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Abstract

Background: The ability of plants to withstand and thrive in an adverse environment is crucial to ensure their surviv-
ability and yield performance. The WRKY transcription factors (TFs) have crucial roles in plant growth, development
and stress response, particularly drought stress. In oil palm, drought is recognized as one of the major yield limiting
factors. However, the roles of WRKY TFs in the drought response of oil palm is unclear.

Results: Herein, we studied the transcriptome of drought treated oil palm leaf and identified 40 differentially
expressed genes (DEGs) of WRKY TFs, of which 32 DEGs were upregulated and 8 DEGs were downregulated in
response to drought stress in oil palm. They were categorized into Groups | to IV based on the numbers of WRKY
domain and the structural difference in the zinc finger domain. Multiple stress- and hormone-responsive cis-reg-
ulatory elements were detected in the drought responsive oil palm EgWRKY (Dro-EgWRKY) genes. Fourteen of the

15 selected oil palm WRKY (EgWRKY) genes demonstrated a tissue-specific expression profile except for EgWRKY28
(Group ), which was expressed in all tissues tested. The expression levels of 15 candidate £gWRKYs were upregulated
upon salinity and heat treatments, while several genes were also inducible by abscisic acid, methyl jasmonate, salicylic
acid and hydrogen peroxide treatments. Members of the Group Il WRKY TFs including EgWRKY07, 26, 40, 52, 59, 73 and
81 displayed multiple roles in drought- and salinity-response under the modulation of phytohormones.

Conclusions: EgWRKY TFs of oil palm are involved in phytohormones and abiotic stress responses including drought,
salinity and heat. EgWRKY07, 26, 59 and 81 from Group Il maybe important regulators in modulating responses of dif-

ferent abiotic stresses. Further functional analysis is required to understand the underlying mechanism of WRKY TFs in
the regulatory network of drought stress.

Keywords: Oil palm, Drought, Salinity, Heat, Abscisic acid, Salicylic acid, Hydrogen peroxide, Group Ill WRKY, Reactive
oxygen species

Background

WRKY protein is one of the largest transcription fac-

tor (TF) family found in the plant kingdom. There are

197 WRKY members in Glycine max [1], 160 members
*Correspondence: leefong.chin@simedarbyplantation.com in Trificum aestivum [2] and 145 members in Brassica
! Sime Darby Plantation Technology Centre Sdn. Bhd, 43400 Serdang, rapa [3]. WRKY TF is characterized by the presence of
Selangor, Malaysia a highly conserved WRKY domain comprising of two
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and the zinc finger binding motif which spans about
60 amino acids in length [4]. Other forms of hepta-
peptide found in the WRKY TF include WRKYGKK,
WKKYGQK, WRKYGQR and WRKYGEK [5]. The
zinc finger structure can be divided based on the C2H2
motif (C-X4-5-C-X22-23-H-X1-H) and the C2HC motif
(C-X5-7-C-X2-3-H-X1-C) [4]. The C-terminus of WRKY
domain has been shown to have a high binding affinity
to its cognate cis-acting element, designated as W-box
(C/T)TGAC(T/C) via positively charged p-strands [4].
As aresult, the WRKY proteins are categorized into three
groups based on the number of WRKY domains and the
zinc finger binding motifs. Group I members have two
WRKY domains at both termini whereas Group II and
III members have only one WRKY domain. Group I and
II members share the same C2H2-type zinc finger motif
while Group III members have the C2HC-type. Further-
more, Group II members can be divided into five sub-
groups based on their phylogenetic relationships [6].
Being a TF superfamily, WRKY is involved in many bio-
logical processes at different stages of the plant life cycle
with great emphasis on plant defence response towards
biotic and abiotic stresses through the transcription reg-
ulation of stress-responsive genes modulated by phyto-
hormones. WRKY TFs are functionally expressed during
pollen development [7, 8], adventitious root formation
[9], flowering [10], leaf senescence [11], callus develop-
ment [12] and homeostasis of phosphate [13]. Numer-
ous studies have reported the involvement of WRKYs in
the response of plants to multiple abiotic stresses such as
drought, submergence, heat, cold, salinity and ion toxic-
ity in various plants [14—17], under the influence of phy-
tohormone signals, particularly ABA. In Arabidopsis,
AtWRKY46 was upregulated by drought, salinity, SA and
hydrogen peroxide (H,0O,) treatments [18]. GhWRKY41
[16] from Gossypium hirsutum responded positively to
drought and salt stresses in transgenic Nicotiana bentha-
miana via modulation of reactive oxygen species [19]
production in ABA-dependent manner. Extensive stud-
ies in T. aestivum disclosed multiple WRKYs involved in
different abiotic stresses particularly in drought and salt
stresses such as TaWRKY1, TaWRKY33 [17] and TaW-
RKY46 [20]. TaWRKY46 exhibited an enhanced toler-
ance to mannitol treatment in transgenic Arabidopsis
by increasing the expression of several stress-related
genes, namely A-I-pyrroline-5-carboxylate synthetase
1 (P5CS1), dehydration-responsive 29B (RD29B), dehy-
dration-response element-binding protein 2A (DREB2A),
ABA-response element binding factor 3 (ABF3), C repeat/
dehydration-responsive element-binding factor 2 and
3 (CBF2, 3), via ABA-dependent and ABA-independ-
ent pathways [20]. In Fragaria vesca, the expression of
FvyWRKY42 was induced by salt, drought, SA, MeJA
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and ABA treatments, and overexpression of FvWRKY42
enhanced salt and drought stress tolerance [21].

