between feature type/layer and ROI,
Po0.01; see Supplementary Fig. 5 for distributions for
HMAX1–3, GIST and SIFTþBoF).

Additionally, we found that the image feature decoding
accuracy in each unit was positively correlated with the ‘category
discriminability’ of each unit (Fig. 5). As an index of category
discriminability, we calculated the F-statistic of each feature unit
(a ratio of inter- and intra-category variations of feature values
calculated from images in the ImageNet (15,322 categories)). The
distributions of the category discriminability from each feature
type/layer showed that high-level features tended to demonstrate
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high discriminability for both CNN and HMAX (Fig. 5a, bottom).
Within each feature type/layer, positive correlations between
decoding accuracy and category discriminability were observed
for all visual features except for HMAX1 (Fig. 5b,c). Furthermore,
decoding accuracy and category discriminability were positively
correlated even when feature units were combined across all
feature types/layers (Fig. 5c, all), and were averaged within
each feature type/layer (Fig. 5c, mean). While this analysis
was performed with decoders trained on whole VC activity,
this tendency was robustly reproduced in each ROI. Thus
decodable feature units tended to be critical for defining object
categories.

Category-average feature decoding. In computer vision, object
recognition is typically performed by matching the feature vector
of an input image with a set of category-specific feature vectors,
assuming that hierarchical features are progressively rendered
invariant to represent object categories. To link image feature
decoding with object recognition, we next tested whether
the feature values from the image feature decoders (cf., Fig. 3)
predicted the values of category-specific feature vectors.
We constructed category-specific feature vectors by averaging
the feature vectors of multiple images annotated with the same
object category (15,372 categories in ImageNet31). To evaluate
the prediction accuracy in each unit, Pearson’s correlation
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coefficients were calculated between the predicted and the
category-average feature values for the series of test trials. We
then averaged the correlation coefficients across the units in each
feature type/layer. Evaluation with category-average features
allowed us to extend the feature decoding analysis to the
imagery experiment, in which subjects freely imagined about an
object cued by text, and thus there were no ground truth images
from which visual features could be calculated.

Correlation coefficients between the features decoded from
stimulus- and imagery-induced brain activity and the category-
average features in multiple ROIs are shown in Fig. 6 (see
Supplementary Fig. 8 for distributions of correlation coefficients
for individual units). Features decoded from stimulus-induced
brain activity were significantly correlated with the category-
average features for all feature–ROI combinations (Fig. 6a;
one-sided t-test after Fisher’s z-transform, uncorrected Po0.05).
In contrast to image features (Fig. 3b), category-average features
were better predicted in higher than lower ROIs for most feature
types/layers. Imagery-induced brain activity showed a similar
prediction pattern, but with reduced accuracies: relatively high
correlations were found for mid-to-high-level CNN features using

mid-to-high-level ROIs (V4, LOC, FFA and PPA) (Fig. 6b).
Thus the results showed that image features decoded from
stimulus- and imagery-induced brain activity were predictive of
category-specific features, particularly with mid-to-high-level
CNN features decoded from mid-to-high-level ROIs. Poorer
prediction with other features and ROIs may be due to the lack of
invariance to image attributes that were irrelevant for object
recognition. The capacity of imagery-induced brain activity to
predict mid-level, as well as top-level, CNN features suggests that
mental imagery may recruit neural representations of visual
features with intermediate complexity, which are not simply
pictorial or conceptual, via progressive top–down processing.

To find out a signature of such progressive top–down
processing, we performed a time-resolved feature prediction
analysis. While the results in Fig. 6 are based on the average brain
activity during the entire 9-s stimulus or 15-s imagery period, the
time course of prediction accuracies at each time point reveals
differences between CNN layers and ROIs (Fig. 7). When the
features in each CNN layer were predicted from imagery-induced
brain activity in the whole VC, the peak timings for higher CNN
layers tended to precede those for lower CNN layers, except
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CNN1, which showed poor prediction accuracy and no clear peak
(Fig. 7a,b; ANOVA, interaction between time and CNN layer,
Po0.01). Similarly, when feature prediction accuracies for all
layers were averaged for each ROI, the peak timings for higher
ROIs tended to precede those for lower ROIs (Fig. 7c,d; ANOVA,
interaction between time and ROI, Po0.01; see Supplementary
Fig. 9 for the time courses for each CNN layer). Such time
differences across CNN layers or ROIs were not found with
stimulus-induced brain activity (Fig. 7e–h). Although anecdotally,
subjects reported that, in the imagery task of this study, it often
took several seconds for vivid visual imagery to develop. Thus, the
imagery task may have progressively activated hierarchical neural
representations in a top-to-bottom manner over several seconds
in concert with the vividness of imagery.

