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A Mathematical Model for Neutrophil Gradient
Sensing and Polarization
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Directed cell migration in response to chemical cues, also known as chemotaxis, is an important physiological process
involved in wound healing, foraging, and the immune response. Cell migration requires the simultaneous formation of
actin polymers at the leading edge and actomyosin complexes at the sides and back of the cell. An unresolved question
in eukaryotic chemotaxis is how the same chemoattractant signal determines both the cell’s front and back. Recent
experimental studies have begun to reveal the biochemical mechanisms necessary for this polarized cellular response.
We propose a mathematical model of neutrophil gradient sensing and polarization based on experimentally
characterized biochemical mechanisms. The model demonstrates that the known dynamics for Rho GTPase and
phosphatidylinositol-3-kinase (PI3K) activation are sufficient for both gradient sensing and polarization. In particular,
the model demonstrates that these mechanisms can correctly localize the “front” and “rear” pathways in response to
both uniform concentrations and gradients of chemical attractants, including in actin-inhibited cells. Furthermore, the
model predictions are robust to the values of many parameters. A key result of the model is the proposed coincidence
circuit involving PI3K and Ras that obviates the need for the “global inhibitors” proposed, though never
experimentally verified, in many previous mathematical models of eukaryotic chemotaxis. Finally, experiments are
proposed to (in)validate this model and further our understanding of neutrophil chemotaxis.

Citation: Onsum M, Rao CV (2007) A mathematical model for neutrophil gradient sensing and polarization. PLoS Comput Biol 3(3): €36. doi:10.1371/journal.pcbi.0030036

Introduction

Chemotaxis, the directed movement of cells in response to
chemical gradients, plays a prominent role in a number of
physiological processes, including foraging, wound healing,
tumor metastasis, and the immune response [1-3]. In the case
of the immune response, chemoattractants are produced at
or proximal to sites of infection. Leukocytes sense these
chemoattractants and move in the direction where the
chemoattractant concentration is greatest, thereby locating
infected tissue and invading microbes. Leading this assault
are neutrophils. These cells circulate in the bloodstream and
upon activation squeeze through the vascular endothelium
and crawl to sites of infections and inflammation. There they
phagocytose bacteria and release a number of proteases and
reactive oxygen intermediates with antimicrobial activity
[4,5].

Neutrophils sense chemoattractants using transmembrane
receptors, primarily G protein-coupled receptors (GPCR),
which are evenly distributed along the plasma membrane [6].
Binding of chemoattractants to these receptors activates a
complex network of interacting proteins, lipids, and small
molecules. This signaling cascade leads to a symmetry-
breaking event, where a number of regulatory proteins and
lipids, initially distributed uniformly on either the membrane
or in the cytosol, are recruited to either the front or back of
the cell upon stimulation with attractant. Differential local-
ization of these proteins serves as a compass for the migrating
cell [7,8].

A number of experimental studies have identified and
characterized the core regulators necessary for eukaryotic
chemotaxis using the slime mold Dictyostelium discoideum,
primary neutrophils, and HL-60 cells, which are a myeloid
leukemia that can be differentiated into a neutrophil-like
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state [9,10]. The basic model for neutrophils is as follows.
When neutrophils or differentiated HL-60 cells are stimu-
lated with ligand, typically formyl-methionylleucylphenylala-
nine (fMLP), two divergent pathways are activated [11]. In the
first, or “frontness” pathway, receptor-activated G; proteins
activate the membrane-bound G-protein Ras and recruit
phosphatidylinositol-3-kinase (PI3K) to the membrane at the
leading edge of the migrating cell [12]. Activated Ras
subsequently binds to membrane-bound PI3K, yielding a
complex that begins the conversion of phosphatidyl-4-5-
bisphophate (PIP2) to phosphatidyl-3-4-5-triphosphate (PIP3)
[13-15]. PIP3 then recruits the Rho-GTPases Rac and Cdc42
to the leading edge of the membrane [16,17]. Rac and Cdc42
associate with the WASP/SCAR complex that stimulates actin
polymerization. PIP3, Rac, and actin also further stimulate
the conversion of PIP2 to PIP3 via a still uncharacterized
positive-feedback mechanism [16,18-20]. In the second, or
“backness” pathway, receptor-activated Gig;3 proteins acti-
vate and then recruit the Rho GTPase RhoA to the membrane
at the lagging edge of the migrating cell [11,21,22]. RhoA
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plays a role in activating myosin contractions [11]. It also
activates and/or recruits to the membrane the phosphatidy-
linositol phosphatase (PTEN), which antagonizes the action of
PI3K by converting PIP3 to PIP2 [21].

A number of mathematical models have been proposed to
explore different potential mechanisms for gradient sensing
and spatial localization in eukaryotic chemotaxis. A common
mechanism in many of these models is the interplay between
a local activator and a global inhibitor [23-27]. The activator
binds to the membrane at a rate proportional to the local
degree of receptor activation. Hence, more activator is bound
at the front than at the rear of the cell in relation to the
source of the chemoattractant. The inhibitor, on the other
hand, responds to the integrated receptor activity. Its activity,
therefore, is proportional to the average concentration of
attractant across the length of the cell. Typically, the global
inhibitor is assumed to be a rapidly diffusing protein or small
molecule either on the membrane or in the cytosol. The cell
determines its front and rear by comparing the local
concentration of the activator on the membrane relative to
the global concentration of the inhibitor. At the front, the
concentration of the activator is greater than the inhibitor
and vice versa at the rear. The popularity of the local
activator/global inhibitor model is that it provides a simple
mechanism for explaining how a cell can distinguish its front
and rear from a common signal [28].

While the basic local activator/global inhibitor models
correctly account for localization of proteins to the leading
edge of the cell, these models fail to account for localization
of associated proteins to the lagging edge. Ma and colleagues
addressed this problem by proposing two opposing local
activator/global inhibitor mechanisms; one for the cell’s front
and the other for the rear [29]. Alternatively, Narang
proposed a model with two mutually exclusive local activators
and a single global inhibitor [30]. One activator is directed to
the leading edge by the standard local activator/global
inhibitor mechanism, and the other is forced to the rear of
the cell due to exclusion by the first at the front. Both models
are able to selectively localize proteins to either the front or
rear of the cell in response to a chemical gradient. However,

@ PLoS Computational Biology | www.ploscompbiol.org

0437

Neutrophil Gradient Sensing and Polarization

these models include mechanisms involving global inhibitors,
something that has not yet been experimentally corrobo-
rated.

