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Second-order topological insulators 
and loop-nodal semimetals in 
Transition Metal Dichalcogenides 
XTe2 (X = Mo, W)
Motohiko Ezawa   

Transition metal dichalcogenides XTe2 (X = Mo, W) have been shown to be second-order topological 
insulators based on first-principles calculations, while topological hinge states have been shown to 
emerge based on the associated tight-binding model. The model is equivalent to the one constructed 
from a loop-nodal semimetal by adding mass terms and spin-orbit interactions. We propose to study 
a chiral-symmetric model obtained from the original Hamiltonian by simplifying it but keeping almost 
identical band structures and topological hinge states. A merit is that we are able to derive various 
analytic formulas because of chiral symmetry, which enables us to reveal basic topological properties of 
transition metal dichalcogenides. We find a linked loop structure where a higher linking number (even 
8) is realized. We construct second-order topological semimetals and two-dimensional second-order 
topological insulators based on this model. It is interesting that topological phase transitions occur 
without gap closing between a topological insulator, a topological crystalline insulator and a second-
order topological insulator. We propose to characterize them by symmetry detectors discriminating 
whether the symmetry is preserved or not. They differentiate topological phases although the 
symmetry indicators yield identical values to them. We also show that topological hinge states are 
controllable by the direction of magnetization. When the magnetization points the z direction, the 
hinges states shift, while they are gapped when it points the in-plane direction. Accordingly, the 
quantized conductance is switched by controlling the magnetization direction. Our results will be a 
basis of future topological devices based on transition metal dichalcogenides.

Higher-order topological insulators (HOTIs) are generalization of topological insulators (TIs). In the 
second-order topological insulators (SOTIs), for instance, topological corner states emerge though edge states do 
not in two dimensions, while topological hinge states emerge though surface states do not in three dimensions1–15. 
The emergence of these modes is protected by symmetries and topological invariants of the bulk. Hence, an 
insulator so far considered to be trivial due to the lack of the topological boundary states can actually be a HOTI. 
Indeed, phosphorene is theoretically shown to be a two-dimensional (2D) SOTI16. A three-dimensional (3D) 
SOTI is experimentally realized in rhombohedral bismuth17, where topological quantum chemistry is used for 
the material prediction18. Transition metal dichalcogenides XTe2 (X = Mo, W) are also theoretically shown to be 
3D SOTIs19,20.

The tight-binding model for transition metal dichalcogenides has already been proposed, which is closely 
related to a type of loop-nodal semimetals20. A loop-nodal semimetal is a semimetal whose Fermi surfaces form 
loop nodes21–25. Especially, the Hopf semimetal is a kind of loop-nodal semimetal whose Fermi surfaces are linked 
and characterized by a nontrivial Hopf number26–30. There is another type of loop nodal-semimetals characterized 
by the monopole charge21. An intriguing feature is that loop nodes at the zero-energy and another energy form 
a linked-loop structure. The proposed model20 may be obtained by adding certain mass terms to this type of 
loop-nodal semimetals.

It is intriguing that topological boundary states can be controllable externally. Magnetization is an efficient 
way to do so. Famous examples are surface states of 3D magnetic TIs31–34, where the gap opens for out-of-plane 
magnetization, while the Dirac cone shifts for in-plane magnetization. Similar phenomena also occur in 2D TIs, 
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which can be used as a giant magnetic resistor35. Recently, a topological switch between a SOTI and a topological 
crystalline insulator (TCI) was proposed36, where the emergence of topological corner states is controlled by mag-
netization direction. We ask if a similar magnetic control works in transition metal dichalcogenides.