Oil palm is a highly productive oil crop contributing
to approximately 40% of global vegetable oil demand as
food, animal feed and fuel, produced from less than 5.0-
5.5% of the total global oil crop area (approximately 425
Mbha) in year 2020 [22]. Oil palm yield is critically affected
by environmental factors, particularly drought stress
resulting from low rainfall and extended dry seasons
caused by climate change, such as the E/ Ni7io events. The
severe El Nifo events in 1997-1998 and 2015-2016 caused
declination of palm oil yield [23]. Drought stress caused
long term impacts including abnormal frond develop-
ment, low floral sex ratio leading to yield loss [24], hence,
it is imperative to understand the underlying molecular
events that cause these responses during drought stress
to improve oil palm adaptability and tolerance. Xiao et al.
[25] reported 95 members of WRKY TFs in oil palm
genome and 17 EgWRKYs upregulated at 2-fold or higher
by cold stress based on the transcriptomic data [25].
Out of 17 EgWRKYs genes, six of these cold-responsive
EgWRKYs were also found to be induced by drought and
salinity stresses [25]. However, little is known about the
repertoire of WRKY transcripts in the transcriptome
of drought treated oil palms and the response of these
WRKY genes to different phytohormones. We analysed
the transcriptomes of oil palm seedlings under drought
stress to identify differentially expressed EgWRKY TFs
involved in drought stress response. Phylogenetics analy-
sis and gene expression characterization of these genes in
response abiotic stresses and phytohormones were also
conducted to close the current knowledge gap as well as
to evaluate the potential of oil palm WRKY TFs in con-
ferring drought tolerance.

Results

Identification of Dro-EgWRKY genes

from the transcriptome of drought-treated oil palms

To elucidate the roles of TFs in drought response, we
first identified the TFs among the DEGs identified from
the RNA-Seq study on oil palm treated with drought
stress in comparison to untreated control oil palm. A
total of 6998 DEGs were identified from the RNA-seq
analysis; whereby 4175 DEGs were upregulated and 2823
DEGs were downregulated in response to drought stress
(Fig. 1A). Approximately 10% or 675 DEGs among the
identified DEGs were TF genes; 389 were upregulated
and 286 were downregulated in response to drought
stress (Fig. 1B). They were categorized into different
TF families, such as AP2-EREBP, bHLH, bZIP, C2H2,
MYB, NAC, Orphans, SBP and WRKY which are known
as stress-related TF families (Fig. 1C). Among the 40
WRKYs identified, 32 WRKYs were upregulated by
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Fig. 1 Differential expressed genes in response to drought stress. A Volcano plot of differentially expressed genes in drought (dro) vs control (ctrl).
The x-axis shows the fold change in gene expression between different samples, and the y-axis shows the statistical significance of the differences.
Among 6998 DEGs, 4175 DEGs were up-regulated and 2823 DEGs were down-regulated. Significantly up and down regulated genes are highlighted
in red and green, respectively. Genes did not express differently between treatment group and control group are in blue. B Transcription analysis
revealed approximately 10% of total up-regulated (389 TFs) and down-regulated DEGs (286 TFs) were of transcription factors from different TF
families. C Further classification of drought response TFs into different transcription factor families. Significantly up-regulated and down-regulated
of TFs and non-TFs are highlighted in blue and orange, respectively. Percentage represents total of up-regulated DEGs in the respective TF families
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drought stress, representing the highest percentage (80%)
of TF family that was upregulated by drought stress while
8 WRKYs were downregulated (Fig. 1C). WRKY TFs have
gained much attention recently in stress response par-
ticularly drought stress in many plants [26, 27]. Drought
affects oil palm vyield, however, limited knowledge is
available on the function of WRKYs in drought stress
response in oil palm. Thus, 40 differentially expressed
WRKY genes were further analysed to understand their
roles in abiotic stress response especially drought stress.

