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The distribution and dynamics of biomolecules in the cell is of critical interest in biological research.
Raman imaging techniques have expanded our knowledge of cellular biological systems significantly.
The technological developments that have led to the optimization of Raman instrumentation have helped
to improve the speed of the measurement and the sensitivity. As well as instrumental developments, data
mining plays a significant role in revealing the complicated chemical information contained within the
spectral data. A number of data mining methods have been applied to extract the spectral information
and translate them into biological information. Single-cell visualization, cell classification and biomolec-
ular/drug quantification have all been achieved by the application of data mining to Raman imaging data.
Herein we summarize the framework for Raman imaging data analysis, which involves preprocessing,
pattern recognition and validation. There are multiple methods developed for each stage of analysis.
The characteristics of these methods are described in relation to their application in Raman imaging of
the cell. Furthermore, we summarize the software that can facilitate the implementation of these meth-
ods. Through its careful selection and application, data mining can act as an essential tool in the explo-
ration of information-rich Raman spectral data.
� 2020 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
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1. Introduction

Understanding the mechanics of cellular systems is essential to
elucidate the inner workings of a living system. Areas of interest
include the transcriptomic information of the cell [1–4], the phar-
macology of medicinal therapeutics [5–8], the expansion of tumor
cells [9–14], and the structure of the cell [15–20]. Raman spec-
troscopy can serve as a non-destructive imaging tool for biomole-
cules by accessing the vibrational spectra of its molecular interior.
Since Raman imaging is label-free, the native cellular function is
not affected, and no potentially toxic materials are introduced into
the living system of interest. This is in contrast to fluorescence
imaging, where fluorescent labels are widely used for the study
of living cells and tissues. Also, it captures the chemical informa-
tion of the cell as a whole rather than simply probing the region
of the cell where the fluorescence label is situated. Furthermore,
it might not be possible to label the region of the cell of interest.
Raman spectroscopy is an excellent technique for biomolecular
analysis since it has rich information of biomolecular specificity.
Generally, it is common to observe characteristic biomolecular
peaks in the Raman region between 200 and 3,000 cm�1

(wavenumbers). More specifically, the vibrational modes of pro-
teins lead to the Raman peaks between 1,500 and 1,700 cm�1.
Materials in the nucleus have Raman peaks at 980, 1,080, and
1,240 cm�1. The symmetric stretching of –CH, –NH, and –OH in
lipids and proteins produce the Raman band at 2,700–
3,500 cm�1, known as the fingerprint region [21]. These character-
istic bands allow Raman imaging to yield a wealth of information
about the biomolecules present [21–26] making it a compelling
alternative to fluorescence.

However, the Raman bands of these biomolecules are generally
overlapped with each other and with the signal that results from
the biofluid. Thus, the information-rich Raman imaging dataset is
comprised of many covariate features of multiple biomolecules
and other materials in the cellular system. Furthermore, a dynamic
living system is a spatial and temporal structure rather than simply
a group of randomly distributed biomolecules, which adds to the
inherent heterogeneity of the cellular system. The heterogeneity
and the abundance/variety of biomolecules present results in
highly complex data.

Data mining techniques are used in Raman imaging to uncover
the patterns in the Raman imaging dataset that would, otherwise,
go undetected [27]. When data mining is included as an analytical
tool, the most popular applications of Raman imaging of the cellu-
lar system include the visualization of the cell at the biomolecular
level [4,21,26,28], the classification of different types of cells
[2,11,29,30] and the quantification of the biomolecules/drugs in
the cell [5,6,16,31]. There are three main stages of data mining
involved in Raman imaging for cellular systems, namely pre-
processing, pattern recognition and validation. There is a wide
variety of methods available for each stage. Note that we only dis-
cuss data analysis methods for spontaneous Raman spectral data.
This is because there are significant differences between the data
analysis procedure for spontaneous Raman spectroscopy and other
Raman spectroscopy methods, such as signal enhancing
approaches (resonance Raman scattering and surface-enhanced
Raman scattering) and non-linear Raman imaging (coherent anti-
Stokes Raman scattering and stimulated Raman scattering).
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This review paper summarizes the various data mining meth-
ods particular to Raman imaging data analysis. As well as describ-
ing these methods, we also introduce the characteristics of each
method and the software available for their implementation. The
first step in the data analysis workflow is the pre-processing of
the data, which results in ‘‘clean spectra” that are ready for further
analysis. Following pre-processing, the critical stage of data mining
is pattern recognition. This is based on machine learning methods
that employ statistical strategies to extract the rich chemical/bio-
chemical information hidden within the complex Raman spectra.

Machine learning methods allow for successful pattern recogni-
tion in Raman imaging datasets of the cellular system. Those meth-
ods can be supervised or unsupervised depending onwhether there
is a training set with known information. One of the most popular
unsupervised methods is principal component analysis (PCA) [32]
and a common supervised method is partial least squares (PLS)
[33] but there are many more machine learning methods in both
categories. Validating the results based on machine learning meth-
ods is the last step in theworkflow but it is far from the least impor-
tant, because the machine learning analysis might provide an over-
optimistic result. Multiple validation methods are introduced in
this review paper. As well as data mining, we also introduce the
application of machine learning in sample size planning (sampling),
which estimates the minimal number of measurements for cell
characterization or quantification. Sampling can make Ramanmea-
surements muchmore efficient since large numbers of Ramanmea-
surements of a cellular sample are required.