Object category identification. We next conducted identification
analysis14,16 to examine whether a predicted feature vector was
useful for identifying a seen or imagined object. Because our
approach is not constrained by the categories used for decoder
training, we can perform identification analysis for thousands of
object categories, including those not used for model training.
Here the category of the seen or imagined object was identified
from a variable number of candidate categories (Fig. 8).
We constructed the candidate feature vector set consisting of
object categories used in the test image session (and imagery
experiments) and a specified number of object categories
randomly selected from the 15,322 categories provided by
ImageNet31. Given an fMRI sample, category identification was
performed by selecting the category-average feature vector with

the highest correlation coefficient with the predicted feature
vector.

First, we illustrated examples with the top six categories
selected from 1,000 candidates (Fig. 9a). For both seen and
imagined objects, the true categories were correctly selected or
highly ranked. Even when the correct categories were not
assigned, the top six categories appeared to include similar or
related categories (for example, the decoded feature vector for
‘duck’ misidentified as another type of bird ‘solitaire’).

Next, we quantitatively evaluated the relationships between
rank and semantic distance with respect to the target categories
and the categories ranked in each position. Semantic distance was
defined by the shortest path length between the categories in the
WordNet tree38 and was calculated between the target category
and each of the 1,000 candidate categories. The 1,000 distance
values were then sorted by the object category ranking
(the similarity to the decoded feature vector) and averaged over
1,000 repetitions of random candidate selection and 50 target
categories. The analysis showed that categories ranked in higher
positions tended to show shorter semantic distances to target
categories (Fig. 9b). Semantic distance was positively correlated
with rank, especially for mid-to-high-level CNN layers (CNN3–8)
and SIFTþBoF under both seen and imagined conditions
(Fig. 9c; asterisks, one-sided t-test after Fisher’s z-transform,
uncorrected Po0.05). These results suggest that, for these feature
types/layers, semantically similar, if not correct, categories can be
selected with the feature vector predicted from brain activity.

For quantitative evaluation, we assessed identification accuracy
of seen and imagined objects when the number of candidate sets

0
0.2
0.4
0.6

0
0.2
0.4
0.6

0
0.2
0.4
0.6

0
0.2
0.4
0.6

0
0.2
0.4
0.6

PPAV1 V2 V3 V4
LO

C
FFA

Area

HMAX1

HMAX2

HMAX3

GIST

SIFT+BoF

PPAV1 V2 V3 V4
LO

C
FFA

Area

PPAV1 V2 V3 V4
LO

C
FFA

Area

CNN1

CNN2

CNN3

CNN4

CNN5

CNN6

CNN7

CNN8

C
or

re
la

tio
n 

co
ef

fic
ie

nt

0
0.2
0.4
0.6

0
0.2
0.4
0.6

0
0.2
0.4
0.6

0
0.2
0.4
0.6

0
0.2
0.4
0.6

PPAV1 V2 V3 V4
LO

C
FFA

Area

HMAX1

HMAX2

HMAX3

GIST

SIFT+BoF

PPAV1 V2 V3 V4
LO

C
FFA

Area

0
0.2
0.4
0.6

0
0.2
0.4
0.6

0
0.2
0.4
0.6

0
0.2
0.4
0.6

0
0.2
0.4
0.6

0
0.2
0.4
0.6

0
0.2
0.4
0.6

0
0.2
0.4
0.6

0
0.2
0.4
0.6

0
0.2
0.4
0.6

0
0.2
0.4
0.6

0
0.2
0.4
0.6

0
0.2
0.4
0.6

0
0.2
0.4
0.6

0
0.2
0.4
0.6

0
0.2
0.4
0.6

PPAV1 V2 V3 V4
LO

C
FFA

Area

CNN1

CNN2

CNN3

CNN4

CNN5

CNN6

CNN7

CNN8

C
or

re
la

tio
n 

co
ef

fic
ie

nt
Prediction from stimulus-induced brain activity

a
Prediction from imagery-induced brain activity

b

Figure 6 | Prediction of category-average features from stimulus- and imagery-induced brain activity. (a) Correlation coefficients with predicted

features from stimulus-induced brain activity. (b) Correlation coefficients with predicted features from imagery-induced brain activity. Mean correlation

coefficients are shown for each feature type/layer and ROI (error bars, 95% CI across five subjects). See Supplementary Fig. 6 for the relation between

category discriminability and prediction accuracy (cf., Fig. 5c). Similar analyses can be performed using the decoders trained with category-average features

(not image features) for training stimulus images (category-average feature decoders), showing qualitatively similar prediction results with higher accuracy

for imagery-induced brain activity (Supplementary Figs 7 and 8b).
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Figure 7 | Time course of feature prediction from imagery- and stimulus-induced brain activity. At each time point/volume around the task period,

correlation coefficients were calculated between the predicted and the category-average feature values for the series of test trials (averaged across five

subjects; shaded areas, 95% CI across feature units; filled circles, peak timing). (a,b) Line plots and colour display for prediction from imagery-induced
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was two (Fig. 10a,b; see Supplementary Fig. 10 for identification
accuracy as a function of the number of average samples). This
analysis was performed with feature vectors for individual feature
types/layers and with concatenated feature vectors for CNN1–8
(8,000 units), HMAX1–3 (3,000 units) and all 13 feature
types/layers (13,024 units).