Dro-EgWRKY are structurally classified into Group I-1V

The 40 drought responsive EgWRKY genes were named
and categorized (Table 1) with reference to the oil palm
WRKY TFs mentioned in [25]. The chromosomal loca-
tions of 3 EgWRKY genes (EgWRKY84, 88 and 94) which
were not mapped earlier by Xiao et al. [25] were now
successfully mapped to chromosome (CHR) 1, 2 and
15 respectively using the improved version of oil palm
genome assembly [19]. EgWRKY06 has the shortest open
reading frame of 528 bp encoding for 176 amino acids
while EgWRKY18 has the longest open reading frame of
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2214 bp encoding 738 amino acids. Most of the EgWRKY
genes were predicted to be localized in the nucleus
except for EgWRKYS56 which was predicted to be local-
ized in the chloroplast. To gain insights into the func-
tions of targeted EgWRKY genes, we searched for the
rice WRKY proteins with the highest identities. Oil palm
EgWRKY genes that have the highest sequence identities
to the same rice WRKY gene may display a similar expres-
sion pattern in response to drought stress. For instance,
EgWRKY19, 63, 65, 69 (that share the highest identities
with OsWRKY51), EgWRKY07, 26, 52, 81 (that share the
highest identities with OsWRKY69), EgWRKY34, 72, 80
(that share the highest identities with OsWRKY24) and
EgWRKY39, 47 and 84 (that share the highest identities
with OsWRKY29 gene), showed upregulation by drought
stress (Table 1).

Gene name was assigned based on by Xiao et al. [25].
Gene locus was determined based on oil palm reference
genome accession number PRJNA192219 deposited in
NCBI. Gene’s boundaries of exons and introns was deter-
mined using the GSDS2.0 (http://gsds.gao-lab.org/).
Conserved domains analysis of EgWRKY amino acid
sequences were identified using CDD database (http://
www.ncbi.nlm.nih.gov/cdd/).  Subcellular localization
prediction was conducted using WoLF PSORT (https://
wolfpsort.hgc.jp/). Rice orthologous genes identified
using BLASTP search with default parameters and top
hit was selected based on the alignment result (http://
rice.plantbiology.msu.edu/analyses_search_blast.shtml).

The 40 EgWRKY genes were classified based on the
number of conserved heptapeptide and zinc finger pat-
tern in their protein sequences (Table 1). Among the
40 EgWRKY genes, 6 EgWRKY genes were categorized
into Group I, 26 EgWRKY genes belong to Group 1I, 7
EgWRKY genes in Group III and only EgWRKY29 were
categorized in Group IV. Group II was sub-divided into 5
subgroups according to the unique pattern of the WRKY
domain. Group Ilc consisted of the highest number of
EgWRKY genes among all groups with 11 members that
possess either the common conserved heptapeptide pat-
tern, WRKYGQK or a specific conserved heptapeptide
patterns, WRKYGKK. The phylogenetic tree depicts
the relationship and structural diversity among the 40
EgWRKY genes (Fig. 2A) in the 8 clades representing the
3 main Groups (I, III and IV) and 5 Subgroups (Ila-e),
that are similar with the grouping based on the conserved
domains (Fig. 2B). EgWRKY29 protein which does not
have the zinc finger motif in the WRKY domain was clas-
sified in Group IV. Members in Group I showed closer
relationship with the members in Subgroup Ilc. Multi-
ple sequence alignment of conserved WRKY domain in
the 40 EgWRKY proteins was performed to study the
variation among and within the Groups or Subgroups
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(Fig. 2B). Two members in Subgroup IIb i.e., EgWRKY28
and 61 were 98.3% identical to each other. Members
within other Subgroups also showed higher sequence
identity (more than 80%) except for Subgroup Ilc while
the lowest sequence similarity was observed among the
members within Group III (50%).