2. Data mining in Raman imaging of the biological cellular
system

2.1. Basic terms

The acquisition of high volumes of data can lead to a veritable
’Data Tsunami’ in numerous disciplines such as biology, chemistry,
and medical science, etc. The identification of common elements
within these vast datasets is known as pattern recognition, espe-
cially when they are partly hidden in a large dataset [34]. Data
mining is a broad term which describes the process of extracting
patterns and useful information from ’big data’ using statistics
[35]. Machine learning, on the other hand, is a term which
describes the use of algorithms to learn from data and make pre-
dictions [36]. They are two sides of the same coin since data mining
informs the machine learning algorithm and machine learning
allows for improved data mining. Multivariate analysis is defined
as the analysis of data where each sample has numerous corre-
sponding variables [37]. Generally, multivariate analysis includes
three different types of method:

(1) explorative methods, including principal component analysis
(PCA) [32], independent component analysis (ICA) [38], and
vertex component analysis (VCA) [39];

(2) classification methods, both unsupervised cluster methods
(hierarchical cluster analysis (HCA) and k-means) [40] and
supervised methods, e.g. linear discriminant analysis (LDA)
[41];

(3) quantification methods such as partial least squares (PLS)
[33], multivariate curve resolution (MCR) [42], etc.



Fig. 1. Stages of Raman imaging data collection and analysis. A Raman spectrum is acquired for each I, J-coordinate and this spectrum is translated to the form of a pixel in the
final image. The I- and J-axes (lower left corner) represent the plane over which the sample is analysed. I and J are the number of pixels or the number of the measurements
along the I and J-coordinates. The total number of data points/pixels in the final dataset is equal to IJ. W is equal to the number of wavenumbers collected for the Raman
spectrum along the w-coordinate in the 3-D cube. Matrix X represents the spectral data for analysis, and matrix Y represents the concentration/classification information in
the training data. Note the difference between the vertical axis for the three modes of analysis (IJ/N). Visualization involves the analysis of a single cell whereas classification
and quantification may involve the analysis of multiple cell types (the number of cells: N). An average spectrum generally is obtained from the full data set of a single cell and
this is used for further analysis of a dataset of N cells.
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Machine learning includes multivariate analysis and some other
statistical methods, and it can be classified into two types, super-
vised and unsupervised machine learning. Supervised/unsuper-
vised signifies whether or not the data is associated with a
sample set, known as a training set, of known values. The unsuper-
vised machine learning methods (no training set) include all the
explorative methods (e.g. PCA) and all the cluster methods (e.g.
HCA); the supervised machine learning methods include super-
vised classification methods, such as LDA, support vector machine
(SVM) [43], artificial neural network (ANN) [44], k-nearest neigh-
bor (KNN) [45], t-distributed stochastic neighbor embedding (t-
SNE) [46] and all the quantification methods. Note that while
MCR is generally classified as a supervised method, it can be per-
formed in an unsupervised capacity, without using concentra-
tion/spectral constraints. In this review, pattern recognition is
discussed in reference to cell characterization and quantification
using machine learning methods.

2.2. Workflow

In order to analyze the spectral data successfully a particular
protocol or workflow should be followed. First, an understanding
of how the data is structured is essential. A 3-D dataset of a cell
sample, which includes a geographic dimension (I and J), and a
Raman spectral dimension (W) can be obtained from a Raman
imaging measurement (Fig. 1). The I and J values represent the
number of pixels in a Raman imaging area, and W is the number
of wavenumbers in the dataset. There are three ways to unfold
the 3-D dataset depending on the goal of the analysis:
2922
1. If cell visualization is desired, the pixels along both the I- and
J-axes are unfolded onto a single axis so that all pixels are
arranged back-to-back. The unfolded matrix is sized IJ and W.

2. If many cells are analyzed and the micro-information of the
individual cell is not of interest the entire spectral dataset of
the cell is considered as a whole and an averaged spectrum is
obtained. The unfolded matrix is sized N (the number of cells)
and W.

3. Sometimes, a number of cells are being analyzed and the micro
information is required. In this case, the pixels along the I- and
J-axes and the samples are unfolded. The unfolded matrix is
sized IJN and W. This method is similar to the first way of
unfolding the data. It is not shown in Fig. 1.

The unfolded spectral data is then represented by X and the
classification/concentration information are put in Y. Y is a matrix
if there is more than one source of information (e.g. concentration
for two compounds); otherwise it is a vector. The spectral data is
then pre-processed. Numerous methods (Table 1) are available
for spectral preprocessing and a suitable method can help us
obtain the ‘‘clean spectra” (Fig. 2). Following pre-processing, spec-
tral data are analyzed for the purpose of visualizing the cell biomo-
lecules, classifying different types of cells, or quantifying cell
biomolecules /drugs in the cell (Fig. 1). We can choose the appro-
priate machine learning method for pattern recognition based on
the purpose of bioanalysis. Numerous machine learning methods
have been applied to Raman imaging data analysis for the cell sys-
tem. These methods are briefly introduced in Table 2 and their
characteristics are listed. We generally use the unsupervised meth-



Table 1
Short description and characteristics of the methods for pre- processing.

Method Description Characteristic

Denoise Kernel smoothing Smooths the spectra based on a normal kernel function Parameter free
Savitzky-Golay
differentiation

Estimates the derivative by consecutively fitting window-wised sub-
sets of adjoining data points with a degree (custom designed)
polynomial using linear least squares

Parameter-free; can be used for both baseline
correction and smoothing/noise reduction.