In this paper, we investigate a chiral-symmetric limit of the original model20 constructed in such a way 
that the simplified model has almost identical band structures and topological hinge states as the original one. 
Alternatively, we may consider that the original model is a small perturbation of the chiral symmetric model. A 
great merit is that we are able to derive various analytic formulas because of chiral symmetry, which enable us 
to reveal basic topological properties of transition metal dichalcogenides. We find that a linking structure with 
a higher linking number is realized in the 3D model. We also study 2D SOTIs and 3D second-order topological 
semimetals (SOTSMs) based on this model. Depending on the way to introduce mass parameters there are three 
phases, i.e., TIs, TCIs and SOTIs in the 2D model. We find that topological phase transitions occur between 
these phases without band gap closing. Hence, the transition cannot be described by the change of the symmetry 
indicators. We propose symmetry detectors discriminating whether the symmetry is preserved or not. They can 
differentiate these three topological phases. Furthermore, we show that the topological hinge states in the SOTIs 
are controlled by magnetization. When the magnetization direction is out of plane, the topological hinge states 
only shift. On the other hand, when the magnetization direction is in plane, the gap opens in the topological hinge 
states.

Result
Hamiltonians.  Motivated by the model Hamiltonian20 which describes the topological properties of transi-
tion metal dichalcogenides β-(1T′-)MoTe2 and γ-(Td-)XTe2 (X = Mo, W), we propose to study a simplified model 
Hamiltonian,

= + + +H H H V V , (1)SOTI 0 SO Loop SOTSM

with

∑ τ

λ τ λ τ μ

= 


+ 


+ +
=H m t k

k k

cos

sin sin , (2)

i x y z i i z

x x x y y y y

0 , ,

λ τ μ σ=H ksin , (3)z z y z zSO

τ μ μ= =V m V m, , (4)z z xLoop Loop SOTSM SOTSM

where σ, τ and μ are Pauli matrices representing spin and two orbital degrees of freedom. It contains three mass 
parameters, m, mLoop and mSOTSM. The role of the term mLoop is to make the system a loop-nodal semimetal, and 
that of the term mSOTSM is to make the system a SOTSM. The Brillouin zone and high symmetry points are shown 
in Fig. 1(a). Although the band structure of the transition metal dichalcogenides is chiral nonsymmetric, the 
topological nature is well described by the above simple tight-binding model.

The original Hamiltonian contains two extra mass parameters and given by

= + + +′ ′ ′H H H V V (5)SOTI 0 SO Loop SOTSM

with

τ μ τ μ= +′V m m , (6)z x z zLoop 2 3

μ μ= + .′V m m (7)mv z mv xSOTSM 1 2

The simplified model HSOTI captures essential band structures of the original model ′HSOTI. Indeed, the bulk 
band structures are almost identical, as seen in Fig. 1(b–d). The rod band structures are also very similar, as seen 
in Fig. 2(a4–d4,a5–d5), where the bulk band parts are found almost identical while the boundary states (depicted 
in red) are slightly different. Moreover, the both models have almost identical hinge states, demonstrating that 
they describe SOTIs inherent to transition metal dichalcogenides XTe2.

A merit of the simplified model is the chiral symmetry, {HSOTI(kx, ky, kz), C} = 0, which is absent in the original 
model, ≠′H k k k C{ ( , , ), } 0x y zSOTI . Accordingly, the band structure of H is symmetric with respect to the Fermi 
level. Moreover, the bulk band structure is analytically solved. Here, the chiral symmetry operator is C = τyμzσx or 
C = τyμzσy. Let us call the original model a chiral-nonsymmetric model and the simplified model a 
chiral-symmetric model.

The common properties of the two Hamiltonians HSOTI and ′HSOTI read as follows. First, they have inversion 
symmetry P = τz and time-reversal symmetry T = iτzσyK with K the complex conjugation operator. Inversion 
symmetry P acts on HSOTI as P−1HSOTI(k)P = HSOTI(−k), while time-reversal symmetry T acts as 
T−1HSOTI(k)T = HSOTI(−k). Accordingly, the Hamiltonian has the PT symmetry (PT)−1HSOTI(k)PT = HSOTI(k), 
which implies that H* = H. Second, the z-component of the spin is a good quantum number σz = sz. Since we may 
decompose the Hamiltonian into two sectors,
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= ⊕↑ ↓H H H , (8)SOTI SOTI SOTI

it is enough to diagonalize the 4 × 4 Hamiltonians. All these relations hold also for ′HSOTI. The relation (8) resem-
bles the one that the Kane-Mele model is decomposed into the up-spin and down-spin Haldane models on the 
honeycomb lattice37–39.