We further identified the conserved domains in the
EgWRKY amino acid sequences using the CDD data-
base. The complete WRKY domain was observed in 39
EgWRKY proteins except for EQWRKY?29 in which lacks
the zinc finger motif (Fig. 3A). We noticed the presence
of plant zinc cluster domain (40 residues) associated
with the WRKY domain in all the members of Subgroup
IId. Basic leucine zipper (bZIP) domain (70 residues)
involved in DNA-binding and dimerization was found in
EgWRKY66 of Subgroup Ila. EQWRKY61 protein con-
tains an uncharacterized conserved domain (COG4372)
with unknown function while EgWRKY73 protein has a
ligand-dependent nuclear receptor-interacting factor 1
(LRIF) domain. Fifteen motifs specific to EgWRKY pro-
teins were identified (Fig. 3B). Motif 1 which comprised
of a heptapeptide WRKYG[Q/K]K was widely distributed
in all 40 EgWRKY proteins. We observed that the distri-
bution patterns of the motifs were specific to Group or
Subgroups, for instance, motifs 3 and 15 were found only
in Group I, motif 5 in Subgroup IId and motif 9 in Sub-
group IId.

EgWRKY genes are enriched with light-, stress-

and hormone-responsive elements in their promoters

To identify the cis-regulatory elements corresponding
to stress response and hormone signalling, we per-
formed in-silico analysis of cis-regulatory elements
in the 2 kb upstream sequence which covers both the
5-UTR and promoter of the targeted EgWRKY genes.
Light-responsive elements (GT1-motif, G-box and Sp1
element) and stress-responsive elements (dehydrin-
responsive element, DRE; F-box; cis-acting element
involved in low-temperature responsiveness, LTR)
were predicted and found to be significantly abun-
dant in the promoter regions of all the 40 differentially
expressed EgWRKY genes (Fig. 4A). The highest num-
ber of light responsive elements (27 binding sites) was
found in the promoter of EgWRKY18 while the high-
est number of stress-responsive elements (25 sites)
was predicted in the promoters of EgWRKY39 and 03.
The stress-responsive elements including MBS (MYB
TF binding site involved in drought inducibility), LTR
and TC-rich repeats (cis-acting element involved
in defence and stress responsiveness) were found in
the promoter of EgWRKY84. We also found W box
element in the promoter of 27 EgWRKY genes and
EgWRKY®65 has the highest number i.e. 5 copies of W
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Fig. 2 Phylogenetic analysis and multiple alignment analysis of 40 EQWRKY proteins. A The phylogenetic tree was constructed with MEGA X using
UPGMA method based on protein sequences of WRKY domains found in the 40 EgWRKYs which were aligned using Clustal W prior to phylogenetic
tree construction using MEGA X based on UPGMA method using Jones-Taylor-Thronton (JTT) substitution model and partial deletion method
with 1000 bootstrap value. B Multiple sequence alignment of conserved WRKY domain in 40 EgQWRKY proteins was performed using Clustal W
programme. Conserved WRKY motif and zinc-finger pattern are indicated within Group or Subgroups with dark grey represents 100% sequence
identity. Groups I_N and |_C indicate the N-terminus and C-terminus of the WRKY domain of Group | EgQWRKY protein

box elements, among the 40 EgWRKY genes. The ABA-
responsive elements were predicted in the promoter
of 36 EgWRKY genes except EgWRKY44, 70, 58 and
5,2 and the highest number (i.e., 16) of binding sites
were found in EgWRKY27. Other hormone-responsive
elements like MeJA-responsive (16 in EgWRKY61I),
salicylic acid-responsive (7 in EgWRKY52) and gibber-
ellin-responsive (4 in EgWRKY03) were also observed
in the promoter of EgWRKY genes.

Drought responsive DEG EgWRKYs are involved in different

growth developmental stages

To gain insight into the roles of Dro-EgWRKY at different
stages of plant growth and development, we examined
the expression profile of two randomly selected EgWRKY

members from each group in the mature leaf, young leaf,
meristem, root, female inflorescence, zygotic embryo
and mesocarp tissues. We noticed a similar expression
trend in the members of Group IIb (EgWRKY28 and 61)
and Group III (EgWRKY07 and 26) while the rest of the
groups exhibited different tissue specific expression pat-
tern (Fig. 5). Both EgWRKY28 and 61 from Group IIb
were highly expressed in the root followed by mature leaf
and mesocarp samples. EgWRKY07 and EgWRKY26 from
Group III were expressed predominantly in the vegeta-
tive tissues including mature leaf, young leaf, meristem
and root. Among the 15 selected EgWRKYs, 8 of them
(EgWRKY07, 18, 26, 27, 60, 61, 63 and 65) were expressed
in all seven tissues tested while the remaining seven
genes had relatively low expression in some tissues.
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Fig. 3 lllustration of conserved domains and conserved motifs identified in 40 EQWRKY proteins. A Identification of conserved domains was
performed by searching against conserved domain database (CDD). Four conserved domains, bZIP (grey), uncharacterized conserved domain
COG4372 (cyan), Plant Zn cluster (pink), ligand-dependent nuclear receptor-interacting factor 1 (LRIF) domain (yellow) and WRKY (blue) identified in
EgWRKY proteins. B Conserved motifs were detected using Multiple Em for Motif Elicitation (MEME) software. Each motif with conserved amino acid
residues is represented in different colour (motif 1 — 15) as shown in lower panel