A number of alternative models for eukaryotic chemotaxis
not involving global inhibitors have also been proposed.
Postma and van Haastert proposed a simple mechanism for
gradient sensing involving local activation coupled with
positive feedback and substrate depletion of a single diffusing
second messenger [31]. A similar mechanism tailored to
fibroblasts was later proposed by Schneider and Haugh,
where the unknown second messenger was replaced by PI3K
[32]. Lacking in these two models, however, is a mechanism to
explain the dynamics at the rear of the cell. To address this
problem, Skupskey and colleagues proposed a model consist-
ing of positive feedback, exact adaptation, and inhibition of
PTEN by PI3K [33]. Likewise, Gamba and colleagues proposed
a simple mechanism for polarization based solely on the
antagonizing action of PI3K and PTEN and a positive
feedback loop involving PTEN [34]. Meier-Schellersheim
and colleagues, on the other hand, proposed a detailed
model for gradient sensing and polarization involving a
number of additional regulatory proteins such as Src and
Paxillin [35]. In the process, they were able to explain
interesting dynamics in Dictyostelium chemotaxis. While these
models are able to explain many aspects of eukaryotic
chemotaxis, they fail to address a number of mechanisms
and behaviors specifically associated with neutrophils, in
particular the role of the actin cytoskeleton in regulating
chemotaxis.

Here we propose a mathematical model for neutrophil
gradient sensing and spontaneous polarization that does not
require a global inhibitor. In this model, polarization of the
front and back molecules is achieved by the switch-like
activation of a coincidence circuit that requires both Ras and
PI3K to transmit a signal. Our model is based on a phase-
separating circuit and can reproduce many experimental
data, including the effect of F-actin inhibitors. The model
also exhibits partial adaptation when exposed to uniform
concentrations of chemoattractant and forms signaling
patches when these levels fluctuate as observed in a number
of experiments [18,36,37].

Results

Figure 1 shows a schematic diagram of our proposed model
of neutrophil directional sensing and polarization. The
model is based on the general qualitative model proposed
by Bourne and colleagues [11]. Briefly, the model assumes that
ligand-bound receptors activate two pathways in parallel. In
the first or “frontness” pathway, ligand-bound receptors
activate Ras and recruit inactive PI3K to the membrane.
Activated Ras then binds to membrane-bound PI3K, and this
complex begins the conversion of PIP2 to PIP3. PIP3 then
stimulates actin polymerization and further enhances the
activity of the Ras-PI3K complex. The second reaction is used
to model the PIP3 positive feedback loop. A number of
additional proteins including Rac, Cdc42, and WASP are also
known to be involved in the “frontness” pathway, but were
not accounted for explicitly in the model. We chose to omit
these proteins since their unique roles are still unknown and
instead lumped them into the positive feedback loop
involving PIP3. In the second, or “backness” pathway,
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Figure 1. Proposed Pathway for Neutrophil Chemotaxis

Chemoattractant-bound G protein—coupled receptors activate both the
“front” and “back” pathways. The “front” pathway activates F-actin
polymerization and the “back” pathway activates myosin contractions.
The two pathways cross-inhibit each other at five junctions (four are
denoted by the dashed lines and the other results from the antagonizing
action of PI3K and PTEN).

doi:10.1371/journal.pcbi.0030036.9001

ligand-bound receptors activate and recruit RhoA to the
membrane at the rear of the migrating cell. RhoA activates
myosin contractions and is proposed to activate cytosolic
PTEN. Once activated, PTEN binds to the membrane and
converts PIP3 to PIP2.

The two parallel pathways in our model cross-inhibit each
other at five junctions: (1) myosin contraction inhibits F-actin
polymerization and vice versa; (2) F-actin causes RhoA to
disassociate from the membrane; (3) F-actin causes PTEN to
disassociate from the membrane; (4) myosin inhibits the
formation of the PI3K-Ras complex; and (5) PTEN converts
PIP3 to PIP2 while PI3K has reciprocal activity. These cross-
inhibitory reactions serve to differentially localize and then
stabilize these two pathways to the respective front and rear
of the migrating cell.

In our model formulation, the cell is treated as a disk in two
dimensions, and the spatial positions of the different proteins
and molecules on the membrane are represented using a
single variable 0, taking values between zero and one. Figures
2-14 show plots of the concentrations of the various proteins
and molecules as a function of membrane position 6 and
time. The interior of the cell is assumed to be well-mixed, and
the cytosolic proteins are assumed to be spatially uniform. To
limit the complexity of the plots, dynamic changes in the
concentrations of the cytosolic proteins are omitted. The
mathematical details and governing assumptions of the
model are described in the Materials and Methods section,
and Matlab simulation scripts are available at http://
openwetware.orglwiki/Rao__Lab:Code.

We first demonstrate that the model can correctly polarize
and stabilize the respective components of the “frontness”
and “backness” pathways when exposed to a gradient and still
be responsive to changes in the gradient direction. The model
was first simulated with a linear 50% gradient of chemo-
attractant (that is, there was 50% more attractant at the front
than the back), and then the gradient was slowly rotated by
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180°. Figure 2 shows the spatial dynamics of key components
of the model where the abscissa is time (dimensionless units),
the ordinate (0) is the position on the membrane, and the
color intensity is the normalized concentrations of the
different components of the model. As documented in Figure
2, both the “frontness” and “backness” components correctly
polarize in response to a gradient. In particular, components
of the “frontness” pathway localize to regions of the
membrane where the ligand concentration is greatest,
whereas components of the “backness” pathway localize to
regions where the ligand concentration is weakest. Local-
ization of the two pathways is also mutually exclusive; the
respective components do not localize to the same regions of
membrane. Furthermore, the cell is able to correctly
repolarize after a change in the gradient direction. This
result demonstrates that our model does not exhibit “lock-
on” behavior, where the cell will first correctly polarize in
response to a gradient but then be unable to change the
direction of its polarity in response to a change in the
direction of the gradient [23].

Note that there is a lag in the cell’s response to a moving
gradient (Figure 2). In other words, the cell is predicted to
perform a U-turn rather than spontaneously repolarize in
response to a change in the direction of the gradient. The lag
is due to the dynamics of protein dissociation from the
membrane and actin/myosin disassembly. If the gradient is
rotated instantaneously, then the cell does not respond and
exhibits “lock-on” behavior. The reason is that there is no
initial cue to determine whether the cell should perform
either a right or left U-turn, and, as a result, no choice is
made. Consistent with this hypothesis, the cell is able to
respond when the gradient is instantaneously rotated by 179°
or less. Likewise, if rotation is fast but not instantaneous (0.01
time units), then the cell correctly polarizes in the direction
of the new gradient (Figure 3A); however, the lag is larger. On
the other hand, if the gradient is rotated at a slower rate (80
versus 40 time units), then the lag between the direction of
the gradient and response is reduced (Figure 3B) because the
speed of rotation matches the internal dynamics of the
pathway.