The analysis revealed that both seen and imagined objects were
successfully identified with statistically significant accuracy for
most of the feature types/layers (one-sided t-test, uncorrected
Po0.05 except for CNN1, HMAX2 and HMAX3 under the
imagery condition) with highest accuracy around mid-level
features (CNN5–6). Furthermore, when the same analysis was
performed for each ROI, above-chance accuracy was achieved
for most feature–ROI combinations (Supplementary Fig. 11).
Intriguingly, mid-level features decoded from higher ROIs were
most useful for identifying both seen and imagined object
categories.

Additional analyses revealed that the pairs with larger semantic
distances (WordNet’s path length) tended to have higher
identification accuracies (Supplementary Fig. 14), consistent with
the relationships between the identified rank and semantic
distance (Fig. 9c). Because we used a pretrained CNN model,
the 1,000 categories used in the model accidentally included 20 of
the test categories in our study. However, the identification
accuracy with the other 30 non-overlapping categories alone was
qualitatively similar to the main results (Supplementary Fig. 15).

Discussion
We have shown that via hierarchical visual feature representation,
arbitrary object categories seen and imagined by subjects can be
predicted from fMRI signals in the human VC. The trained
decoders successfully predicted the feature values of the presented
images. Higher-/lower-order visual features tended to be better
predicted from fMRI signals in higher/lower cortical areas,
respectively. Further, decoders trained to predict feature vectors
of presented images can be used to predict those of both seen and
imagined object categories, enabling the identification of seen and
imagined object categories despite not using the same categories
for decoder training. Interestingly, mid-level features were most
useful for identifying object categories, suggesting the significant

contributions of mid-level features to construct discriminative
representations for object categories. Thus, our results demon-
strate that a decoding model trained on a limited set of object
categories generalizes to decode arbitrary object categories,
providing a proof of concept for generic object decoding. This
framework is also known as the ‘zero-data learning’ or ‘zero-shot
learning’ in the machine-learning field39, in which a model must
generalize to classes with no training data. Moreover, successful
predictions of category-average features at mid-to-high-level
CNN layers and object category identification from imagery-
induced brain activity in mid-to-high-level ROIs would suggest
that mental imagery may recruit neural representations of visual
features with intermediate complexity, which are elicited in visual
perception, via progressive top–down processing.

Our analyses demonstrated that visual features extracted by
computational models were successfully predicted from brain
activity patterns (Fig. 3). The analysis revealed a hierarchical
correspondence between cortical hierarchy and the levels of visual
feature representations. These results were consistent with
previous demonstrations of high representational similarity
between the top layer of a CNN and visual cortical activity in
the inferior temporal cortex of humans27,28 and non-human
primates25–27. Moreover, several previous studies reported that
features from the middle layer of a hierarchical neural network
were able to accurately predict V4 brain activity25,26. In addition,
a previous study reported an explicit gradient for feature
complexity in visual cortical hierarchy using an encoding
approach28. Our results are consistent with these findings,
showing a homology between the hierarchies of individual areas
from lower to HVC and the CNN layers using a decoding
approach. Thus our results support the idea that CNN models
can provide a good proxy for the hierarchical feed-forward visual
system for object recognition.

In our analyses, we selected 1,000 feature units to reduce
computational cost, as some layers of the CNN (CNN1–7)
originally contained 4100,000 units. However, it is possible that
the selection of the 1,000 units biased the results. To test this
possibility, we repeated the same identification analysis by
resampling units from the original feature populations and
repeatedly changing the number of units from 10 to 1,000
(Supplementary Fig. 16). The analysis demonstrated that the
identification accuracies of most feature types/layers were almost
saturated when several hundred units were used, and qualitatively
similar results to the main results were obtained for different
numbers of units.

Our results may be relevant to the long-standing debate
regarding whether mental imagery is symbolic (language-like) or
depictive (picture-like)40,41. In our analysis, the decoders trained
on brain activity induced by visual stimuli were able to generalize
to predict the category-average feature vectors of not only
seen but also imagined object categories (Fig. 5), enabling
the identification of imagined object categories using the
feature vector decoded from brain activity during imagery
(Fig. 10b). Previous studies reported that the common neural
representations are used during perception and mental imagery
for low-level image properties3–5,17, including information about
orientation, spatial frequency and retinotopic location, as well as
for high-level semantic and conceptual representations8–10,12,
depending on the tasks performed by subjects. Our analyses
further revealed progressive recruitment of multiple levels of
hierarchical visual features, including features with intermediate
complexity that go beyond low-level image properties and bridge
the gap between pictorial and conceptual representations (Fig. 7).
Our analyses quantify the top–down effects of hierarchical visual
cortical activity during mental imagery, suggesting that feature-
level representations elicited in visual perception were recruited