Baseline removal MPLS Finds a rough background based on a penalized least squares function Relatively time-consuming; competitive
results; insensitive to the parameters.

SNV Transposes and then auto-scales the data. Parameter free; scales the data
MSC Each input spectrum is regressed against a reference (e.g. the mean

spectrum) and the results are used to correct the input spectrum.
Reference dependent; scales the data.

Cosmic ray removal Sharp spike
detection

Detects spikes which are significantly narrower than the peaks in the
spectrum.

Insensitive to the relatively wide spikes;
threshold dependent.

Abnormal spike
detection

A series of replicate spectra are compared. A spike is detected and
removed since the probability of a spike occurring at the same point in
multiple spectra is considered low.

Time-consuming since multiple spectra must be
compared.

Image curvature
correction

Optimizes optical systems by comparing spectra from different rows
of pixels on the detector.

User intervention needed for implementation;
parameter based; time-consuming.

Mapping based
technique

The abnormal spikes are detected by comparing the neighboring
spectra from the map.

A relatively large number of pixels needed for
the accuracy of the detection.

Scaling method Normalization by
a peak (e.g.
maximal peak).

Divides every row (spectrum) by the value at the selected peak of that
row (e.g. maximal peak).

Xscaled
n;:ð Þ ¼ Xðn;:Þ

Xðn;peakÞ

Emphasizes the variation of the Raman bands
against the selected peak

Auto-scaling Subtracts the mean and then divides the standard deviation of that
row.

Xscaled
n;:ð Þ ¼ Xðn;:Þ�Xðn;:Þ

stdðX n;peakð Þ Þpr
2

The shape of the spectra may be lost; reduces
the variation in the objects and gathers the
objects towards the center.

Row
normalization
(length/area)

Divides every row/ object by the length (Manhattan distance)/area

(Euclidean distance) of that row.Xscaled
n;:ð Þ ¼ Xðn;:Þ

sumð Xðn;:Þj jÞ
(length)Xscaled

n;:ð Þ ¼ Xðn;:Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sumðXðn;:Þ

2Þ
p (area)

The variation of objects is reduced.

Column
normalization
(length/area)

Divides every column/variable by the length (Manhattan distance)/
area (Euclidean distance) of that column.

Xscaled
:;wð Þ ¼ Xð:;wÞ

sumð Xð:;wÞj jÞ(length)

Xscaled
:;wð Þ ¼ Xð:;wÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sumðXð:;wÞ
2Þ

p (area)

The shape of the spectra may be lost; Reduces
the variation from variables

Mean-center Subtracts the mean of each row for all the

elementsXscaled
n;:ð Þ ¼ Xðn;:Þ � Xðn;:Þ

Reduces the deviation of the data from its
center; gathers the objects towards the center.

n/w represents the nth/wth row /column of the spectral matrix X for scaling. All the X blocks in the paper are arranged in a way that objects are stored in different rows and
variables are stored in different columns.
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ods such as, explorative analysis (e.g. PCA) and cluster analysis (e.g.
HCA) to visualize the cell biomolecules. Supervised classification,
such as SVM, is used to classify different types of cells. As well as
characterization, quantification of the biomolecules or the drug
in the cell is another popular application of Raman imaging, which
is usually achieved based on multivariate regression methods such
as PLS. The result of pattern recognition modelling generally needs
to be validated to ensure the reliability of the data analysis. This
can be achieved using cross-validation, permutation or a confusion
matrix/ receiver operator characteristic (ROC) curve (Fig. 3).

2.3. Pre-processing

Since ideal conditions for data collection are next to impossible
to achieve it is generally not possible to use the raw, unaltered data
for analysis; data must first be processed before pattern recogni-
tion analysis. Pre-processing techniques are expected to improve
the linear relationship between spectral signals and analyte con-
centration by correcting irregularities, removing artefacts and gen-
erally ‘‘cleaning-up” the data. Pre-processing may include some or
all of the following: denoising, baseline correction, cosmic spike
removal, and scaling (Fig. 2). There are numerous methods devel-
oped for these pre-processing steps. The description and character-
istics of those methods are summarized in Table 1.

Heteroscedastic and homoscedastic noise are two types of noise
associated with Raman spectroscopy. Shot noise is homoscedastic,
which is caused by the instrument. Most commercial instruments
have spectral pre-processing software embedded that can reduce
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this type of noise automatically. Kernel smoothing and the
Savitzky-Golay method can be applied for additional denoising
after the measurement if necessary. The baseline signal, which is
the broad underlying spectral background, is often observed in
Raman spectra of biological samples. It is considered as
heteroscedastic noise and is caused by the fluorescent contami-
nants. The Savitzky-Golay method can reduce baseline shift as well
as the homoscedastic noise [47]. As well as the Savitzky-Golay
method, there are a number of other methods for baseline removal,
such as morphological weighted penalized least squares (MPLS)
[48], standard normal variate (SNV) [49], and multiplicative scatter
correction (MSC) [49]. As well as noise, cosmic ray artefact (CRA)
spikes can interfere with the real Raman signals. The sharp CRA
spikes occasionally occur in a small number of adjacent pixels in
the charge-coupled device (CCD) of Raman spectroscopy. They vary
significantly in width and intensity and can distort spectra consid-
erably. Also, a CRA spike can increase the variance of the spectra
when it is overlapped with the signal of interest. This would influ-
ence the accuracy of the multivariate modelling and complicate
signal interpretation. The spike removal methods are classified into
four types, and each of them has different characteristics [50]. After
obtaining the ‘‘clean spectra” via denoising, spike removal and
baseline correction methods, scaling is generally needed to better
understand the data, reduce the unwanted variance, and empha-
size the variance which reveals the information [51–53]. Table 1
shows the equations pertaining to the various scaling methods. It
is essential to choose the appropriate pre-processing methods
based on both the spectral data and the characteristics of the