Polarization is known to be the result of the switch-like
activation of PI3K and exclusion of RhoA by actin polymer-
ization at the front of the cell [22]. In our model, we propose
that PI3K activation depends on both the activation of Ras
and the recruitment of cytosolic PI3K to the membrane. Class
IB PI3Ks have localization (p101 regulatory subunit) and Ras
binding domains, and it has been proposed that both are
important regulators of PI3K signaling [12,15,38]. In this way,
PI3K activation behaves like a coincidence circuit: both of its
precursors, active GPy and Ras, must be present at a
particular position on the membrane for activation to occur.
This circuit gives a sharp peak of active PI3K (i.e., Ras-PI3K
complex) near receptors with the highest degree of ligand
occupancy. The net result is that activation of PI3K is more
sensitive than RhoA to the spatial signal generated by the
chemoattractant gradient. As a consequence, PI3K activity is
concentrated at the leading edge of the migrating cell and
RhoA is forced to the rear due to inhibition by actin
polymerization, a downstream response of activated PI3K.
This asymmetry is amplified by the positive feedback loop
involving PIP3 and also by the antagonizing action of F-actin
and myosin. These results are illustrated in Figure 4, which
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Figure 2. Separation of Front and Back Molecules in Response to a 50% Gradient of Chemoattractant
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Neutrophil Gradient Sensing and Polarization

Spatial and temporal distribution of the front (left) and back (right) signaling molecules. The abscissa is time (dimensionless), the ordinate 9, taking
values between zero and one, is the position on the membrane, and the color intensity denotes the concentration. Chemoattractant concentration on
the surface of the cell was specified by the function L(6) =1 — 0.25 cos(2n6). The gradient direction rotates by 180° from t=80 — 120. One dimensionless
time unit corresponds roughly to 0.05 s in real time [53].

doi:10.1371/journal.pcbi.0030036.g002

shows the steady-state distribution of receptor-ligand com-
plexes (black), activated PI3K (Ras-PI3K) (red), and RhoA
(blue) in response to a 50% linear gradient. The dynamic

response is shown in Video S1.

We next considered how sensitive the model was to

different gradient strengths and background concentrations.
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Figure 3. Response to Fast and Slow Rotating Gradients

Time to complete 180° rotation is 0.01 (A) and 100 (B) time units. Abscissa is time, ordinate is location on cell periphery, and color denotes
concentration. Chemoattractant concentration on the surface of the cell was specified by the function L(0) =1 — 0.25 cos(2x0).

doi:10.1371/journal.pcbi.0030036.g003
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The following function was used to specify the ligand
concentration along the surface of the cell

_ e
Lo = bL( 200 +

where b, denotes the background concentration (specified at

—cos(2n0))
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Figure 4. Mechanism for Polarization

Receptor-chemoattractant complexes (black dashed) sharply localize
activated PI3K (red) to the front via the PI3K/Ras coincidence circuit.
Activated PI3K localizes actin (not shown) which inhibits RhoA (blue)
from localizing to the front. The abscissa (0) is the location on the cell
periphery. Chemoattractant concentration on the surface of the cell was
specified by the function L(0) = 1 — 0.25 cos(2r6).
doi:10.1371/journal.pcbi.0030036.9004

the midpoint of the cell, 6 = 0.5) and g;, denotes the gradient
strength (given in terms of percentage). This function
describes the surface concentration of a circular cell in a
linear gradient. We first fixed the background concentration
at by, =1 and then varied the gradient strength from 107°% to
104%. This background concentration matches the dimen-
sionless K;, for receptor-ligand binding in the model. As
illustrated in Figure 5A, the model predicts that neutrophils
are able to polarize in gradients as shallow as 0.1%. These
results indicate that the proposed mechanism for neutrophil
chemotaxis is able to sense very shallow gradients of chemo-
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Figure 5. Dynamic Range of Gradient Sensing Mechanism
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attractant and to amplify the response. Experimentally,
neutrophils have been shown to properly orient in gradients
as shallow 1% in an optimal background concentration [39].
At gradient strengths below this value, neutrophils will
polarize in random directions. The likely reason for this
higher threshold at 1% is that stochastic fluctuations in the
chemoattractant field or pathway dynamics mask weak
gradient signals or create transient gradients of similar or
greater magnitude. Because our model is deterministic, these
fluctuations are ignored in our simulations, so there is no
physical barrier to the cell sensing shallow gradients.

We also varied the background concentration, b;, from 10~
to 102 while leaving the gradient strength fixed at g, = 10%.
The results are shown in Figure 5B. At background concen-
trations less than 0.1, the cell is unable to polarize.
Conversely, at all concentrations above this threshold, the
cell will polarize in the direction of the gradient. Once again,
these results demonstrate that the model is able to sense
gradients over a wide range of background concentrations.
However, when these concentrations become saturating, we
do not expect that the cell will be able to properly orient in
the direction of the gradient, because molecular fluctuations
at the level of receptor-ligand binding will mask any
differences in the amount of chemoattractant-bound recep-
tors across the length of the cell due to the gradient.
Stochastic fluctuations are again hypothesized to create a
physical barrier to gradient sensing at high background
concentrations. Experimentally, chemotaxis responds bi-
phasically to increasing concentrations of chemoattractant
at fixed gradient strengths [39]. At low concentrations,
insufficient chemoattractant is present to stimulate the cells.
At saturating concentrations, fluctuations dominate and the
cells polarize in random directions. Only at intermediate
concentrations do the cells polarize correctly in the direction
of the gradient.

Unlike in Dictyostelium [40], inhibition of actin polymer-
ization prevents neutrophils from correctly polarizing in

background concentration (log scale)

The formula for the chemoattractant concentration on the surface of the cell as a function of the gradient strength (g;) and background concentration

(by) is given in the text.

(A) Steady-state distribution of PIP3, actin, and myosin in response to chemoattractant gradients of increasing steepness with the background

concentration of chemoattractant fixed at b, = 1.

(B) Steady-state distribution of PIP3, actin, and myosin for a 10% gradient (g, = 10%) with increasing background concentrations of chemoattractant.

doi:10.1371/journal.pcbi.0030036.9005
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Figure 6. Effect of F-Actin Inhibitor on Signal Polarization

Steady-state distribution of receptor-chemoattractant complexes (black),
activated PI3K (red), and RhoA(blue). The simulations were performed
using a 100% gradient (b, =1 and g, = 100%). Weaker gradients yielded a
flatter response as the inhibition of actin decreases the sensitivity of the
response.

doi:10.1371/journal.pcbi.0030036.9006

response to a gradient. In particular, RhoA is no longer
restricted to the rear of the cell and the PIP3 distribution is
not as sharp [18,22]. We also observe similar behavior in our
model when the actin polymerization reaction is removed
(Figure 6A). In this scenario, RhoA preferentially localizes to
the front of the cell as it is no longer excluded by actin
polymerization. Furthermore, due to the lack of exclusion by
actin polymerization, PTEN no longer localizes to the rear
and is uniformly distributed along the cell membrane. The
net result is that PI3K only weakly localizes to the front and,
consequently, PIP3 localization is significantly attenuated
(Figure 6B, Video S2).

We next considered the effect of a positive feedback loop
operating on PIP3. Such a loop is known to function in
neutrophils. For simplicity, we modeled this feedback loop by
assuming that PIP3 enhances the catalytic activity of PI3K,
though it is known that additional proteins such as Cdc42 and
Rac are also involved in this feedback loop [11,16,19,20].
Figure 7 shows the steady-state concentrations of the Ras-
PI3K complex (black), PIP3 (blue), and actin (red) in response
to a 50% gradient of chemoattractant. The solid lines include
the effect of the positive feedback loop while the dashed lines
do not. The inclusion of the PIP3 positive feedback loop does
indeed amplify the front signal but is not necessary to localize
the front and rear signals in our model.