Drought responsive DEG EgWRKYs are responsive to other
abiotic stresses, hormones and H,0, treatments

To evaluate the transcript abundance of EgWRKYs in
response to different abiotic stresses, we examined the
gene expression of 13 upregulated drought responsive
EgWRKY with the highest fold change of differential
expression identified from RNA-Seq, in cold, drought,
flood, heat and salinity treated samples (Fig. 6). Among
13 EgWRKY genes, 5 genes were from Group III, 2 genes
each from Subgroup Ilc and e while 1 gene each from
Group I, Subgroup IIa, b and c. Coincidently, the major-
ity of the highly differentially expressed EgWRKYs, which
were expressed higher than 3.7-fold under drought con-
dition were from Group III, hence, the remaining two
members EgWRKY40 and 73 from the same group with
lower differential gene expression (1.3-1.5-fold) were
also examined. Among the 15 EgWRKY genes analysed,
7 of them (EgWRKY07, 26, 52, 65, 72, 81 and 84) were
significantly upregulated by at least 1.3-fold to as high as
6.3-fold by drought, salinity, flood and heat treatments.

However, they were significantly downregulated by cold
treatment except for EgWRKY07 and 84 whereby they
were significantly upregulated by cold treatment. Besides,
EgWRKY28, 59, 60 and 70 were significantly upregu-
lated by salinity and flood from 1.3-fold to 6.6-fold. Both
EgWRKY03 and 73 were significantly upregulated by
salinity treatment but downregulated by cold treatment.
No significant differentially gene expression observed in
EgWRKY40. Hence, apart from EgWRKY40, all 14 genes
being analysed were significantly differentially expressed
in all abiotic stress treatments and may be serve as poten-
tial stress-responsive candidates for further studies.

Since hormones and H,0O, are signalling molecules
for plant stress responses and we identified various hor-
mones-responsive elements in the promoters of several
drought responsive EgWRKYs TFs, we further conducted
hormones (ABA, MeJA and SA) and H,O, treatments
using young leaves to study their effects on the expres-
sion of drought responsive EgWRKY genes, harbour-
ing the respective elements in their promoter (Fig. 7).
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For ABA treatment, EgWRKYI18 and 81 with 9 and 14
ABRE elements, respectively were significantly upregu-
lated at 1.5-fold and 1.2-fold, respectively after 1h of
treatment (Fig. 7A). EgWRKY65 gene with 3 ABRE ele-
ments showed significant up-regulation after 30min and
1h post treatment at 1.1-fold and 1.7-fold, respectively.
However, EgWRKY59 was significantly downregulated
after 2h of treatment. In MeJA treatment, EgWRKY59
was significantly upregulated at 5-fold after 30min of
exposure while we observed significant downregulation
of EgWRKY03, 65 and 84 at various time points (Fig. 7B).
Interestingly, both EgWRKY70 and 72 were down-
regulated after 2h of exposure, but they were upregu-
lated at 6h time point (Fig. 7B). For SA treatment, both
EgWRKY59 and 81 were upregulated at different expres-
sion level after 30min, 1h and 6h of exposure (Fig. 7C).
EgWRKY?27, 65 and 70 were significantly upregulated at
various time points at different expression level. Then,
EgWRKY07 and 27 were downregulated at different
expression level after 4h of exposure. In H,O, treatment,
the expression of all six selected EgWRKY52, 56, 59, 65,
70 and 72 genes were significantly upregulated after 6
h of exposure and the highest expression was observed
in EgWRKY56 and 59 at more than 10-fold higher com-
pared to control (Fig. 7D). Among them, EgWRKY56 was
more sensitive to H,0, treatment as indicated by early

significant positive response after 30min of exposure at
1.6-fold and its expression was significantly upregulated
at all time points except for 1h. Besides at 6h time point,
EgWRKYS59, 70 and 72 were also significantly upregulated
at different expression level after 4h of exposure. Col-
lectively, the findings provide evidence that the selected
EgWRKY genes were responsive to different hormonal
treatments and highly responsive to H,0, treatment at
different scale of expression level.