A convenient way to reveal topological boundary states is to plot the local density of states (LDOS) at zero 
energy. First, we show the LDOS for the Hamiltonian H0 in Fig. 2(a1). It describes a Dirac semimetal, whose top-
ological surfaces appear on the four side surfaces. Then, we show the LDOS for the Hamiltonian

= +H H V (9)Loop 0 Loop

in Fig. 2(b1), where the topological surface states appear only on the two side surfaces parallel to the y-z plane. 
We will soon see that a loop-nodal semimetal is realized in HLoop. Next, we show the LDOS for the Hamiltonian

= + +H H V V (10)SOTSM 0 Loop SOTSM

in Fig. 2(c1), where a SOTSM is realized with two topological hinge-arcs. Finally, by including HSO, we show the 
LDOS for the Hamiltonian HSOTI in Fig. 2(d1), where a SOTI is realized with topological two-hinge state.

Figure 1.  (a) Brillouin zone and high symmetry points. (b–d) Bulk band structures along the Γ-X-S-Y-Γ-Z-
U-R-T-Z-Y-T-U-X-S-R-Γ line (b) for loop-nodal semimetal, (c) for SOTSM and (d) for SOTI. There are four 
bands in each phase. The dashed magenta curves represent the band structure of the chiral-symmetric model, 
while the dashed cyan curves represent that of the chiral-nonsymmetric model. They are indistinguishable in 
these figures. We have chosen tx = ty = 1, tz = 2, λx = λy = 1, λz = 1.2, m = −3, m2 = 0.3, m3 = 0.2, mmv1 = −0.4, 
mmv2 = 0.2, mLoop = 0.3 and mSOTSM = 0.3.
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Topological phase diagram.  The chiral-symmetric Hamiltonian HSOTI is analytically diagonalizable. The 
energy dispersion is given by

= ± ±E F G (11)

with

λ λ λ

= + +

+ + +

F M m m

k k ksin sin sin , (12)x x y y z z

2
Loop
2

SOTSM
2

2 2 2 2 2 2

λ λ= −G m k m k( sin sin ) (13)x x y ySOTSM Loop
2

+ +M m m2 ( ), (14)
2

Loop
2

SOTSM
2

and

Figure 2.  (a1–d1) Bird’s eye’s views of the LDOS of the zero-energy states: (a1) for H0 with surface zero-energy 
states on the four side surfaces; (b1) for HLoop with surface zero-energy states on the two side surfaces; (c1) 
HSOTSM with hinge-arc states at two pillars; (d1) HSOTI with hinge states at two pillars. (a2–d2) Top view of the 
LDOS corresponding to (a1–d1). (a3–d3) Bulk band structures of valence bands along kx = 0 plane for these 
Hamiltonians. (a4–d4) Band structures of the square rod along z direction for these Hamiltonians. (a5–d5) 
Corresponding rod band structures for the chiral-nonsymmetric Hamiltonian H′. In these two sets of figures 
red curves represent topological boundary states. The Parameters are the same as in Fig. 1.
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∑= + .=M m t kcos (15)i x y z i i, ,

The topological phase diagram is determined by the energy spectra at the eight high-symmetry points Γ = (0, 
0, 0), S = (π, π, 0), X = (π, 0, 0), Y = (0, π, 0), Z = (0, 0, π), R = (π, π, π), U = (π, 0, π) and T = (0, π, π) with respect 
to time-reversal inversion symmetry. The energies at these high-symmetry points (kx, ky, kz) are analytically given 
by