Several models of eukaryotic chemotaxis include mecha-
nisms for perfect adaptation of PIP3 levels. In other words,
the PIP3 response to a uniform increase or decrease of
chemoattractant is transient and eventually returns to
prestimulus levels [24,26,27,29,33,41]. Perfect adaptation
extends the range of concentrations that a cell can respond
to and is generally thought to occur through the action of a
global inhibitor [42]. While perfect adaptation has been
confirmed in bacterial gradient sensing [43], the experimental
evidence in eukaryotes is mixed and suggests that only partial
adaptation occurs [18,36,44]. In our model, the spatial and
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Figure 7. The Effect of a Positive Feedback Loop Involving PIP3 on PIP3
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The model was simulated with the autocatalytic PIP3 reaction (fb, solid
lines) and without (dashed lines). The ordinate is molecular concen-
tration and the abscissa is the position on the membrane (6).
doi:10.1371/journal.pcbi.0030036.g007

temporal response of the pathway partially adapts to a
uniform increase in attractant (Figure 8A). Initially, there is a
rise in PIP3 because PI3K has faster dynamics than PTEN.
After a short lag, PTEN levels rise, causing PIP3 levels to
partially, but not completely, adapt in response to the stimuli.
Figure 8B shows the dynamics of adaptation at one point on
the cell’s periphery. We also explored the dynamics of
adaptation in response to different concentrations of chemo-
attractant. The results, shown in Figure S1, demonstrate that
as the concentration of chemoattractant increases, the peak
response in PIP3 levels increases, as does the steady-state
levels.

In addition to adaptation, neutrophils can also sponta-
neously polarize when exposed to spatially uniform concen-
trations of chemoattractant [5]. We hypothesize that this
polarization is due to random fluctuations in the pathway or
concentration field that lead to transient asymmetries, which
are subsequently amplified by the internal pathway dynamics.
To explore this hypothesis, we simulated the model in
response to a uniform concentration of ligand and also
included a perturbation to the receptor-ligand complex in
order to mimic biochemical noise. Figure 9A shows that this
perturbation leads to the spontaneous polarization of both
the front and back signals. Both the magnitude of the
perturbation and concentration of chemoattractant affect
the response. Figure 9B shows the steady-state response of the
model to perturbations of varying magnitudes. The results
demonstrate that the perturbation must exceed a certain
threshold for the cell to spontaneously polarize. Increasing
the concentration of chemoattractant decreases this thresh-
old (unpublished data).

Previous work stated that a global inhibitor is necessary for
a minimal model to display spontaneous polarization without
lock-on behavior [30]. Our model displays this behavior
without a global inhibitor, though we do not claim that our
model is “minimal.” Note that two different responses can
result from uniform stimulation in our model: adaptation
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Figure 8. Partial Adaptation to a Uniform Increase in Chemoattractant

(A) Adaptation around cell periphery.
(B) Dynamics of adaptation at one point on the membrane (6 = 0.5).
doi:10.1371/journal.pcbi.0030036.g008

and spontaneous polarization. Both responses are also
observed experimentally [20].

Double micropipette experiments have been proposed as a
way to invalidate directional sensing models [25,40]. Figure 10
shows the steady-state response of our model to two gradients
of varying intensity, where the abscissa denotes the percent-
age difference in gradient intensity. When the two gradients
are of roughly the same intensity (b, = 1 and g;, = 50), two
fronts will form. However, when one is greater, then only a
single front will form at steady state. Initially, two fronts will
form, but the second front localized in the direction of the
weaker gradient will eventually disappear (unpublished data).
The difference in gradient intensities needed for only a single
front to form is a function of the gradient strength (g;) and
background concentration (bz). If either the nominal gradient
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strength is increased or the background concentration is
decreased, then the range of intensities over which two fronts
are maintained increases. We also explored the response to
three gradients of equal intensity equidistantly spaced
around the cell. The results are shown in Figure 11. Three
fronts of equal intensity form. However, after 50 time points,
the three fronts collapse into a single front. Similar results
are observed when additional gradients are added. To our
knowledge, these experiments have not yet been performed
using either neutrophils or HL-60s, though actin-inhibited
Dictyostelium form two fronts in response to two opposing
gradients of equal strength [40].

We next tested the robustness of our modeling results to
changes in parameter values. While the ability of our model
to correctly polarize in response to gradients was robust to
most kinetic parameters (*50 %, unpublished data), we found
that our model was acutely sensitive to the relative concen-
tration of PI3K. As our model lacks a global inhibitor,
selective recruitment of proteins to either the front or rear of
the cell necessitates a limited substrate supply. In other
words, our model assumes that there is an excess of
membrane binding sites relative to the concentration of
cytosolic PI3K. When this assumption is violated, PI3K will
bind everywhere on the membrane in response to chemo-
attractant, even in the presence of a strong gradient. If the
supply is limited, on the other hand, then the protein will
bind preferentially to the areas of the membrane where the
activating signal is greatest. Figure 12A shows that when the
concentration of binding sites relative to cytosolic PI3K
(Ypsk) is less than approximately 1.8, PIP3 and actin both
localize around the entire cell membrane and prevent myosin
from binding. Similar, though reciprocal, behavior is also
observed with RhoA (yrn). We contrast these results with
Figure 12B. Here, we varied the association rate constant of
RhoA (ag;) over a wide range of values, and no change in the
polarization profile was observed.

Neutrophils likely do not fine-tune the expression of PI3K
or RhoA. The lack of robustness in the model with respect to
this parameter suggests that additional regulatory mecha-
nisms are present in the chemotaxis pathway. Our model is by
no means complete. A number of proteins that regulate
chemotaxis are omitted from the model, including Cdc42,
PAK, and Rac [16,45,46]. Quite possibly these proteins form
additional layers of regulation that ensure robust chemotaxis.
Another possibility that we cannot exclude is the presence of
rapidly diffusing global inhibitors. Although our model does
not require a rapidly diffusing global inhibitor, the addition
of global inhibitors likely can improve the robustness of the
model. However, experimental evidence for such a regulatory
mechanism is currently lacking.

The coincidence circuit is necessary in our model to
robustly polarize the cell in response to a gradient. While Ras
is known to interact with PISK [12,15,47], details regarding
the specific mechanisms for activation are not known. To
account for potential alternative mechanisms of interaction
between PI3K and Ras, we explored a second model for the
coincidence circuit where we assumed that membrane-bound
PI3K is equally active irrespective of Ras. The role of
activated Ras in this alternative model is to stabilize PI3K
by preventing it from prematurely disassociating from the
membrane. This Ras-mediated stabilization of PI3K leads to
enhanced conversion of PIP2 to PIP3 and, as a result, forms a
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Figure 9. Spontaneous Polarization in Response to Uniform Addition of Chemoattractant
(A) Dynamic response to the addition of chemoattractant (b, = 1 and g; = 0%) with a perturbation of magnitude 0.1 made to the receptor-ligand

complex at 6 =0.5.