Discussion
WRKY TFs demonstrate dynamic roles in many aspects
of plant life cycle including plant development [9, 10],
nutrient uptake [13], biotic stress [21, 28] and abiotic
stress [18, 27, 29-31]. Extensive studies report that
WRKY TFs are potent regulators in conferring drought
tolerance in plants [26, 29, 32—-37], modulated by phyto-
hormones especially ABA [35]. Oil palm yield is severely
affected by drought stress resulting in low flower sex ratio
and early fruit bunch abortion [24] which cause huge
economic losses. Nevertheless, little is known about the
functions of WRKY TFs in drought response in oil palm.
Hence, it is crucial to identify EgWRKY TFs that may
improve drought tolerance in oil palm.

In this study, we identified 40 differentially expressed
EgWRKY TFs responsive to drought stress in oil palm leaf
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using RNA-seq. We further evaluated their response to
different abiotic stresses and phytohormone treatments.
Our RNA-seq results revealed that the WRKY TFs were
among the TFs that were responsive to drought stress in
oil palm with 80% of them upregulated by drought stress,
followed by TFs in the AP2-EREBP, NAC and bZIP fami-
lies. Further characterization of the EgWRKY candidates
in this study will shed light on their possible roles in
drought response in oil palm.

A total of 95 WRKY TFs were identified in the oil palm
genome by Xiao et al. [25]. They were named according
to the chromosomal location and classified into 8 groups
based on their phylogenetic relationship [25], instead of
following the general classification of WRKY TFs into 3
main Groups I, II and III, with 5 Subgroups in Group II
(IIa to Ile) [4]. In our study, we categorized 40 drought
responsive EgWRKY DEGs into 4 groups (Groups I,
ITa-e, III and IV) according to the general classification
method to ease the comparison with WRKY TFs from
other plants. Phylogenetic analysis revealed the close
relationship of EgWRKY members in Group I and Group
II that are represented by 4 clades. Notably, EgWRKY29
was categorized into Group IV due to the absence of

an intact zinc finger motif in its WRKY domain, which
may be due to a deletion event. In concordance, the
presence of Group IV WRKY TFs which lack an intact
zinc-finger motif in the WRKY domain is also reported
in plants such as Pennisetum glaucum [30] and Ammo-
piptanthus nanus [38]. We have successfully assigned
these 40 drought responsive EgWRKYs to oil palm CHR
including EgWRKY84, 88 and 94 genes that could not be
mapped to the oil palm reference genome by Xiao et al.
[25]. They were now successfully mapped to CHRI1, 2
and 15, respectively; using the improved genome assem-
bly [19]. To ease future referencing, we maintained the
nomenclature of EgWRKY84, 88 and 94 regardless of
their chromosomal locations. It is worth mentioning that
the Dro-WRKY TFs were mainly found on CHR3, 5, 6
and 7 which constituted 50% of the total Dro- WRKY TFs.
CHR?7 harbours 6 WRKYs of which 5 were upregulated
by drought among 9 WRKYs located in CHR7. Hence,
this information serves as a good reference for the sub-
sequent effort in identifying drought hotspots in oil palm
genome through mapping of the drought responsive
DEGs and drought responsive markers discovered in oil
palm [39].
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To understand the functions of the Dro-EgWRKYs, we
first profiled their tissue-specific gene expression, sub-
sequently their response to various abiotic stress and
phytohormone treatments. WRKY TFs are involved in
different developmental stages of plants such as adven-
titious root formation [9], leaf senescence and flower-
ing [10]. Here, we noticed that EgWRKY70 and 84 were
preferentially expressed in mature leaf, both EgWRK29
and 56 were predominantly expressed in mesocarp
while EgWRKY61 and 84 were detected abundantly in
root tissue, suggesting their possible involvement in dif-
ferent stages of oil palm growth and development. This
tissue-specific expression profile is not associated with
their grouping as there was no specific expression pat-
tern observed among the members from the same group.
However, it must be further validated by analysing more
members of same group instead of only 2 members from
each group. During the onset of drought stress, root is
the first organ that responses to water stress signal while
leaf responds to drought stress through stomatal clo-
sure [40]. Both EgWRKY61 (Group IIb) and 84 (Group
IIc) were highly expressed in the mature leaf and root
tissues, indicating their possible roles in responding to
water stress signal in both organs during drought stress.
WRKY TFs were reported to regulate transcription of
stress related genes that respond to multiple abiotic
stresses in particular drought and salinity as both shared
similar signal transduction pathway [41]. In Arabidopsis,
AtWRKY46 was upregulated by drought, salinity, SA and
H,O, treatments [18]. GEWRKY41 [16] from G. hirsu-
tum were upregulated by drought and salt stress in the
transgenic N. benthamiana by removing ROS to better
adjust the osmotic stress in a ABA-dependent manner
[19]. In oil palm, 13 selected EgWRKYs were found to be
significantly expressed in samples treated with different
abiotic stresses, especially EgWRKY26, 65, 72 and 81 that
exhibited a significant increase in expression levels in
response to drought, heat and salinity. These 4 candidates
were also identified as DEGs in oil palm under salinity
and heat stresses (unpublished data). Collectively, these
results suggest that the drought responsive EgWRKY
TFs may be involved in the regulation of multiple abiotic
stress responses, possibly sharing the same mechanism
in responding to environmental stimuli to induce stress
related genes.