Randomly sampled from over 10,000 object categories
Presented
category

Candidate
categories

Correlation
coefficient

Decoder

or

0.86 0.62 0.43 0.28 0.77 0.19

Predicted
pattern

Seen

Imagined

*

Figure 8 | Category identification procedure. Correlation coefficients were

calculated between predicted feature vectors and category-average feature

vectors for categories in the candidate set, consisting of the presented or

imagined category and a specified number of categories randomly selected

from the ImageNet database31. The category with the highest correlation

coefficient was selected as the predicted category (marked by a star).
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during mental object imagery in a graded manner. Taken
together, these results reveal the nature of mental imagery as a
type of top–down perception.

We extended the modular decoding approach previously
proposed in our visual image reconstruction study16 to
high-level object vision using visual features with multiple levels
of complexity (Fig. 4a). Since images depicting the same kinds of
objects do not necessarily have pixel-wise similarity, complex and
invariant features would appear to be suitable for object
identification. However, a simulation study suggested that
intermediate level rather than highly complicated visual features
are more useful for object discrimination42. Our additional
analysis with true feature vectors calculated from stimulus
images (with no prediction errors; equivalent to generic object
recognition in machine vision) also showed a slightly poorer
identification with CNN8 than with CNN7 (Supplementary

Fig. 17). Consistent with these observations, our results from
decoded feature vectors showed the highest identification
accuracy with mid-level rather than top-level CNN features.
These results suggest the suitability of mid-level, or generic,
features for discriminative object representation, possibly
consistent with electrophysiological studies of monkey inferior
temporal cortex37,43.

Our approach is relevant to a previous study that focussed on
semantic feature representations to establish relations between
word meanings and brain activity44. The study demonstrated
decoding of arbitrary nouns thought by subjects using encoding
models and statistics of word co-occurrence. Our work differs
from that attempt in that we employed computational models
that produced visual feature representations from images to
establish the relations between brain activity in VC and object
categories, making it possible to address how hierarchical visual
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feature representations associated with visual objects are recruited
during mental imagery. Furthermore, in the experiment of the
previous study44, subjects were presented with both line drawings
and noun labels of concrete objects and were instructed to think
about the properties of the target object. In contrast, in our image
presentation experiment, visual images were presented alone with
no cognitive task other than the one-back repetition task to
maintain subjects’ attention, and in the imagery experiment,
subjects were only required to imagine visual images of the target
category without any additional tasks. Our results demonstrated
that imagining about object images is sufficient to achieve generic
decoding of imagined object categories utilizing the commonality
of feature-level representations between perception and imagery.

In the present study, we used decoding approach instead
of the representational similarity analysis27,45–48 or encoding
approaches14,15,17,25,26,28 to link brain activity and visual features
(see Supplementary Figs 18–20 for analyses of the encoding
approach). While the representational similarity analysis
and encoding approaches can evaluate mass characteristics of
each visual features (for example, a specific layer of the CNN)
associated with brain activity, our decoding approach
can characterize individual feature units in terms of
decodability from distributed brain activity patterns. As
previously demonstrated, computational models with a high

representational similarity to brain activity patterns in the inferior
temporal cortex showed better categorization accuracy27. Thus it
may be possible to use the prediction accuracy of individual units
as a guide to find effective units for better object recognition
performance in machine vision. Indeed, our analyses revealed
that the feature units better predicted from brain activity showed
higher category discriminability (Fig. 5). This finding is consistent
with the conclusions of previous studies25–27 and supports the
notion that feature decoding accuracy may be a suitable guide for
selecting more useful features for object recognition.

Our identification analyses revealed that highly ranked
candidate categories tended to be semantically similar to the
target categories for mid-to-high-level CNN layers and SIFTþ
BoF (Fig. 9b,c). Therefore, even when identification was incorrect,
we were able to predict semantically similar categories to the
target category. However, this tendency was not observed with
HMAX or GIST. Because GIST captures low-level image
properties24,29, it is not surprising that rank and the semantic
distance were not correlated. Conversely, HMAX was designed to
model the higher-level visual system, but did not show a positive
correlation between rank and semantic distance. This may suggest
that HMAX cannot capture the semantics of objects, which is
consistent with the indications of several previous studies27,45–48.

Our approach allows the decoding of arbitrary object categories
not limited to those used for decoder training. This new method
has a range of potential practical applications, particularly
in situations where what kind of objects should be decoded is
unknown. Because our approach can decode imagined categories,
it may also be possible to decode the contents of dreaming
or daydreaming13. Reading the contents of such spontaneously
generated thinking may be beneficial for understanding
the functions of such cognitive phenomena. Achieving this
requires distinguishing the conceivable differences in neural
representation between volitional and spontaneous mental
imagery. This formulates a challenging problem in future
research. In addition, our approach may provide a basis for a
brain-based information retrieval system by translating brain
activity into words or concepts. Using the outputs of decoders,
our approach may create a query for an information retrieval
system based on brain activity.