(B) Sensitivity of spontaneous polarization to perturbation size. Steady-state distribution of PIP3, actin, and myosin in response to uniform addition of
chemoattractant (b, = 1 and g, = 0%) with perturbations of increasing size made to the receptor-ligand complex at 6 = 0.5.

doi:10.1371/journal.pcbi.0030036.9009

coincidence circuit involving Ras and PI3K. Implementing
this alternative model did not require any structural changes
to the original mathematical equations and instead entailed
only changes to the parameter values (see Material and
Methods). As shown in Figure 13A, this alternative model is
able to correctly polarize in response to a gradient and still is
responsive to changes in the gradient direction. Furthermore,
the model will also spontaneously polarize in response to a
uniform increase in chemoattractant when a perturbation to
the receptor-ligand complex is included (Figure 13B). Unlike
the original model, however, the “backness” pathway will
localize at the site of the perturbation in the alternate model.
In the absence of the perturbation, the response will partially
adapt (unpublished data). With the one exception noted
above, the dynamics of the alternative model are similar to
the original model.

One set of experiments to test the proposed mechanism for
chemotaxis is to measure the response in neutrophils or HL-
60 cells with either an impaired Ras GTPase-activating
protein (GAP) or a constitutively active Ras. Our model
predicts that cells with an impaired Ras GAP will respond
sluggishly to changes in the direction of the gradient (Figure
14A). Likewise, our model predicts that constitutively active
Ras will cause “lock-on” behavior (Figure 14B). Therefore, the
cell will first correctly polarize towards the micropipette but
then will be unable to track the micropipette as it rotates.
With the alternate model for the Ras-PI3SK coincidence
circuit, “lock-on” behavior is observed in both scenarios
(unpublished data). Potentially, these experiments could be
used to discriminate between the two mechanisms, though
direct biochemical interrogation of the circuit would yield
more definitive results.

Discussion

We have proposed a mathematical model for neutrophil
chemotaxis based on the general qualitative model proposed
by Bourne and colleagues [11]. The key idea in their model is
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that chemoattractant activates two divergent pathways that
mutually inhibit one another through interactions with the
actin cytoskeleton. As a consequence, one pathway localizes
to the front of the cell and the other localizes to the rear. The
main contribution of this paper is to demonstrate that this
model, when refined and formulated in quantitative terms, is
consistent with the following experimental observations. (1)
When cells are exposed to gradients of chemoattractants, they
polarize, resulting in the localization of different regulatory
proteins to the membrane at either the front (Ras, PI3K, and
actin) or rear (RhoA, PTEN, and myosin) of the migrating cell.
Furthermore, both pathways are activated through the same
receptor [11]. (2) Cells internally amplify the gradient yet are
still able to reverse directions or to perform U-turns upon
reversal of the gradient [8,11,20]. (3) When cells are exposed
to uniform concentrations of chemoattractant, they either
partially adapt or spontaneously polarize [20]. (4) When actin
polymerization is inhibited, proteins normally at the rear of
the cell localize to the front (e.g., RhoA). Furthermore,
despite this reversal, the concentration of PIP3 remains
higher at the front of the cell than at the rear [18,22].
Arguably, the most interesting question in eukaryotic
chemotaxis from a theoretical perspective is how a common
signal determines both the front and rear of a cell that is
initially unpolarized. We are not the first to address this
question, and the literature is populated with models
proposing alternative solutions. However, these models are
unable to explain a number of experimental observations
that have been made for neutrophils and differentiated HL-
60 cells. One of the main differences between many of these
models and ours is a postulated mechanism involving a
rapidly diffusing global inhibitor. In our model, there is no
global inhibitor. Instead we formulated our model based on
known dynamics for Rho GTPase and PI3K activation. A
novel element in our model is that we explicitly include
regulation by the actin cytoskeleton. As has been demon-
strated in a number of experiments involving differentiated
HL-60 cells, both actin and myosin play an active role in
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Figure 10. Double Micropipette Experiment

Steady-state distribution of PIP3, actin, and myosin in response to two
opposing micropipettes placed equidistantly around the cell. One
gradient was fixed and the second was varied in intensity. The relative
strength is the ratio of the peak concentrations of the two chemo-
attractant sources. When the chemoattractant profiles of the micro-
pipettes are equal (relative strength equal to one), the cell forms two
fronts and two backs. When one micropipette has a significantly higher
peak concentration than the other, only one front and one back forms.
The nominal parameters for both gradients is b, =1 and g, = 50%.
doi:10.1371/journal.pcbi.0030036.9g010

regulating polarity [11,22]. Furthermore, there is no exper-
imental evidence to support the existence of a global
inhibitor in neutrophils. Whether our model is applicable
to other cell types and organisms, Dictyostelium in particular, is
not known. In the case of Dictyostelium, regulation by the actin
cytoskeleton has not been shown to play an important role in
gradient sensing and polarization [40,44]. It is likely that
alternative mechanisms of regulation are involved. As many
of these competing models are motivated by experiments
specific to Dictyostelium, the differences may be due to the
specific organism or cell type of interest. For example,
fibroblasts appear to lack many of the feedback mechanisms
present in both neutrophils and Dictyostelium [32].

Narang also proposed a mechanism loosely based on the
general model proposed by Bourne and colleagues [30]. In his
model, a common signal activates two subsystems that
mutually inhibit one another. Unlike our model, however,
these two subsystems also activate a rapidly diffusing global
inhibitor. As a result, polarization in his model is the result of
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Figure 11. Triple Micropipette Experiment

Three gradients of equal intensity (b, = 1 and g, = 0%) are placed
equidistantly around the cell.
doi:10.1371/journal.pcbi.0030036.9011

a Turing-like bifurcation. Furthermore, his model is abstract
and makes no specific reference to actual proteins and
mechanisms. Despite these differences, our two models share
a common mechanism involving two mutually inhibiting
pathways.

Meinhardt previously noted that a model involving limited-
substrate supply coupled with positive feedback could
provide an alternative mechanism for gradient sensing and
polarization without the need of a global inhibitor [23].
However, this mechanism still does not explain how some
proteins (e.g., PI3K) are recruited to the front and others to
the rear (e.g., RhoA). Furthermore, mutual inhibition is not
by itself sufficient. As can be demonstrated with the model
proposed by Narang [30], the direction of polarity relative to
the gradient strongly depends on the kinetic parameters and
can easily be reversed when the parameters are perturbed.
Additional mechanisms, therefore, are needed to ensure that
the cell robustly polarizes in response to a gradient.