η η= + +E k M k m m( ) ( ) , (16)i a i b Loop
2

SOTSM
2

where ηa = ±1 and ηb = ±1. The phase boundaries are given by solving the zero-energy condition (E = 0),

η η η+ + + = +m t t t m m( ) , (17)x x y y z z
2

Loop
2

SOTSM
2

where ηx = ±1, ηy = ±1 and ηz = ±1. There are 16 critical points apart from degeneracy. When tx = ty, the critical 
points are reduced to be 12 since E(X) = E(Y) and E(U) = E(T). Hence, solving E = 0 for tz, there are 6 solutions 
for tz > 0, which we set as tn, n = 1, 2, 3, …, 6 with ti < ti+1.

Loop-nodal semimetals.  We first study the loop nodal phase described by the Hamiltonian HLoop. The 
energy spectrum is simply given by

λ λ= ± + + ± .( )E k k M msin sin
(18)x x y y

2 2 2 2 2
Loop

2

The loop-nodal Fermi surface is obtained by solving E(k) = 0. It follows that kx = 0 and

λ + = .k M k k msin (0, , ) (19)y y y z
2 2 2

Loop
2

Loop nodes at zero energy exist in the kx = 0 plane. They are protected by the mirror symmetry Mx = τzμzσx 
with respect to the kx = 0 plane and the PT symmetry21,40. We show the band structure along the kx = 0 plane in 
Fig. 3(a2–d2). We see clearly that the loop node structures are formed at the Fermi energy in Fig. 3(b2–d2). These 
loop nodes are also observed as the drum-head surface states, which are partial flat bands surrounded by the loop 
nodes as shown in Fig. 3(b3–d3). The low energy 2 × 2 Hamiltonian is given by

λ σ λ σ= + ± +( )H k M m ksin sin , (20)y y z x x x
2 2 2

Loop

Figure 3.  (a1–d1) Loop-nodal zero-energy Fermi surfaces for (a1) tz = t1, (b1) t1 < tz < t2, (c1) tz = t2 and (d1) 
t1 < tz < t2. (a2–d2) Band structures along kx = 0 plane. (a3–d3) Drum-head surface states of the valence band 
along the y-z plane. tx = ty = 1, λx = λy = 1; m = −3, mLoop = 0.75. In (a2–d3), only the valence bands are shown 
for clarity.
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where σ is the Pauli matrix for the reduced two bands.
In addition, there are loop nodes on the ky = 0 plane at E = −mLoop, which are determined by

λ + − = .k M k k m msin ( ( , 0, ) ) (21)x x x z
2 2

Loop
2

Loop
2

We find the two loops determined by Eqs (19) and (21) are linked, as shown in Fig. 4.
The system is a trivial insulator for 0 ≤ tz < t1. One loop emerges for t1 < tz < t2 [Fig. 3(b1)], which splits into 

two loops for t2 < tz < t3, as shown in Fig. 3(d1). Correspondingly, drum-head surface states, which are partial flat 
band within the loop nodes, appear along the [100] surface [see Fig. 3(b3,c3 and d3)].

The emergence of the loop-nodal Fermi surface is understood in terms of the band inversion20,40, as shown 
in Fig. 4. The number of the loops are identical to the number of circles at the Fermi energy as in Fig. 4(a2–l2). 
When only one band is inverted along the Γ-Z line, a single loop node appears [Fig. 4(b1)]. When two bands are 
inverted along the Γ-Z line, two loop nodes appear [Fig. 4(d1)]. In the similar way, additional loops appear when 
additional bands are inverted along the X-U and Y-T lines [Fig. 4(f1)], and it is split into two loops [Fig. 4(h1)] 
as tz increases. In the final process, a loop appears along the S-R line [Fig. 4(j1)], which splits into two loops 
[Fig. 4(l1)].