Fig. 2. Pre-processing of Raman spectra including spike removal, denoise, baseline
correction and scaling. (a) Raw spectra with noise, cosmic spikes and baseline; (b)
‘‘Clean spectra” after spike removal, denoise, baseline correction; (c) Scaled ‘‘clean
spectra”
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pre-processing method (Table 1), and to estimate the influence of
the selected pre-processing methods on the results of the data
analysis. For the purposes of illustrating the pre-processing proce-
dure, we semi-simulated the spectral data based on the measure-
ments of 6 samples of piracetam (various concentrations) mixed
with proline, microcrystalline cellulose, and CaCO3. Spectra of bio-
logical material (protein, nucleus, and lipid) and homoscedastic
noise were introduced artificially to better replicate Raman spec-
tral data of a cell system. The raw spectra clearly exhibit the pres-
ence of a baseline shift and cosmic rays (Fig. 2). Pre-processing of
the raw dataset included noise removal using Kernel smoothing,
baseline calibration based on MPLS and cosmic ray removal based
on the abnormal spike detection method. Fig. 2 (b), which shows
the ‘‘clean spectra”, possesses much clearer Raman bands. Scaling
(row normalization) is conducted based on the ‘‘clean spectra”.
The scaling step is expected to reduce the variance between mea-
surements that results due to noise. Pre-processing methods,
including scaling methods, should be carefully chosen and the ana-
lyst should be particularly wary of introducing spectral distortion.
Gerretzen et al, developed a strategy, Design of Experiments (DOE),
to aid in the selection of the optimal pre-processing methods for a
particular dataset, which would ideally result in a subsequent
boost in model performance [53,54].
2.4. Application of machine learning methods to Raman imaging data
of a cellular system

2.4.1. Pattern recognition
Following pre-processing, the ‘‘clean spectra” should have a

better linear relationship with the concentration of the biochemi-
cal compounds. However, it is common to find Raman spectral
2924
overlap between different biochemical compounds such as pro-
teins, lipids and the nucleus. This makes pattern recognition the
critical step in Raman imaging analysis in the cellular system.
The methods of machine learning help to reveal the biochemical
information hidden within the complex spectral data. The three
main applications of Raman imaging in the cellular system include
visualization of the cell at the biomolecular level, classification of
different types of cells, and quantification of biomolecules / drugs
in the cell (Fig. 1). Table 2 provides a short description and lists
the characteristics of the machine learning methods that are often
implemented when using Raman imaging to analyze the cellular
system. The machine learning method should be carefully chosen
based on the purpose of the analysis and the character of the
machine learning method.

2.4.2. Visualization of cell biomolecules
Single-cell visualization at the biomolecular level, is one of the

most popular applications of Raman imaging in the cellular system.
One reason for its suitability is the scale of the measurement; a
spot size of ~㎛, or even lower, can be obtained with Raman imag-
ing instrumentation [4,21,26,28]. Furthermore, cellular compo-
nents such as proteins, nuclei, and lipids have a spontaneous
Raman signal, which gives rise to their spectral ‘‘fingerprint”,
revealing the biomolecular distribution in the cell. Those ‘‘finger-
prints” can be extracted and better explained using machine learn-
ing methods to show the cell’s spatial structure (Fig. 1). One of the
most common strategies for single-cell visualization involves
reducing the dimension of the spectral matrix by creating new
variables (new coordinates). Examples include PCA, ICA, VCA and
MCR. They decompose the data matrix into two matrices, loadings
and scores. The loading matrix contains the new variables, which
are expected to contain the relevant spectral information from
the biomolecules (Fig. 1). The score matrix provides the corre-
sponding weights of the samples in the new coordinate system.
The scores represent the relative concentrations of the new vari-
ables. Semi-quantification can be achieved, as well as visualization
of the cell, because of this relative concentration information. Gai-
fulina et al. obtained the chemical information from a formalin-
fixed, paraffin-embedded rat colon tissue section by making use
of this form of analysis. The new variables in the PCA model con-
tained the spectral information that explained most of the vari-
ance. Those new variables were related to the spectral
information of the paraffin and the biochemicals (muscle, mucin
and nuclei).The scores showed the relative concentration scatter
of those biochemicals, which provided a superior image in terms
of contrast and sharpness compared to conventional haematoxylin
and eosin (H&E) staining [28]. Similarly, Kallepitis et al. used VCA
modelling for the semi-quantification and visualization of cells at
different stages of macrophage differentiation. They succeeded in
visualizing the scatter of the nucleus, cholesterol and cytoplasm
of the cells in 3-D cell culture [4]. For a VCA model, in contrast
to that of a PCA, the new variables in the loading and score matri-
ces are expected to contain the spectral information of the pure
components. This is why the loadings of the new variables in the
VCA model are more representative of the true biochemical spec-
tral profiles, compared with the loadings of an equivalent PCA
model. As well as the dimension reduction method (e.g. PCA), clus-
ter analysis (HCA and k-means) is another type of method that is
commonly implemented to visualize cell structure (Fig. 1). Instead
of extracting the Raman spectral information of the biochemicals
via new variables, cluster analysis directly groups the objects/pix-
els in the Raman imaging dataset based on common spectral fea-
tures. Cluster analysis doesn’t provide concentration information.
Therefore, it is commonly applied when the relative concentration
of the cellular components is not the purpose of analysis. For
instance, Kochan et al. characterized the biochemicals in live liver



Table 2
Short description and characteristics of some machine learning methods.