Our model suggests that the interaction between Ras and
PI3K provides such a mechanism. Class IB PI3Ks have a
localization and a Ras binding domain [38]. It has been
suggested that PI3K activation requires two independent
pathways: the localization of PI3K to the plasma membrane
and the activation of Ras [13,15]. Using the analogy of an
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(A) As the ratio of PI3K binding sites to PI3K (yp3x) decreases, the amount of PIP3 and actin bound on the membrane increases.
(B) Polarization is insensitive to the association rate constant of RhoA (agy).

doi:10.1371/journal.pcbi.0030036.9g012

electric circuit, we hypothesize that Ras and PI3K form a
coincidence circuit in between the receptors and the
production of PIP3. Both Ras and PI3K are activated by Gu.
However, only when these two proteins are activated in close
proximity to one another is the “frontness” pathway
initiated. The net effect of the coincidence circuit involving
Ras and PI3K is to internally amplify the gradient processed
by the forward circuit (Figure 4). The “backness” pathway
lacks this amplification mechanism, so its response is less at
the front than at the rear relative to the “frontness” pathway.
This asymmetry is then amplified by downstream feedback
mechanisms involving the actin cytoskeleton. By introducing
this additional nonlinearity, the coincidence circuit provides
a robust mechanism for generating an asymmetric response
in two divergent pathways activated by the same signal.
Without this nonlinearity, polarity is sensitive to the choice of
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the parameters. Furthermore, we suspect that the coinci-
dence circuit may also provide a mechanism for filtering
noise at the level of the receptor, a topic of future work.
The second key element in our model is the role of the
actin cytoskeleton in establishing polarity. In their inves-
tigations of chemotaxis using differentiated HL-60 cells,
Bourne and colleagues demonstrated that actin and myosin
inhibit RhoA and PI3K, respectively [11]. Furthermore,
inhibition of actin polymerization causes RhoA to localize
to the front of the cell [22]. Based on their data, feedback
from the actin cytoskeleton appears to be the primary
mechanism for establishing polarity in neutrophils. The
precise mechanisms for inhibition, however, are not known.
We assume in our model that actin causes RhoA and PTEN to
disassociate from the membrane. This mechanism is sufficient
for robustly polarizing the cell in response to a gradient and

200 3
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Figure 13. Alternative Model of Gradient Sensing and Spontaneous Polarization
(A) Spatial and temporal distribution of ligand-bound receptors, actin, and myosin in response to a 50% gradient of chemoattractant. Gradient direction

rotates by 180° from t = 80 — 120s.

(B) Spontaneous polarization in response to a uniform stimulation (b, = 1) with a perturbation of size 0.1 made to the receptor-ligand complex at 6 =
0.5. Note that myosin localizes at the site of the perturbation. This behavior is opposite that of the original model.

doi:10.1371/journal.pcbi.0030036.9g013
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Figure 14. Predicted Effect of Ras Gap Mutation and Constitutively Active Ras
(A) Ras gap mutation was simulated by decreasing the rate of Ras deactivation (dg) by a factor of 10. The model still polarizes towards the gradient of

attractant, but its response to a rotating gradient is slower.

(B) Constitutively active Ras was simulated by setting the Ras deactivation rate (dg) to zero. The model polarizes towards the chemoattractant but

cannot track a rotating gradient.
doi:10.1371/journal.pcbi.0030036.9014

also explains why RhoA is recruited to the front of the cell
when actin polymerization is inhibited. However, for the cell
to spontaneously polarize in response to a uniform concen-
tration of chemoattractant, we also needed to include
inhibition of PI3K by myosin. We assume in our model that
myosin disrupts the formation of the Ras-PISK complex by
increasing the rate of dissociation. In both cases, alternative
mechanisms for inhibition were explored and yielded similar
results.

Regulation of gradient sensing by the actin cytoskeleton
has not yet been demonstrated in other cell types such as
fibroblasts or in other organisms such as Dictyostelium. In the
case of Dictyostelium, inhibition of actin polymerization does
not affect gradient sensing in terms of the membrane
distribution of PIP3 or localization of PTEN [40]. These
results would seem to indicate that gradient sensing in
Dictyostelium is not actively regulated by the cytoskeleton as is
the case with neutrophils. We note that PIP3 still tracks the
gradient in differentiated HL-60 cells even when actin
polymerization is inhibited. However, PIP3 polarization is
not as pronounced as in untreated cells. We also see this
behavior in our model (Figure 6).

A common element in many models of eukaryotic chemo-
taxis is adaptation. These models predict that cells will only
transiently respond when stimulated with uniform increases
in the concentration of chemoattractant. This adaptation
response has been observed in Dictyostelium [40]. However, in
other studies, the cells were observed to polarize under
similar conditions [37,44]. As a first approximation, these two
behaviors are contradictory, and a satisfactory model that
explains both responses is still lacking for Dictyostelium. In the
case of neutrophils, cells polarize and then migrate in
random directions when stimulated with uniform concen-
trations of chemoattractant. Whether neutrophils also adapt
to the same degree as Dictyostelium is still not known (F. Wang,
personal communication). In our model, the cell will partially
adapt when stimulated with a uniform concentration of
chemoattractant. However, if noise is added to the concen-
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tration field or the initial conditions, then the cell will
spontaneously polarize. Our results would suggest that the
particular response is a function of the chemoattractant
concentration. At low concentrations, subtle differences in
receptor occupancy due to stochastic fluctuations can be
amplified, leading to a polarized response. At saturating
concentrations, these fluctuations are negligible and the cell
will adapt, as no polarity signal is generated. Alternatively, the
mode of chemoattractant delivery may also determine the
particular response due to transient differences in receptor
occupancy.

Validation and Extensions

The ability of our model to separate front and back signals
depends on the PI3K coincidence circuit and the inhibition
of RhoA by actin. To test the validity of this mechanism, we
suggest the rotating micropipette experiments in neutrophils
or HL-60 cells with an impaired Ras GAP or constitutively
active Ras. As shown in Figure 14, our model predicts that
constitutively active Ras will cause “lock-on” behavior, and
cells with an impaired Ras GAP will respond more slowly to
changes in the direction of the gradient.

Additionally, our model may be tested with a double
micropipette experiment. As shown in Figure 10, our model
predicts that the cell can form two fronts when exposed to
two equal and opposite sources; however, if the sources are
not equal, then the cell will prioritize one signal and form
only one front. Significant deviation from this predicted
behavior would suggest that our model is incorrect.

Finally, our model is incomplete because it lacks many
known regulators of chemotaxis in neutrophils such as Cdc42,
Rac, and PAK [11,16,19,20]. The model also simplified actin
and myosin dynamics. Our initial goal was not to develop a
comprehensive model of chemotaxis but rather a parsimo-
nious model of neutrophil chemotaxis to explore the general
mechanism proposed by Bourne and colleagues. We are
currently extending the model to address these limitations.
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Table 1. Dimensionless Parameters: Definitions and Base Values Used in Simulations