The framework of directly predicting visual features from brain
activity may be utilized for applications developed with
deep neural networks. Recent advances have enabled image
reconstruction49 and description generation50 from feature
patterns obtained by processing images through CNN.
Combining these technologies with brain decoding may extend
previous reconstruction study16 and the present work to produce
richer outputs. Our results demonstrating the predictability of
CNN features from the brain may then open the possibility
to develop new technology for brain machine interface by
combining brain decoding and deep neural networks.

Methods
Subjects. Five healthy subjects (one female and four males, aged between 23
and 38 years) with normal or corrected-to-normal vision participated in the
experiments. Rather than using statistical methods to determine the sample size,
the sample size was chosen to match previous fMRI studies with similar behavioral
protocols. All subjects had considerable experience participating in fMRI experi-
ments, and were highly trained. All subjects provided written informed consent for
participation in the experiments, and the study protocol was approved by the
Ethics Committee of ATR.

Visual images. Images were collected from an online image database ImageNet31

(2011, fall release), an image database where images are grouped according to the
hierarchy in WordNet38. We selected 200 representative object categories (synsets)
as stimuli in the visual image presentation experiment. After excluding images with
a width or height o100 pixels or aspect ratio 41.5 or o2/3, all remaining images
in ImageNet were cropped to the centre. For copyright reasons, the images in
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Figure 10 | Identification accuracy. Identification was performed for all

combinations of 1 of the 50 test object categories and 1 of the 15,322

candidate categories (identification from two categories; predicted from

VC: error bars, 95% CI across five subjects; dashed line, chance level,

50%). (a) Seen object identification accuracy. (b) Imagined object

identification accuracy. While the identification analyses here were

performed with the image feature decoders trained to predict image

features of presented images, it is also possible to use category-average

feature decoders trained with category-average features for training

stimulus images. See Supplementary Figs 12 and 13 for the results of the

category-average feature decoders.
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Figs 1, 2, 3, 8 and 9 are not the actual images from ImageNet used in our
experiments. The original images are replaced with images with similar contents
for display purposes.

Experimental design. We conducted two types of experiments: an image
presentation experiment, and an imagery experiment. All visual stimuli were
rear-projected onto a screen in an fMRI scanner bore using a luminance-calibrated
liquid crystal display projector. Data from each subject were collected over multiple
scanning sessions spanning approximately 2 months. On each experiment day, one
consecutive session was conducted for a maximum of 2 hours. Subjects were given
adequate time for rest between runs (every 3–10 min) and were allowed to take a
break or stop the experiment at any time.

The image presentation experiment consisted of two distinct types of sessions:
training image sessions and test image sessions, each of which consisted of 24 and
35 separate runs (9 min 54 s for each run), respectively. Each run contained 55
stimulus blocks consisting of 50 blocks with different images and five randomly
interspersed repetition blocks where the same image as in the previous block was
presented. In each stimulus block, an image (12� 12 degrees of visual angle) was
flashed at 2 Hz for 9 s. Images were presented at the centre of the display with a
central fixation spot. The colour of the fixation spot changed from white to red for
0.5 s before each stimulus block began to indicate the onset of the block. Extra 33-
and 6-s rest periods were added to the beginning and end of each run, respectively.
Subjects maintained steady fixation throughout each run and performed a one-
back repetition detection task on the images, responding with a button press for
each repetition to maintain their attention on the presented images (mean task
performance across five subjects; sensitivity¼ 0.930; specificity¼ 0.995). In the
training image session, a total of 1,200 images from 150 object categories (8 images
from each category) were each presented only once. In the test image session, a
total of 50 images from 50 object categories (1 image from each category) were
presented 35 times each. Importantly, the categories in the test image session were
not used in the training image session. The presentation order of the categories was
randomized across runs.

In the imagery experiment, subjects were required to visually imagine images
from 1 of the 50 categories that were presented in the test image session of the
image presentation experiment. Prior to the experiment, 50 image exemplars from
each category were exposed to train the correspondence between object names and
the visual images specified by the names. The imagery experiment consisted of 20
separate runs and each run contained 25 imagery blocks (10 min 39 s for each run).
Each imagery block consisted of a 3-s cue period, a 15-s imagery period, a 3-s
evaluation period and a 3-s rest period. Extra 33- and 6-s rest periods were added
to the beginning and end of each run, respectively. During the rest periods, a white
fixation spot was presented at the centre of the display. The colour of the fixation
spot changed from white to red for 0.5 s to indicate the onset of the blocks from
0.8 s before each cue period began. During the cue period, words describing the
names of the 50 categories presented in the test image session were visually
presented around the centre of the display (1 target and 49 distractors). The
position of each word was randomly changed across blocks to avoid contamination
of cue-specific effects on the fMRI response during imagery periods. The word
corresponding to the category to be imagined was presented in red (target) and the
other words were presented in black (distractors). The onset and end of the
imagery periods were signaled by beep sounds. Subjects were required to start
imagining as many object images pertaining to the category described by the red
word as possible, and were instructed to keep their eyes closed from the first beep
until the second beep. After the second beep, the word corresponding to the target
category was presented to allow the subjects evaluate the vividness of their mental
imagery on a five-point scale (very vivid, fairly vivid, rather vivid, not vivid, cannot
recognize the target) by a button press. The 25 categories in each run were pseudo-
randomly selected from 50 categories such that the two consecutive runs contained
all 50 categories.