Method Description Characteristics

Explorative analysis (unsupervised method):
Decomposing the original data into two
matrices including weight and new
variable (NV) matrix

PCA Explains the systematic structure of the
variability within a multivariate dataset through
the expression of this structure in a relatively low
number of new variables (PCs)

PCs are orthogonal to each other; The first
principle component explains the most variance,
the second explains the second most variance
etc.; PCs are uncorrelated variables

ICA Finds a linear representation of the new
variables, statistically independent, or as
independent as possible from non-Gaussian data

The new variables minimize the mutual
information that exists between them.

VCA Decomposes the original matrix into two
matrices (pure spectral matrix and concentration
matrix) based on the following two assumptions
1) there are pure spectra of the components in
the data and 2)
the affine transformation of a simplex is also a
simplex

The new variables are expected to be the pure
spectra: effective in the hyperspectral
decomposition

MCR Iteratively decomposes the matrix into the
product of the concentration and the pure spectra
of the compounds based on the singular vector
decomposition (SVD) product.

Multiple constraints such as concentration and
pure spectrum can be used. The results depend
on the constraints.

Cluster analysis (unsupervised method):
Grouping the samples which are more
similar (in some sense) to each other than
to those in other groups (clusters)

HCA Recursively partitions a dataset into clusters
having an increasingly finer granularity.

Excellent performance for small datasets.

k-means partitions samples into k clusters with the
principle that the sample belongs to the cluster
with the nearest mean value

Excellent performance for large datasets.

Classification methods (supervised method):
Classifying the samples based on the
training data

PLS-DA Reduces the variable dimension by maximizing
the covariance matrix between X and Y,
where X indicates the spectral response and Y
consists of the quality variables, which is
classification information.

Easy to explain the result. It might provide an
over-optimistic result.

LDA Aims to find a linear combination of variables
that separates the classes of samples

Excellent performance with a limited number of
training observations.

KNN Classifies the samples according to its k-nearest
neighbour.

k-dependent

SVM Finds the hyperplane that maximizes the margins
between both classes.

Memory efficient; parameter-free

ANN Learns to separate samples into different classes
by finding common features between samples of
the known classes.

Parametric classifier; relatively slow; the result is
not easy to explain; good performance with noisy
(non-linear) data; good performance with a large
volume data.

t-SNE Illustrates high-dimensional data in a two or
three-dimensional map and clusters similar
objects based on a t-distribution test

Suitable for a large-scale dataset; the result is
dependent on the parameter, e.g. number of close
neighbors; may produce an over-optimistic result

Quantification (supervised method):
Quantifying the samples based on the
known concentrations of the training data.

MCR Explained in the explorative section in this table;
Uses a concentration constraint for
quantification.

Multiple constraints can be used; Results are
dependent on constraints.

PLS-R Explained in the explorative section in this table;
Y consists of concentration information.

The result can be over-optimistic.

PLS-DA:Partial least squares discriminant analysis; PLS-R: Partial least squares regression.
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sinusoidal endothelial cells isolated from the murine liver based on
HCA and k-means cluster analysis [55]. The cluster analysis of the
Raman imaging dataset illustrated the areas of the cell occupied by
the different biochemicals, e.g. nucleus and lipid droplets, and
clearly revealed the locations of the biochemical components in
the two types of cell (hepatocytes and Hepatic Stellate Cells).

2.4.3. Classification of different types of cells
As well as visualizing the biomolecules within the cell, another

popular application of Raman imaging is to classify cells according
to various factors including different stages of tumour develop-
ment [9–14], different species of cells [30], and cell differentiation
[2,29] (Fig. 1). It is generally achieved by supervised machine
learning methods (SVM, PLS-DA, KNN, ANN, t-SNE and LDA
(Table 2)) that relate the mean Raman spectrum of each sample
(X block) to the classification reference (Y block) of that sample.
Note that PCA is generally used for explorative analysis or variable
reduction prior to the supervised machine learning application. A
recent example of how a classification analysis might be carried
out can be found in a study by Kobayashi-Kirschvink et al., in
which a discriminant analysis (PCA and LDA) resulted in the iden-
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tification of distinct cellular states under different cell culture con-
ditions. They related the averaged Raman spectra of each cell (X
block) to cells from different cell cultures (Y block) using a 5-D
PCA-LDA model. t-SNE was subsequently used to visualize this rel-
atively high dimension data in a 2-D coordinate plot where cells
from different cell cultures were classified appropriately [2]. As
well as identifying cells by cell culture, classifying different stages
of tumour cell growth is another popular application of Raman
imaging in cell systems [9–14]. For example, Tolstik et al. success-
fully classified the liver cancer cell at different stages of tumour
growth using SVM to model the dimensionally reduced Raman
imaging data [14]. The SVM model related the averaged Raman
spectrum of each cell to different cancer cell types and different
stages of tumour growth. Furthermore, the classification model
was improved by using the averaged spectra of different cell com-
partments (nucleus, cytoplasm and lipid) instead of the averaged
spectrum of the whole cell. This machine learning method coupled
with Raman imaging helped to improve the diagnosis accuracy of
liver cancer compared with the traditional method (examined de
novo lipogenesis), which makes Raman imaging a potential alter-
native detection method for liver cancer.