Parameter Description Value
D) Diffusion coefficient for receptor 0.001
Dgas Diffusion coefficient for Ras 0.001
Dpiak Diffusion coefficient for PI3K 0.001
Drho Diffusion coefficient for Rho 0.001
Dgr.p Diffusion coefficient for Rho-PI3K complex 0.001
Dpren Diffusion coefficient for PTEN 0.001
Dpip3 Diffusion coefficient for PIP3 and PIP2 0.001
ai(d,) Rate of chemoattractant association (disassociation) 100 (100)
agldg) Rate of Ras activation (deactivation) 10 (10)
apldp) Rate of PI3K recruitment (disassociation) 200 (10 : 100)
Ypi3k Ratio of membrane binding sites to cytosolic PI3K 4
Agpldrp) Rate of Ras-PI3K complex formation (disassociation) 10 (1)

im Inhibition of Ras-PI3K complex formation by myosin 5
app(dgp) Rate of RhoA association (disassociation) 20 (0.1 : 0.01)
Yrh Ration of membrane binding sites to cytosolic RhoA 2

i Inhibition of Rho recruitment by actin 10
Apex(dpy») Rate of cytosolic PTEN activation (deactivation) 0.2 (0.6)
ap(dpy) Rate of active PTEN recruitment (disassociation) 1(0.1)
Ype Ratio of membrane binding sites to cytosolic PTEN 1

ipt Inhibition of PTEN recruitment by actin 50

aps Rate of Ras-PI3K catalyzed PIP2 phosphorylation 2:1

bps Rate of PI3K catalyzed PIP2 phosphorylation 0:1

Cp3 Basal rate of PIP3 dephosphorylation 0.1

dps Rate of PTEN catalyzed PIP3 dephosphorylation 2:1

kp3 Enhancement of PI3K-catalyzed PIP2 phosphorylation by PIP3 1

ar(dp) Rate of F-actin assembly (disassembly) 10 (1)
ap(dw) Rate of myosin assembly (disassembly) 10 (1)

For parameters, whole values are given in pairs. The first specifies the value used in the nominal model and the second specifies the value used in the alternate model. For example, the

rate of disassociation of PI3K is ten in the nominal model and 100 in the alternate model.

doi:10.1371/journal.pcbi.0030036.t001

Materials and Methods

Model description. A number of simplifying assumptions were
made in formulating the model.

(1) The model assumes that the rate of PI3K recruitment to the
membrane is proportional to the density of chemoattractant-bound
receptors. The assumed mechanism for PI3K recruitment is the
following. Chemoattractant-bound receptors activate the trimeric G-
protein G; and cause the dissociation of the GBy heterodimer. The
GPy heterodimer then recruits PI3K to the membrane through its
interaction with the pl0l regulatory subunit. In the model, we
simplified this mechanism by assuming that receptors directly recruit
PI3K to the membrane.

(2) Both Gy and Ras are necessary for PI3K activation, though the
mechanistic details for this regulation are lacking [15]. In the model,
we assume that chemoattractant-bound receptors directly recruit
PI3K to the membrane. The model assumes that PI3K is only active
when it binds to activated Ras on the membrane. In the alternate
model for the PI3K-Ras interaction, we assumed that membrane-
bound PI3K is active irrespective of Ras. However, the interaction
with Ras stabilizes PI3K on the membrane, thereby indirectly
enhancing the activity of PI3K. Implementing the alternate model
involved changing the values of only five parameters. The parameters
and values are listed in Table 1.

(3) The model explicitly ignores a number of key regulatory
proteins including G;, Gig1s, Rac, Rock, and Cdc42. Rather, these
proteins were treated implicitly in the model. For example, we
assume that ligand-bound receptor directly activates Ras rather than
include the intermediate messenger G,.

(4) The model assumes that the total concentration of PIP2 and
PIP3 is fixed in the cell and that their relative concentrations are
determined solely by the reciprocal action of PI3K and PTEN. The
role of other phosphoinositide lipids and their specific isoforms are
ignored in the model along with other proteins that are known to
regulate their composition, such as PI5K and SHIP [48].

(5) A number of experiments demonstrate that positive feedback
loops involving PIP3, PI3K, and actin are present in neutrophils
[11,16,19,20]. As mechanistic details are lacking, the model assumes
that PIP3 directly enhances the catalytic activity of the Ras-PI3K
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complex. Other mechanisms are equally likely but were not explored
in this work. We note that this feedback mechanism is not necessary
for polarization and instead serves to amplify front-to-back differ-
ences.

(6) The mechanisms for actin polymerization and myosin attach-
ment/contraction are simplified in the model. As detailed mecha-
nisms for both processes are lacking, we assumed for simplicity that
actin and myosin bind to the membrane at a rate proportional to the
local density of PIP3 and RhoA squared, respectively. Many actin-
regulating proteins such as WASP require multiple signals for
activation [49]. Because our model ignores many of these signaling
proteins, such as Cdc42, we assumed that PIP3 activation of actin
polymerization is cooperative. Though supporting data is lacking, we
also assumed the same relation between RhoA and myosin. We note
that cooperativity is not necessary for the model to reproduce the
results described. The model also assumes that the two events are
mutually exclusive, with both proteins competing for the same
binding sites on the membrane.

(7) The model assumes that actin inhibits the binding of PTEN.
While there is no direct evidence to support this mechanism, PTEN is
known to localize with RhoA at the rear of the migrating cell [21].
Furthermore, Cdc42 appears to control the localization of PTEN as
PTEN is excluded from regions where Cdc42 is active. As we do not
include Cdc42 in our model, we have used actin as a proxy
localization signal.

(8) In our model, PI3K is necessary for actin polymerization. While
inhibition of PI3K severely retards chemotaxis, it does not completely
abolish it [45]. These results suggest that a parallel, PI3K-independ-
ent, pathway is also involved in regulating chemotaxis and motility
[50,51]. As the details for these parallel pathways are lacking, we were
unable to include them in the model.

Model equations. The model assumes for simplicity that the cell is a
cylindrical disk in two dimensions. Because diffusion of cytosolic
proteins is significantly greater on average than membrane-bound
proteins, (10 um?is versus 0.05 — 0.5 pm?/s [52]), we assume that the
interior of the cell is homogeneous and well-mixed. As a result, we are
able to recast the model as a coupled set of one-dimensional partial
differential equations with periodic boundary equations, where the
spatial coordinate 0 specifies the axial position on the membrane.
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The governing set of coupled partial differential equations for the model are the following.

8,X(;(9, t) = D(;77205X(;(9, t) + aLL(O, t)(Xg — X(;(G, t)) — dLX(;(G, t)

8tXRas(e-, t) = DRa5772892XR215(67 t) + aRX(I(67 t)(

X[]

Ras — XRas(0,1) — Xp_p(0,1)) — drXras(0, )

— dRpXRM(e, t)Xpng(G, t) + dRp(l + Z'MXM(G, t))XR,p(e, l)

O Xp13k (0, 1) = Dprsgr 205 Xpisk (0, 1) + apXc (0, ) (Xppax — Xpisk (0, £) — Xp—p(6, 1)) <X313K — Ypigg (2mr) ! /69XP13K(67 t))

— dpXpi3k (0, 1) — arpXras (0, 1) Xp1p3 (0, £) + drp(1 4 13 X0 (0, 1)) Xr—p (6, 1)

atXRho(e7 t) = DRh()7720(92XRh0(67 t) + al(‘hXC(e> t) (Xghn - XRh()(e7 t)) (X{;ho - y]{ho(gnr)il / 86XRho(e> t)) - dRh(l + Z‘AXA(ey t))XRho(e7 t)
O Xr_p(0,1) = Dp_pr 203 Xp_p(0, ) + arpXras (0, ) Xpisk (0, ) — drp (1 + i Xar (0, £)) Xp_p (0, 1)