Much attention has been channelled to study the func-
tions of Group III members of WRKY TFs due to their
involvement in multiple processes from plant develop-
ment to stress signalling response [42-44]. The Group
III members are distinguishable from other Group mem-
bers by the presence of zinc finger type C2HC instead
of C2H2. Herein, we validated that the expression lev-
els of all 7 members of Group III WRKYs including
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EgWRKY07, 26, 40, 52, 59, 73 and 81 were upregulated by
drought stress in oil palm seedlings. We also showed that
they were upregulated by other abiotic stresses including
cold, flood, heat and salinity. In G. hirsutum, the Group
III WRKY members including GhWRKY31, 59 and 102
were also involved in fibre development and leaf senes-
cence apart from abiotic stress response [43]. Further-
more, many Group III members of WRKY TFs have also
been reported to be involved in biotic stress response.
For instance, six members of the Group III WRKY TFs
from Solanum lycopersicum were involved in the tomato
yellow leaf curly virus (TYLCV) defence signalling path-
way [45], and ScWRKYS5, a Group III WRKY gene from
sugarcane was upregulated by fungal infection, drought,
salinity and hormonal stresses [44]. We observed a rela-
tively higher gene expression levels of two Group III
WRKY members (EgWRKY07 and 26) in the oil palm
vegetative tissues including mature leaf, young leaf and
root. This suggests that some Group III drought respon-
sive EgWRKY TFs may play multiple roles in abiotic stress
response, growth and development in oil palm. In addi-
tion, further analysis on the sequences of EgWRKY TFs in
oil palm revealed a total of 13 EgWRKY TFs from Group
III (unpublished data). Hence, further investigation on
the remaining 6 members of Group III EgWRKY TFs may
provide a clear indication of the functions of Group III
EgWRKY TFs in oil palm.

In plants, phytohormones play crucial roles in control-
ling physiological responses to environmental stimuli
especially ABA, SA, MeJA and ET via transcriptional
modulation of transcription factor genes and stress
responsive genes [15, 36, 46]. ABA is known as a stress
hormone as it positively regulates plant responses to
different environmental stresses particularly drought
stress by triggering stomatal closure to reduce the tran-
spirational water loss in leaf during water scarcity [47].
Besides, both SA and MeJA are also involved in attun-
ing plant responses to different abiotic stresses through
interaction with ABA, mediated by TFs including MYC,
NAC and WRKY [47, 48]. Studies have shown that
WRKY TFs regulate plant responses to different stresses
under the influence of phytohormones including ABA,
SA, MeJA and ET [49]. This subsequently leads to the
activation of stress-responsive genes to confer toler-
ance to bacteria pathogen [50], fungal pathogen [21] and
to abiotic stresses like drought, salinity, heat and cold
[16, 17]. In the current study, we examined the effects
of ABA, SA and MeJA on the gene expression levels of
drought responsive EgWRKY genes harbouring the cor-
responding cis-elements in their promoter. We provide
evidence that both EgWRKY65 and 81 were upregulated
by drought, heat, salinity, flood stresses and hormonal
treatments which included ABA and SA at certain time
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points. These results suggest a crosstalk between ABA
and SA in the signalling transduction to trigger response
against different abiotic stresses which is in agree-
ment with ZmWRKY40 from maize [51]. Interestingly,
EgWRKY59 gene (a Group III member) was significantly
upregulated by drought, heat, flood and salinity stresses,
was also found to be significantly upregulated by three
phytohormones including ABA, MeJA and SA at cer-
tain time points, suggesting the potential involvement
of EgWRY59 in the regulatory network of three abiotic
stresses via crosstalks of three phytohormones. Hence,
EgWRKYS59 is one of the potential candidates for further
characterization as abiotic stress markers in oil palm.