Fig. 3. Validation methods for machine learning results, including cross-validation, permutation, confusion matrix and receiver operator characteristic (ROC) curve.
Matrix X represents the spectral dataset and Y represents the classification/concentration information (a) Cross-validation illustration using the Leave-One-Out (LOO)
strategy as an example. Each time a single sample is left out and the remaining samples are used as a training set to build the multivariate model. This step is repeated for all
the samples. The modelling error is calculated for each multivariate model with different numbers of components (the plot on the right side). (b) The permutation test
shuffles the samples in the X block. The samples in the Y block remain in the same order as the original data. Pseudo machine learning models are built and statistical tests are
applied to compare the original model with the pseudo machine learning models. The permutation test can be applied with different parameters (e.g. the number of
components), and only the models with p-values lower than 0.05 are considered statistically reliable (the plot on the right side). (c) Confusion matrix indicating the number
of true positive, false positive, false negative and true negative samples predicted by the machine learning method. Specificity and sensitivity are related to the number of
samples that fall into each category (Equation (1) and (2)). The ROC curve shows the relationship between specificity and sensitivity of the models where the threshold of the
classifier is varied.
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2.4.4. Quantification in the cell system
Raman imaging can be used for quantification analysis as well

as for characterization purposes (single-cell visualization and cell
type classification) in cell systems. The quantification analysis
based on Raman imaging can be applied to biomolecules or to a
specific drug introduced into a cell system [5,6,16,31]. Both
macro- and micro- concentration levels can be interrogated by
Raman imaging quantification analysis. When a single concentra-
tion level is determined for the analyte of interest this is referred
to as the macro-concentration. However, when the concentration
of the analyte of interest within each individual pixel across the
cell is required this is referred to as the micro-concentration. For
both types of quantification, a calibration model is built by relating
the known concentration of the analyte to the averaged Raman
2926
spectrum of each cell. The known concentration is generally
obtained using chromatography-based methods. Based on the cal-
ibration model, these compounds can be quantified at the macro-
level by using the averaged spectrum for a single cell in the predic-
tion set. The micro-concentration can also be determined based on
the Raman spectra collected from different locations within the cell
(Fig. 1). He et al. carried out both micro- and macro- quantification
of starch, protein, and triacylglycerol in microalgal cells using PLSR
modelling [16]. The calibration curve was built by relating the con-
centration of the components of interest (starch, protein, and tria-
cylglycerol) within the cell to the averaged Raman spectrum of that
cell. The concentrations of these components were estimated by
thin-layer chromatography/gas chromatography-mass spectrome-
try. Based on the calibration model, the macro quantification result



Table 3
Short description and characteristics of the software including Raman imaging data analysis function.

Software Functions Programming

PeakFit Spectral pre-processing; visualization tool No
ImageLab Spectral pre-processing; univariate analysis for images No
Origin for Spectroscopy Spectral processing and visualization tool; rich resource for pre-processing methods; multivariate analysis for spectral

analysis
No

CytoSpec Hyperspectral imaging processing tool; spectral pre-processing; image segmentation (uni- and multivariate) No
The Unscrambler X Multi/uni-variate methods for quantification/qualification No
SIMCA Pre-processing; multi/uni-variate methods for quantification/qualification No
Matlab Computer language with a number of toolboxes/GUIs, such as Biodata, EMSC, MIA, MCR-ALS, PLS, Raman processing

program, HYPER-Tools, HIA developed for spectral pre-processing and multivariate analysis.
Yes (no for
GUI)

R ChemoSpec, HyperSpec Yes (no for
GUI)

Python Pychem, Pyvib2 Yes (no for
GUI)
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was obtained by using the averaged Raman spectrum of each cell
in the prediction set. Furthermore, the micro concentrations of
all the components were also determined from the Raman spectra
collected from different locations in the cells. A histogram of the
micro concentrations shows how the distribution of those biomo-
lecules in the microalgal cell is changing dynamically in the cell
culture at different time points. It should be noted that the quan-
tification results using a PLS model developed from the complete
Raman spectra has significantly higher precision than results based
on single peak models.

2.5. Software

There are a number of software packages available for the full
data analysis procedure, including preprocessing, multivariate
analysis and validation. These software packages can be classified
into two categories based on whether or not they require prior pro-
gramming knowledge (Table 3). Software-based on computer lan-
guages such as Matlab, R, and Python require the analyst to have
some programming skills in order to carry out the data analysis.
Data analysis implemented with these software packages is more
flexible, since most of the methods can be implemented. Program-
ming is not needed for the other types of software such as The
Unscrambler X, SIMCA, CytoSpec, Origin for Spectroscopy, Image-
Lab and PeakFit. Some graphical user interfaces (GUI) based on
Matlab have been developed that can be implemented without
programming, such as Biodata, EMSC, MIA, MCR-ALS, PLS, Raman
processing program, HYPER-Tools, HIA. Only the methods installed
in the software can be applied for data analysis. The choice of data
analysis software should be based on the goal of the analysis.