0 Xprex (8) = apu ((27’5’)1 /BBXRh(,(G, t)) (X{”TFN = Xpppx (1) — (2m) 7! /anPTEN> — dpuXpren (1)

— ap X (0, 1) (21r) ! / 90(1 — 7, Xprex (0, £)) + dpr (27r) " / 90Xprex (6, 1)

O, Xprin (0, £) = Dprinr™ 205 Xoren (0, £) + ap Xpren (01 — Vp Xoren (0, 0)) — dpi(1 4 ip X (0, 1)) Xpren (6, £)

0, Xprp3(0,1) = Dpwsf_zagxrws(& 1) + (apsXp—p(0,t) + bpsXp13x (0, 1)) (1 + kpsXpip3(0, 1)) (1 — Xpip3(0, 1)) — (cps + dpsXpren (6, 1)) Xpip3(0, £)

8,XA(9, l) = apr,u,g(G, t)(X?\M — Xm(& l) — XA(G, l)) — dFXA(G, l)

A Xw (8, 1) = an Xigyo (8, ) (Xy — Xa(0,2) — Xai(6, 1)) — dar Xoe (8, )

The definitions for the state and domain variables are given in
Table 2.

As detailed measurements for the total concentrations of the
different molecular species in the model are currently lacking, we
chose to normalize the concentrations in the model such that they

Table 2. State and Domain Variables Used in the Model

Variable Description

Xc(6,t) Ligand-bound receptor
Xras(0,1) Active Ras

Xpizk(0,1) Membrane-bound PI3K
Xrno(0,1) Membrane-bound Rho (active)
Xr-p(0,£) Ras—PI3K complex

Xpren(0,t) Active cytosolic PTEN
Xeren(0,1) Membrane-bound PTEN
Xoips(6,0) PIP3

Xa(6,) Actin

Xwm(0,1) Myosin

L(0,t) Chemoattractant concentration
t Time

0 Membrane position

(10)

can only take values between zero and one (e.g., Xc(8,0)€[0,1]).
Furthermore, to simplify analysis, we also reformulated the model in
terms of dimensionless parameters using the scaling factors defined
in Table 3. The following transformations were used to convert the
model into dimensionless form.

Table 3. Scaling Parameters Used To Transform the Model into
Dimensionless Form

Parameter Description

to Characteristic time

r Cell radius

Lo Characteristic chemoattractant concentration

X2 Concentration of receptors per unit membrane area

X%as Concentration of Ras binding sites per unit membrane area
X813k Concentration of PI3K binding sites per unit membrane area
Xoho Concentration of RhoA binding sites per unit membrane area
XSren Concentration of PTEN binding sites per unit membrane area
e Concentration of PIP2 + PIP3 per unit membrane area

X2 Concentration of actin binding sites per unit membrane area
X% Concentration of myosin binding sites per unit membrane area

doi:10.1371/journal.pcbi.0030036.t002
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doi:10.1371/journal.pcbi.0030036.t003
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De « De(2mr) *to,a, — agLoto, dy, — dyto
Dras <+ DRas(2n7)72t07a1€ — thO(X?;)2:dR — dgly,
arp — arplo X, Xosx/ vV Xoas Xoisio drp — drptoyiv — i Xy
Drprsg — DPI:&K(2R7)72107 ap aPtOXglzK(Xg)27 dp « dply,
Do« Druo (217) 1o, agy, — apnto Xy (X2)*, dri < druto,
i — s XS, ip — ip XY,

Dr_p — Dr_p(217) 2to, app — apuetoXQo, dpi — dpial,
Dyrin — Dpren(2mr) *to, ap, — apito Xprps X dpt < dpilo
Dyips < Dpps(2n7) 2to, aps — apstoXy_p, brs — bpstoXppsx.
kps — kpstoXpips, cps < cpsto, dps — dpstoXprp
ap — apto(Xps)*, dr — dpto, anr — ayto(Xpy,)?, dv — datto

Definitions for the dimensionless parameters along with their
nominal values used in the simulations are given in Table 1.

The governing equations for the model in dimensionless form are
the following.

- Xe = DediXe +arL(1 — X¢) — drXe (11)

0:XRas = DrasOf Xras + arXc(1 — Xgas — Xg—p) — drXras (12)
— appXrasXpips + drp(1 4 iy X)) Xg-p
O0:Xpisk = Dmfsxagxplfm +apXc(1 — Xpisk — Xr-p)

(13)

X (1 — YpISK / 89XPISK> — dpXp13k — arpXRas XpIP3

+ drp(1 + iy X)) Xrop
0:Xrho = Drio8 Xrno + ariXc(1 — Xrno) (1 = YRho / anR}m) (14)

— dri(1 + iaXa) XRho

0:Xr_p = Dr_pOi Xp_p + appXras Xpisk — drp(1 + iy Xar) Xp—p (15)

OTX;TEN = apx </ OeXRho> <1 - X;’TEN - / 06XP’1]£N> - dPt*X;;TEN

— aPtX;TF_N / 69(1 — YPIXPTEN) + dpl /89XPTEN (16)
0:XprEn = D10 Xprex + apXpren (1 + Yo Xoten) — dpXpren (17)
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DXyt = am X (1 — Xa — Xu) — duXu (20)
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Numerical solution. The spatial derivative operator was discretized
using finite differences on a grid with 100 points, and the resulting set
of coupled ordinary differential equations were solved in Matlab 7.2
(The Mathworks, http://lwww.mathworks.com) using the odelbs rou-
tine. Numerical solution required approximately one minute of CPU
time on an AMD Athlon 2.2-MHz desktop computer running the
Linux operating system. Matlab m-files for all figures are available at
http:/lopenwetware.org/wiki/Rao_Lab:Code.

Supporting Information

Figure S1. Partial Adaptation of PIP3 to Increasing Steps of
Chemoattractant from 0.1 to 10

Arrow shows direction of increasing step size.
Found at doi:10.1371/journal.pcbi.0030036.sg001 (18 KB JPG).

Video S1. Separation of PISK and RhoA in Response to a 50%
Gradient of Chemoattractant

The abscissa is the location of cell periphery and the ordinate is
dimensionless concentration. Application of chemoattractant gra-
dient first causes localization of the receptor-ligand complexes (black
dashed line), and then as active PI3K (red line) localizes to the front,
RhoA (blue line) disassociates from the front and localizes to the rear
where active PI3K levels are low. After the molecules have reached
their spatial steady state, the gradient direction is reversed and the
front and back reform, indicating there is no “lock-on” behavior.

Found at doi:10.1371/journal.pcbi.0030036.sv001 (678 KB MPG).
Video S2. Effect of the Actin Inhibitor

See Video S1 caption for axes and label descriptions. Here we
repeated the simulation from Video S1 except that actin polymer-
ization is inhibited. Note that RhoA now localizes to the front and
that PI3K localization has decreased.

Found at doi:10.1371/journal.pcbi.0030036.sv002 (296 KB MPG).
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