It has been argued20,40 that a new topological nature of loop-nodal semimetals becomes manifest when we plot 
the loop-nodal Fermi surfaces at the band crossing energies, where one is at the Fermi energy and the other is at 
E = −mLoop in the occupied band. We show them in Fig. 4. Along the Γ−Z line, the other band crossing occurs 
at ±mLoop with

= − − .k m m t tarccos[( 2 )/ ] (22)z zLoop

Along the X-U and Y-T lines, the band crossing occurs also at ±mLoop with

| | = − .k m tarccos [ / ] (23)z z

Along the S-R line, the band crossing occurs also at ±mLoop with

= − + .k m t tarccos[( 2 )/ ] (24)z z

As a result, it is enough to plot the Fermi surfaces at E = 0 and E = −mLoop. The linking number N increases as 
tz increases, where even the linking number N = 8 is realized as in Fig. 4(l1).

2D TI, TCI and SOTI.  At this stage it is convenient to study the 2D models by setting tz = λz = 0. It follows 
from (17) that the 2D topological phase boundaries are given by

η η+ + = +m t t m m( ) , (25)x x y y
2

Loop
2

SOTSM
2

Figure 4.  Evolution of linking structures for various tz. (a) tz = t1, (b) t1 < tz < t2, (c) tz = t2, (d) t2 < tz < t3, (e) 
tz = t3, (f) t3 < tz < t4, (g) tz = t4, (h) t4 < tz < t5, (i) tz = t5, (j) t5 < tz < t6, (k) tz = t6 and (l) tz > t6. (a1–l1) Loop-
nodal Fermi surfaces at the zero-energy (magenta) and at E = −mLoop (cyan). They are linked, whose linking 
number N is shown in figures. (a2–l2) Band structure along the Γ-Z line (red), the X-U and Y-T lines (thick 
blue curves representing double degeneracy) and the S-R line (green). Only the valence bands are shown for 
0 ≤ kz ≤ π. Cross section of the loop nodes are marked in circles. The Parameters are the same as in Fig. 3.
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where ηx = ±1 and ηy = ±1. Depending on the way to introduce the mass parameters there are three phases, i.e., 
TIs, TCIs and SOTIs.

The topological number is known to be the 4 index protected by the inversion symmetry in three dimen-
sions20,41–43. This is also the case in two dimensions. It is defined by

∑κ ≡ −∈
+ −n n1

4
( ), (26)K K K1 TRIMs

where ±nK  is the number of occupied band with the parity ±. There is a relation41–43

κ ν=mod , (27)2 1

where ν is the 2 index characterizing the time-reversal invariant TIs. We find from Fig. 5(c1) that κ1 = 0, 2 in the 
TI phase, which implies that it is trivial in the viewpoint of the time-reversal invariant topological insulators.

We show the LDOS for TI, TCI and SOTI in Fig. 6. (i) When mLoop = mSOTSM = 0 and |m| < 2t, the system is a 
TI with κ1 = 2, where topological edge states appear for all edges [See Fig. 6(a)]. We show the energy spectrum 
and the Z4 index in Fig. 5(a1,a2), respectively. The energy spectrum is two-fold degenerate since there is the sym-
metry μ=PT y such that =−PT H k PT H k( ) ( ) ( )1

0 0 . Furthermore, there is the mirror symmetry Mx = iτzμz such 
that = −−M H k k M H k k( , ) ( , )x x y x x y

1
Loop Loop . (ii) When mLoop ≠ 0 and mSOTSM = 0, the system is a TCI, where top-

ological edge states appear only for two edges [See Fig. 6(b)]. The energy spectrum and the Z4 index are shown in 
Fig. 5(b1,b2). The symmetry PT  is broken for mLoop ≠ 0 and the two-fold degeneracy is resolved. On the other 
hand, the mirror symmetry Mx remains preserved. (iii) Finally, when mLoop ≠ 0 and mSOTSM ≠ 0, the system is a 
SOTI, where two corner states emerge [See Fig. 6(c)]. The energy spectrum and the Z4 index are shown in 
Fig. 5(c1,c2). The mirror symmetry is broken in the SOTI phase. In TCI and SOTI phases, there are regions where 
κ1 = 1, 3. However, in this region, the system is semimetallic and the κ1 index has no meaning.