2.6. Validation of the pattern recognition model

2.6.1. Methods of pattern recognition model validation
Once the spectral data has been pre-processed and a pattern

recognition model has been developed, one further step is required
to check the reliability of the model. This is because pattern recog-
nition models, especially the ones based on supervised machine
learning methods, might provide over-optimistic results. Thus, no
matter for classification or quantification, it is critical to validate
the results from a pattern recognition model, especially for those
that have low sample numbers and many variables. There are a
few methods developed for validating machine learning results,
including, cross-validation [56], permutation tests [56], confusion
matrices and ROC curves [57] (Fig. 3). Validation methods can be
chosen based on the machine learning method used for modelling.
For example, a result based on PLS modelling is usually validated
by cross-validation and/or a permutation test. Confusion matrix
validation is commonly used to validate classification modelling.
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ROC curves are also used to validate classification modelling but
they can only be used for binary classification models.

2.6.2. Cross-validation
Cross-validation estimates the performance of a predicted

model. It creates a series of validation models through sampling,
which involves removing a subset of samples from the full dataset
(validation samples), constructing a model using the remaining
samples (training samples), and estimating the model error by
applying the training model to the validation samples. The mod-
elling error can be estimated using the sum of the squares of all
the resulting prediction errors (PRESS). The Leave-One-Out (LOO)
strategy is a typical cross-validation method, which leaves one
sample out each time before building the validation model
(Fig. 3). As well as LOO, there are a number of cross-validation
methods, such as Venetian Blinds, Contiguous Blocks, and Random
Subsets, or the sampling method can be customized. We can
choose the sampling method based on a few factors including,
the ordering of the samples, the number of samples, the number
of replicate samples, the modelling purpose, the costs of modelling
error, as well as the time available for the cross-validation analysis.
Cross-validation is commonly used to estimate the correct number
of new variables in the variable reduction method, e.g. the number
of PCs in a PCA model. The number of components related to the
model with the lowest cross-validation error should be chosen.
Meksiarun et al. used cross-validation to estimate the number of
ICA components to extract from a Raman imaging spectral dataset
of paraffin-embedded cancer tissue [58]. Cross-validation performs
better in predicting component numbers compared with some
other commonly used methods such as scree plots where a high
level of noise and nonlinearity is often present [59]. As well as pre-
dicting the number of components, cross-validation is one of the
most widely used methods to estimate the performance of classifi-
cation models. Furthermore, it can be applied to most machine
learning methods. For example, Tolstik et al. employed cross-
validation to estimate the performance of a predictive classifica-
tion model that was developed using SVM. The low value of the rel-
ative error from the cross-validation model indicated satisfactory
discrimination and classification of different liver cancer cells
and their proliferation states by Raman spectroscopic imaging [14].

2.6.3. Permutation
As well as cross-validation, the permutation test is another val-

idation method that helps us identify an over-optimized model. It
is based on a different sampling strategy. It builds a number (100 s
or 1000 s) of pseudo pattern recognition models based on spectral
data (X block) where the samples have been placed in a random
order (samples in the X block are shuffled) while the Y block is left
in the original order (Fig. 3). Those pseudo pattern recognition
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models are then compared with the original pattern recognition
model using probability tests, such as a randomization t-test. The
p-value indicates the significance of the difference between the
original and pseudo pattern recognition model. Generally, a p-
value higher than 5% indicates an unreliable model. Permutation
tests can also be used to choose the optimized parameter for the
pattern recognition model, e.g. the number of components in mul-
tivariate analysis modelling. Generally, we should choose the
model with the lowest p-value, and only models with a p-value
lower than 0.05 should be considered. A permutation test can be
applied to most machine learning methods, both quantification
and classification. Kobayashi-Kirschvink et al. used a permutation
plot to validate the performance of a classification model for iden-
tifying cells from different environments. A total of 10,000 permu-
tations were carried out to assess the exceptional performance of
the LDA classification model. A low p-value supported the results
of the model [2].

2.6.4. Confusion matrix and ROC
The confusion matrix is a useful tool to estimate the perfor-

mance of a supervised classification model. A binary classification
confusion matrix (Fig. 3) consists of a 2 � 2 matrix that lists the
number of False Positives, False Negatives, True Positives and True
Negatives that have resulted from the validation test. The confu-
sion matrix can also be expanded for models with more than two
classifiers. The True Positive (sensitivity) rate and False Positive
(1 - specificity) rate are used to estimate the performance of clas-
sification, which are estimated using Equation (1) and (2):

Sensitiv ity ¼ True positive
True positiveþ False negative ð1Þ

1� Specificity ¼ False positive
False positiveþ True negative ð2Þ

A sensitivity value close to 1, and a (1 - specificity) value close
to 0 indicate a highly accurate classifier. Both sensitivity and (1 -
specificity) vary depending on the selected threshold of the classi-
fier in the model. The receiver operator characteristic (ROC) curve
is a graphical plot of (1 - specificity) versus sensitivity where the
threshold value is varied. If the classifier, for example, is concentra-
tion, the analyst must decide on a threshold value for high concen-
tration. If all concentration values are considered high, of course
every result will be a true positive and no result will be a false pos-
itive. The opposite is true if no concentration values are considered
high. The ROC curve shows the variation in between these two
extremes. In short it illustrates the quality of the two classifier
model (Fig. 3). The closer the curve is to the diagonal, the less accu-
rate the model. To measure the quality of the model, we use the
area under the ROC curve (AUROC), which varies from 0 to 1. The
higher the value of the AUROC the better the separation between
classes. A value close to 0.5 indicates no separation between
classes. Hsu et al. used the sensitivity and specificity values to
highlight the accuracy of their classification model, which was
based on the machine learning method of t-SNE. The high values
of sensitivity and specificity (larger than 95%) indicate successful
classification of human pluripotent stem cell-derived neurons at
different developmental stages [60].