Retinotopy experiment. The retinotopy experiment followed the conventional
protocol51,52 using a rotating wedge and an expanding ring of a flickering
checkerboard. The data were used to delineate the borders between each visual
cortical area and to identify the retinotopic map (V1–V4) on the flattened cortical
surfaces of individual subjects.

Localizer experiment. We performed functional localizer experiments to identify
the LOC, FFA and PPA for each individual subject53–55. The localizer experiment
consisted of 4–8 runs and each run contained 16 stimulus blocks. In this
experiment, intact or scrambled images (12� 12 degrees of visual angle) from face,
object, house and scene categories were presented at the centre of the screen. Each
of the eight stimulus types (four categories� two conditions) was presented twice
per run. Each stimulus block consisted of a 15-s intact or scrambled stimulus
presentation. The intact and scrambled stimulus blocks were presented successively
(the order of the intact and scrambled stimulus blocks was random), followed by a
15-s rest period consisting of a uniform grey background. Extra 33- and 6-s rest
periods were added to the beginning and end of each run, respectively. In each
stimulus block, 20 different images of the same type were presented for 0.3 s,
followed by an intervening blank screen of 0.4 s.

MRI acquisition. fMRI data were collected using 3.0-Tesla Siemens MAGNETOM
Trio A Tim scanner located at the ATR Brain Activity Imaging Center. An
interleaved T2*-weighted gradient-EPI (echo-planar imaging) scan was performed
to acquire functional images covering the entire brain (image presentation, imagery
and localizer experiments: repetition time (TR), 3,000 ms; echo time (TE), 30 ms;
flip angle, 80 deg; field of view (FOV), 192� 192 mm2; voxel size, 3� 3� 3 mm3;
slice gap, 0 mm; number of slices, 50) or the entire occipital lobe (retinotopy
experiment: TR, 2,000 ms; TE, 30 ms; flip angle, 80 deg; FOV, 192� 192 mm2;
voxel size, 3� 3� 3 mm3; slice gap, 0 mm; number of slices, 30). T2-weighted
turbo spin echo images were scanned to acquire high-resolution anatomical images
of the same slices used for the EPI (image presentation, imagery and localizer
experiments: TR, 7,020 ms; TE, 69 ms; flip angle, 160 deg; FOV, 192� 192 mm2;
voxel size, 0.75� 0.75� 3.0 mm3; retinotopy experiment: TR, 6,000 ms; TE, 57 ms;
flip angle, 160 deg; FOV, 192� 192 mm2; voxel size, 0.75� 0.75� 3.0 mm3).
T1-weighted magnetization-prepared rapid acquisition gradient-echo
fine-structural images of the entire head were also acquired (TR, 2,250 ms;
TE, 3.06 ms; TI, 900 ms; flip angle, 9 deg, FOV, 256� 256 mm2; voxel size,
1.0� 1.0� 1.0 mm3).

MRI data preprocessing. The first 9-s scans for experiments with TR¼ 3 s (image
presentation, imagery and localizer experiments) and 8-s scans for experiments
with TR¼ 2 s (retinotopy experiment) of each run were discarded to avoid MRI
scanner instability. The acquired fMRI data underwent three-dimensional motion
correction using SPM5 (http://www.fil.ion.ucl.ac.uk/spm). The data were then
coregistered to the within-session high-resolution anatomical image of the
same slices used for EPI and subsequently to the whole-head high-resolution
anatomical image. The coregistered data were then reinterpolated by
3� 3� 3 mm3 voxels.

For the data from the image presentation experiment and imagery experiment,
after within-run linear trend removal, voxel amplitudes were normalized relative to
the mean amplitude of the entire time course within each run. The normalized
voxel amplitudes from each experiment were then averaged within each 9-s
stimulus block (three volumes; image presentation experiment) or within each 15-s
imagery period (five volumes; imagery experiment), respectively (unless otherwise
stated) after shifting the data by 3 s (one volume) to compensate for haemodynamic
delays.