The Z4 index takes the same value for the TI, TCI and SOTI phases, and hence it cannot differentiate them. 
Indeed, because there is no band gap closing between them44, the symmetry indicator cannot change its value43. 
A natural question is whether there is another topological index to differentiate them. We propose the symmetry 
detector discriminating whether the symmetry is present or not.

Figure 5.  (a1–c1) Energy spectrum as a function of m/t for TI, TCI and SOTI phases. (a2–c2) Corresponding 
4 index. (a3–c3) Corresponding mirror-symmetry detector χ. It follows that χ = 1 for the TI and the insulating 
phase of the TCI, and that χ ≠ 1 for the SOTI since the mirror symmetry is broken.
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The TI and TCI are differentiated whether the symmetry PT  is present or not. The band is two-fold degenerate 
due to the symmetry PT  in the TI phase, where we can define a topological index by

∑ζ =
∈

w
w

Mod Pf[ ]
det[ ] (28)K

4
TRIMs

with

⟨ ¯ ⟩w K PT K( ) ( ) , (29)ij i jψ ψ= − | |

where i and j are the two-fold degenerated band index. It is only defined for the TI phase, where it gives the same 
result as κ1. On the other hand, it is ill-defined for the TCI and SOTI phases since there is no band degeneracy.

The TCI and SOTI are differentiated by the mirror-symmetry detector defined by

χ χ χ χ χ≡ π π
+ + − −, (30)0 0

where

∫χ
π

ψ ψ≡
−

α

π

α

±

=

i M dk
2 (31)

x y
k0

2

x

is the mirror symmetry indicator36 along the axis kx = α with α = 0,π, and ± indicates the band index under the 
Fermi energy. It is χ = 1 when there is the mirror symmetry. On the other hand, it is χ ≠ 1 when there is no mirror 
symmetry since ψ  is not the eigenstate of the mirror operator. In addition, it is χ ≠ 1 when the system is metallic 
since ψ ψMx  changes its value at band gap closing points. See Fig. 5(a3–c3). In Fig. 5(a3), we find always χ = 1 
since the mirror symmetry is preserved, where we cannot differentiate the topological and trivial phases. On the 
other hand, in Fig. 5(b3), there are regions with χ ≠ 1 where the system is metallic. Finally, we find χ ≠ 1 in 
Fig. 5(c3) since the mirror symmetry is broken.

SOTSM.  A 3D SOTSM is constructed by considering kz dependent mass term in the 2D SOTI model10,12,13. 
We set tz ≠ 0, while keeping λz = 0 in the 2D SOTI model. The properties of the SOTSM are derived by the sliced 
Hamiltonian H(kz) along the kz axis, which gives a 2D SOTI model with kz dependent mass term M(kz). The bulk 
band gap closes at

= + .M k m m( ) (32)z
2

Loop
2

SOTSM
2

On the other hand, there emerge hinge-arc states connecting the two gap closing points. Accordingly, the 
topological corner states in the 2D SOTI model evolves into hinge-states, whose dispersion forms flat bands as 
shown in Fig. 2(c4).

Figure 6.  (a1–c1) Eigenvalues of the sample in a square geometry, where the insets show the zero-energy states 
in red. The vertical axis is the energy. (a2–c2) corresponding LDOS of the zero-energy states. The amplitude is 
represented by the radius of the circles. We have set tx = ty = m = λ = 1 and mLoop = mSOTSM = 0.3.

https://doi.org/10.1038/s41598-019-41746-5


9Scientific Reports |          (2019) 9:5286  | https://doi.org/10.1038/s41598-019-41746-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

Magnetic control of hinges in SOTI.  Hinge states are analogous to edge states in two-dimensional top-
ological insulators. Without applying external field, spin currents flow. On the other hand, once electric field is 
applied, charge current carrying a quantized conductance flows. We show that the current is controlled by the 
direction of magnetization as in the case of topological edge states.