2.7. Sampling

A relatively long integration time is generally needed to obtain
a sufficient signal-to-noise ratio for spontaneous Raman Imaging.
This limits the applications of Raman imaging, as the long mea-
surement time is a problem for both experiments with numerous
samples, and dynamic analysis. Sample-size planning, which is also
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known simply as sampling, should estimate the minimal number
of measurements required to achieve robust and significant
results. Note, ‘‘sample” here indicates the pixels in the Ramanmea-
surement rather than the cell sample. The appropriate sampling
should reduce the measurement time and improve the efficiency
of cell imaging. There are a number of sampling methods available,
the selection of which depends on the purpose of the Raman imag-
ing analysis [61–64]. Schie et al. estimated the number of samples
required based on whether the mean spectrum can detect the
drug-induced changes of the chemotherapy agent, doxorubicin,
in the cell [63]. Also, a number of sampling methods were devel-
oped for the purpose of achieving a reasonable classification result
using the minimal number of measurements. They built multivari-
ate classification models for different cell types based on spectral
data having different numbers of measurements. Following this,
a statistical test such as the effect size is applied. The effect size
may be determined, for example, from a plot of the error frommul-
tivariate classification modelling versus the number of measure-
ments taken [61,62]. As well as estimating the minimal number
of measurements, Zhang et al. developed a dynamic sparse sam-
pling strategy. This strategy involves choosing the location of the
measurement dynamically, based on the multivariate classification
result within a cell [64].
3. Summary and outlook

Raman imaging allows label-free, non-destructive biomolecular
analysis at the cellular level by generating detailed biochemical
images. Currently, there is a strong drive to improve the Raman
imaging instrumentation in order to better apply Raman imaging
in the cellular system. As well as optimizing the instrumentation,
the application of the appropriate data mining methods plays a
critical role in deciphering the Raman imaging information. There
are a number of methods developed for the three main stages of
data mining in Raman spectral analysis, including pre-processing,
pattern recognition and validation. These methods can be imple-
mented by various software packages, which are introduced in
the review paper. The first step of pre-processing should help us
obtain the ‘‘clean spectra” by denoising, spike removal, baseline
correction and scaling. Following pre-processing, machine learning
methods facilitate pattern recognition in Raman imaging data of
the cellular system. This makes certain modes of analysis possible,
including single-cell visualization, cell type classification and
quantification analysis. Biomolecular visualization can be achieved
using cluster methods such as HCA and k-means, and dimension
reduction methods such as PCA, ICA, VCA and MCR. As well as visu-
alizing the cell biomolecules, classifying different types of cells is
another popular application that can be achieved based on super-
vised classification methods such as SVM, PLS-DA, KNN, ANN and
LDA. Methods such as PLSR and MCR can be used to quantify, as
well as characterize, the biomolecules or drugs in a cellular system.
After the pattern recognition step it is critical to validate the result
using validation methods such as cross-validation, permutation
tests and confusion matrices/ROC curves. The validation method
is selected based on the machine learning method used. Sample
size planning is another important aspect of Raman imaging data
analysis. This involves estimating the minimal number of measure-
ments required for meaningful Raman imaging data analysis. It
reduces measurement time and allows for a more efficient exper-
imental procedure in general.

Currently it is common to apply data mining, based on machine
learning methods, to Raman imaging datasets of the cellular sys-
tem instead of using traditional univariate analysis. This is due to
the efficiency of machine learning methods compared to univariate
analysis. However, those machine learning methods should be
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carefully applied, validated and explained based on the relation-
ship between the mathematical result and the physical/biochemi-
cal meaning. For example, Westerhuis et al. pointed out that a
classification result based on PLS can be over-optimistic and even
random samples can be classified perfectly using a score plot from
PLS modelling [56]. Data mining in Raman imaging of cellular sys-
tems can be better applied if those machine learning methods are
better understood. Also, in order to better implement data mining,
more and more biologists are beginning to learn how to program
based on R, Matlab or Python, which is another reason for the
growing popularity of machine learning methods in the life
sciences. Data mining can be implemented in a flexible way based
on programming. Furthermore, the development of intuitive soft-
ware has helped to promote the implementation of data mining
methods in Raman imaging of cellular systems to some extent.
However, not many software packages are specialized in data min-
ing of Raman imaging datasets of cellular systems. Biologists must
explore the methods and workflow independently in order to
obtain the bioinformation from the spectral data. Also, spectral
databases of common biomolecules are not available yet. Due to
the development of Raman imaging of cell systems, it is likely that
more and more software packages and databases, pertinent to data
mining of Raman imaging of cellular systems, will be released. This
will surely accelerate developments in data mining of Raman
imaging datasets of the cellular system.
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