ROI selection. V1–V4 were delineated by the standard retinotopy experiment51,52.
The retinotopy experiment data were transformed to Talairach coordinates
and the visual cortical borders were delineated on the flattened cortical surfaces
using BrainVoyager QX (http://www.brainvoyager.com). The voxel coordinates
around the grey–white matter boundary in V1–V4 were identified and
transformed back into the original coordinates of the EPI images. The voxels
from V1 to V3 were combined, and defined as the ‘LVC’. The LOC, FFA and
PPA were identified using conventional functional localizers53–55. The localizer
experiment data were analysed using SPM5. The voxels showing significantly
higher responses to objects, faces or scenes than for scrambled images (two-sided
t-test, uncorrected Po0.05 or 0.01) were identified and defined as LOC, FFA and
PPA, respectively. A contiguous region covering LOC, FFA and PPA was manually
delineated on the flattened cortical surfaces, and the region was defined as the
‘HVC’. Voxels overlapping with LVC were excluded from the HVC. Voxels from
V1 to V4 and the HVC were combined to define the ‘VC’. In the regression
analysis, voxels showing the highest correlation coefficient with the target variable
in the training image session were selected to predict each feature (with a
maximum of 500 voxels for V1–V4, LOC, FFA and PPA; 1,000 voxels for LVC,
HVC and VC).

Visual features. We used four types of computational models: a CNN20,
HMAX21–23, GIST24 and SIFT18 combined with the ‘BoF’16 to construct visual
features from images. The features with a model-training phase (HMAX and
SIFTþBoF) used 1,000 images belonging to the categories used in the training
image session (150 categories) for training. Each model is further described in the
following subsections.

Convolutional neural network. We used the MatConvNet implementation
(http://www.vlfeat.org/matconvnet/) of the CNN model20, which was trained with
images in ImageNet31 to classify 1,000 object categories. The CNN consisted of five
convolutional layers and three fully connected layers. We randomly selected 1,000
units in each of the first to seventh layers and used all 1,000 units in the eighth
layer. We represented each image by a vector of those units’ outputs and named
them CNN1–CNN8, respectively.

HMAX. HMAX21–23 is a hierarchical model that extends the simple and complex
cells described by Hubel and Wiesel56,57 and computed features through
hierarchical layers. These layers consist of an image layer and six subsequent
layers (S1, C1, S2, C2, S3 and C3), which are built from the previous layers by
alternating template matching and max operations. In the calculations at each
layer, we employed the same parameters as in a previous study22, except that the
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number of features in layers C2 and C3 was set to 1,000. We represented each
image by a vector of the three types of HMAX features, which consisted of
1,000 randomly selected outputs of units in layers S1, S2 and C2, and all 1,000
outputs in layer C3. We defined these outputs as HMAX1, HMAX2 and HMAX3,
respectively.

GIST. GIST is a model developed for the computer-aided scene categorization
task24. To compute GIST, an image was first converted to grey–scale and
resized to have a maximum width of 256 pixels. Next, the image was filtered
using a set of Gabor filters (16 orientations, 4 scales). After that, the filtered
images were segmented by a 4� 4 grid (16 blocks), and then the filtered
outputs within each block were averaged to extract 16 responses for each filter.
The responses from multiple filters were concatenated to create a
1,024-dimensional feature vector for each image (16 (orientations)� 4
(scales)� 16 (blocks)¼ 1,024).

SIFT with BoF (SIFTþBoF). The visual features using the SIFT with the BoF
approach were calculated from SIFT descriptors. We computed SIFT descriptors
from the images using the VLFeat58 implementation of dense SIFT. In the BoF
approach, each component of the feature vector (visualwords) is created by
vector-quantizing extracted descriptors. Using B1,000,000 SIFT descriptors
calculated from an independent training image set, we performed k-means
clustering to create a set of 1,000 visualwords. The SIFT descriptors extracted from
each image were quantized into visualwords using the nearest cluster centre, and
the frequency of each visualword was calculated to create a BoF histogram for each
image. Finally, all of the histograms obtained through the above processing
underwent L-1 normalization to become unit norm vectors. Consequently, features
from SIFT with the BoF approach are invariant to image scaling, translation
and rotation and are partially invariant to illumination changes and affine or
three-dimensional projection.

Visual feature decoding. We constructed decoding models to predict the visual
feature vectors of seen objects from fMRI activity using a linear regression function.
Here we used SLR (http://www.cns.atr.jp/cbi/sparse_estimation/index.html)32 that
can automatically select the important features for prediction. Sparse estimation is
known to perform well when the dimensionality of the explanatory variable is high,
as is the case with fMRI data59.