With the inclusion of the HSO, the system turns into a SOTI, which has topological hinge states. We study the 
effects of the Zeeman term, where the Hamiltonian is described by HSOTI together with the Zeeman term

σ σ σ= + +H B B B , (33)x x y y z zZ

which will be introduced by magnetic impurities, magnetic proximity effects or applying magnetic field.
We show the hinge states in the absence and the presence of magnetization in Fig. 7. Helical hinge states 

appear in its absence [see Fig. 7(a1)]. They are shifted in the presence of the Bz term [see Fig. 7(b1)]. On the other 
hand, they are gapped out when the Bx or By term exists [see Fig. 7(c1)].

For comparison, we also show the hinge states calculated from the chiral-nonsymmetric Hamiltonian ′HSOTI 
[see Fig. 7(a2–c2)]. The band structure is almost symmetric with respect to the Fermi energy.

By taking into the fact that the σz is a good quantum number, the low energy theory of the hinge states is well 
described by

 σ= .H v k (34)z zF

In the presence of the external magnetic field, it is modified as

 σ σ σ σ= + + +H v k B B B , (35)z z x x y y z zF

which is easily diagonalized to be

= ± + + + .E v k B B B( ) (36)z z x yF
2 2 2

It well reproduces the results based on the tight binding model shown in Fig. 7.
One of the intrinsic features of a topological hinge state is that it conveys a quantized conductance in the unit 

of e2/h. We have calculated the conductance of the hinge states in Fig. 7 based on the Landauer formalism45–51. In 
terms of single-particle Green’s functions, the conductance σ(E) at the energy E is given by45,51

σ = Γ Γ†E e h E G E E G E( ) ( / )Tr[ ( ) ( ) ( ) ( )], (37)2
L D R D

where Γ = Σ − Σ†E i E E( ) [ ( ) ( )]R L R L R L( ) ( ) ( )  with the self-energies ΣL(E) and ΣR(E), and

Σ Σ= − − − −G E E H E E( ) [ ( ) ( )] , (38)D D L R
1

with the Hamiltonian HD for the device region. The self energies ΣL(E) and ΣR(E) are numerically obtained by 
using the recursive method45–51.

The conductance is quantized, which is proportional to the number of bands. When there is no magnetization 
or the magnetization is along the z axis, the conductance is 2 since there are two topological hinges. On the other 

Figure 7.  Band structures for hinge states (a1) without magnetic field, (b1) with magnetic field along the z 
direction and (c1) with magnetic field along the x direction for the chiral-symmetric Hamiltonian HSOTI.  
Hinge states are depicted in red. (a2–c2) Corresponding ones for the chiral-nonsymmetric Hamiltonian ′HSOTI.  
(a2–c2) and (a′2–c′2) The conductance is quantized proportional to the number of bands in various cases.
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hand, once there is in-plane magnetization, the conductance is switched off since the hinge states are gapped. It is 
a giant magnetic resistor35, where the conductance is controlled by the magnetization direction.

Conclusion
We have studied chiral-symmetric models to describe SOTIs and loop-nodal semimetals in transition metal 
dichalcogenides. The Hamiltonian is analytically diagonalized due to the chiral symmetry. We have obtained 
analytic formulas for various phases including loop-nodal semimetals, 2D SOTIs, 3D SOTSMs and 3D SOTIs. We 
have proposed the symmetry detector discriminating whether the symmetry is present or not. It can differentiate 
topological phases to which the symmetry indicator yields an identical value. Furthermore, we have proposed a 
topological device, where the conductance is switched by the direction of magnetization. Our results will open a 
way to topological devices based on transition metal dichalcogenides.
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