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Monteil et al. (1) comment that, although the hypothesis of
ancient symbiotic events leading to transfer of magnetite
biomineralization genes (MBGs) from magnetotactic bacteria
(MTB) to eukaryotes has been raised for decades (2),
Bellinger et al. (3) do not provide evidence supporting that
MBGs are, per se, functionally equivalent to magnetosome
genes homologs. Obvious hypothesis precursors include
quantifying whether eukaryote genomes contain the neces-
sary genetic machinery, that is, suites of distant homologs of
MTB magnetosome biomineralization genes, and associating
those with magnetite production. Accordingly, we (3) exam-
ined genomes of 13 phylogenetically diverse eukaryotes,
many known for keen navigational sense, and the Asgard
archea clade Lokiarchaeota. If MBGs were absent in some or
all, then production of biogenic magnetite across diverse life
forms could only be explained by convergent evolution.
However, our findings point to a different path in support of
ancient symbiotic events: Distant homologs of MBGs are uni-
versally present in eukaryote genomes (and Lokiarchaeota),
including four of five core genes universally shared by MTB
Nitrospirae and Proteobacteria (4), composing a subset of
the minimal set of genes required for magnetosome biomin-
eralization in prokaryotes (5, 6). Our genetic hypothesis test-
ing was then extended to include transcriptomics data from
candidate magnetite-based magnetoreceptors contained in
salmonid olfactory tissues (7). That distant homologs of
MBGs were differentially and more highly expressed in mag-
netic relative to nonmagnetic olfactory cells is compelling evi-
dence for our bold, yet not unprecedented (2), suggestion:
These genes are components of a common, ancient genetic
mechanism utilized for magnetite production. It is unsurpris-
ing that our needle in a haystack search revealed “few mag-
netosome genes,” as asserted by ref. 1, considering those
specific gene targets comprised ≪1% of all possible salmo-
nid proteins, and MTB versus salmonid genome complexity.
For example, genome sizes of MTB Magnetospirillum gryphis-
waldense (8) and Chinook salmon (9) are ∼4.16 megabases
versus ∼2.29 gigabases, with corresponding numbers of total
proteins, 3,903 versus 49,936. Thus, our interpretation is
hardly “a biased overinterpretation” (1).

Likewise, the observation that “homologs like the selected
11 overexpressed genes were also underexpressed” (1) is
unsurprising. Whole genome duplication events produced
eight copies of the original deuterostome genome in ray-
finned fish (10), salmonids underwent an additional genome
duplication, and orthologs and paralogs functionally diverge
over time (9). Further, the statement that “mandatory
genes/motifs for the magnetite biomineralization like the
unique magnetochrome motif are absent in the salmon
transcriptome” (1) is not strictly correct. Although transcripts
containing the cytochrome motif CXXCH (11) were absent
from the differentially expressed gene dataset, that motif is
common among salmonid proteins, occurring ∼144 times
within the Chinook salmon genome (3). Functional compen-
sation through interactions with other (nondifferentially
expressed) genes is certainly possible.

We agree with ref. 1 that ancient symbiosis leading to
transfer of magnetite biomineralization genetic machinery
from MTB to eukaryotes has long been raised as a good
idea, and further their assertion that experimental evi-
dence to determine whether functional counterparts
involved in biomineralization are involved in magnetic
sensory transduction is critical to resolving the genetic
underpinnings of this fascinating sensory process.
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