Given an fMRI sample x ¼ fx1; . . . ; xdgT consisting of the activity of d voxels
as input, the regression function can be expressed by

y xð Þ ¼
Xd

i¼1

wixi þw0;

where xi is a scalar value specifying the fMRI amplitude of the voxel i, wi is the
weight of voxel i and w0 is the bias. For simplicity, the bias w0 is absorbed into the
weight vector such that w ¼ fw0; . . . ;wdgT. The dummy variable x0¼ 1 is
introduced into the data such that x ¼ fx0; . . . ; xdgT. Using this function, we
modeled the lth component of each visual feature vector as a target variable tl

(lA{1,y, L}) that is explained by the regression function y(x) with additive
Gaussian noise as described by

tl ¼ y xð Þþ E

where E is a zero mean Gaussian random variable with noise precision b.
Given a training data set, SLR computes the weights for the regression function

such that the regression function optimizes an objective function. To construct the
objective function, we first express the likelihood function by

P tl jX; w; bð Þ ¼
YN
n¼1

1

ð2pÞ1=2 b
1=2exp � 1

2
bðtln �wTxnÞ2

� �
;

where N is the number of samples and X is an N� (dþ 1) fMRI data matrix whose
nth row is the dþ one-dimensional vector xn, and tl ¼ ftl1; . . . ; tlngT are the
samples of a component of the visual feature vector.

We performed Bayesian parameter estimation and adopted the automatic
relevance determination prior32 to introduce sparsity into the weight estimation.
We considered the estimation of the weight parameter w given the training data
sets {X, tl}. We assumed a Gaussian distribution prior for the weights w and
non-informative priors for the weight precision parameters a ¼ fa0; . . . adgT and
the noise precision parameter b, which are described as

P0 w jað Þ ¼
Yd

i¼0

1

ð2pÞ1=2 a
1=2
i exp � 1

2
aiw

2
i

� �
;

P0ðaÞ ¼
Yd

i¼0

1
ai
;

P0 bð Þ ¼ 1
b
:

In the Bayesian framework, we considered the joint probability distribution of
all the estimated parameters, and the weights can be estimated by evaluating the
following joint posterior probability of w:

P w; a; b jX; tlð Þ ¼ P tl ; w; a; b jXð ÞR
dwdadb P tl; w; a; b jXð Þ

¼ P tl jX; w; bð ÞP0 w jað ÞP0ðaÞP0ðbÞR
dwdadb P tl ; w; a; b jXð Þ :

Given that the evaluation of the joint posterior probability P w; a; b jX; tlð Þ is
analytically intractable, we approximated it using the variational Bayesian
method32,60,61. While the results shown in the main figures are based on this
automatic relevance determination model, we obtained qualitatively similar results
using other regression models (Supplementary Figs 21 and 22).

We trained linear regression models that predict feature vectors of individual
feature types/layers for seen object categories given fMRI samples in the training
image session. For test data sets, fMRI samples corresponding to the same
categories (35 samples in the test image session, 10 samples in the imagery
experiment) were averaged across trials to increase the signal-to-noise ratio of the
fMRI signals. Using the learned models, we predicted feature vectors of seen/
imagined objects from averaged fMRI samples to construct one predicted feature
vector for each of the 50 test categories.

Synthesizing preferred images using activation maximization. We used the
activation maximization method to generate preferred images for individual units
in each CNN layer33–36. Synthesizing preferred images starts from a random image
and optimizes the image to maximally activate a target CNN unit by iteratively
calculating how the image should be changed via backpropagation. This analysis
was implemented using custom software written in MATLAB based on Python
codes provided in a series of blog posts (Mordvintsev, A., Olah, C., Tyka, M.,
DeepDream—a code example for visualizing Neural Networks, https://github.com/
google/deepdream, 2015; Øygard, A. M.,Visualizing GoogLeNet Classes, https://
github.com/auduno/deepdraw, 2015).

Identification analysis. In the identification analyses, seen/imagined object
categories were identified using the visual feature vectors decoded from fMRI
signals. Prior to the identification analysis, visual feature vectors were computed for
all of the preprocessed images in all of the categories (15,372 categories in Ima-
geNet31) except for those used in the fMRI experiments and their hypernym/
hyponym categories and those used for visual feature model training (HMAX and
SIFTþBoF). The visual feature vectors of individual images were averaged within
each category to create category-average feature vectors for all of the categories to
form the candidate set. We computed Pearson’s correlation coefficients between
the decoded and the category-average feature vectors in the candidate sets. To
quantify accuracy, we created candidate sets consisting of the seen/imagined
categories and the specified number of randomly selected categories. None of the
categories in the candidate set were used for decoder training. Given a decoded
feature vector, category identification was conducted by selecting the category with
the highest correlation coefficient among the candidate sets.

Statistics. In the main analysis, we used t-tests to examine whether the mean of
the correlation coefficients and the mean of the identification accuracies across
subjects significantly exceeded the chance level (0 for correlation coefficient, and
50% for identification accuracy). For correlation coefficients, Fisher’s z-transform
was applied before the statistical tests. Before every t-test, we performed the
Shapiro–Wilk test to check normality, and we confirmed that the null hypothesis
that the data that came from a normal distribution was not rejected for all cases
(P40.01).

Data and code availability. The experimental data and codes that support the
findings of this study are available from our repository: https://github.com/
KamitaniLab/GenericObjectDecoding.
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