During the onset of abiotic stress, excessive ROS (H,0,,
superoxide radicals, hydroxyl radical) are generated that
cause oxidative stress to plants and subsequently inhibit
normal growth and reproduction in plants [52]. Plants
develop different defence systems to counter oxidative
stress through the activation of ROS scavenging enzymes
(superoxide dismutase and peroxidases), regulation of
the downstream stress response genes and accumula-
tion of osmoprotectants such as proline, glycine and
trehalose [53, 54]. Here, we examined the expression
levels of drought responsive EgWRKYs in response to
high oxidative stress induced by H,O, treatment. All 6
EgWRKYs (52, 56, 59, 65, 70 and 72) were highly sensi-
tive to H,O, treatment with upregulation of transcript
levels after 6h of treatment. This was also observed in
the expression profiles of Aquilaria. sinensis AsWRKY
genes that were upregulated upon H,O, treatment, in
particular AsWRKY25 that increased 100-fold in gene
expression after 12h of treatment [55]. In addition, many
studies reported the involvement of WRKY TFs in reduc-
ing oxidative stress by controlling the stomatal closure
mediated by ABA and SA [15, 36, 56]. Here, we found
that EgWRKY59 and EgWRKY65 were upregulated by
ABA and SA treatments, and they were also significantly
upregulated by drought, heat, flood and salinity treat-
ments in oil palm. These findings collectively suggest
a crosstalk between H,O, and phytohormones (ABA,
SA) in regulating the gene expression of EgWRKY59
and EgWRKY65 in adaptation to the increase in ROS
level, probably through the transcription regulation of
genes encoding ROS scavenger. Further characteriza-
tion is required to provide more evidence to support this
observation.

Conclusion

A total of 40 DEGs encoding WRKY TFs were identi-
fied from the transcriptome of drought treated leaf of
oil palm. All 32 upregulated Dro-EgWRKY genes have
preferential expression in different tissues, and exhibited

Page 14 of 17

different response to abiotic stresses, phytohormones and
H,0, treatments. EgWRKY59 and EgWRKY65 may share
similar regulatory mechanism involving ABA-, SA- and
ROS-mediated signalling during drought and other abi-
otic stresses and are potential candidate genes for confer-
ring higher tolerance to these types of stress. EgWRKY07,
26, 59 and EgWRKY81 from Group III may involve in the
regulation of different abiotic stress responses. Further
functional studies of these candidate genes are required
to evaluate their potential as drought biomarker to screen
for oil palm with better drought tolerance and as candi-
date genes for genetic improvement purpose.

Methods & materials

Plant materials, growth conditions and treatments

Mature leaf, young leaf, female inflorescence, zygotic
embryo and mesocarp were sampled from 15-year-old
commercial DxP (Deli Dura x Pisifera) palm. Meanwhile,
meristem and root were sampled from 1-year-old DxP
(Deli Dura x Pisifera) seedling. For different abiotic stress
treatments, 6-month-old oil palm Dura (Deli Dura) seed-
lings planted in polybags filled with top soil were accli-
matized in greenhouse environment for 1 month at 28
°C prior to exposure to abiotic stress treatments for two
weeks at 28 °C except for the cold and heat treatments.
Six biological replicates of oil palm seedlings were used
for each stress treatment. Three independent oil palm
seedlings and three untreated oil palm seedlings (con-
trols) were randomly selected for RNA-Seq study. For
control, seedlings were watered daily with 200 mL of tap
water. For seedlings in the drought treatment, no water-
ing was conducted for two weeks. For flood treatment,
the water level was maintained one inch above the soil
level. In salinity treatment, seedlings were irrigated with
200 mL of 200 mM NaCl daily. Seedlings were incubated
at 15 °C and 35 °C while watering remain the same as
control seedling for cold and heat treatment, respectively.
Hormonal and H,O, treatments were conducted on the
young leaf pieces of 2 x 2 cm dimension incubated on
MS agar plate supplemented with 100 uM ABA, 100 uM
MeJA, 100 pM SA, 10 mM H,0, for a total incubation
period of 6h. Four leaf pieces were sampled at 0, 0.5, 2, 4
6, 12 and 24h.

RNA-Seq analysis

Total RNA of oil palm leaves was isolated from 3 control
and 3 drought treated oil palm seedlings sharing the same
parents using MN Nucleospin RNA Plant Kit (Mach-
erey-Nagel, Germany) according to the manufacturer’s
instructions. The quality and concentration of total RNA
samples were evaluated using high sensitivity Bioana-
lyzer chip (Agilent Technologies, USA) prior to library
preparation. Sequencing and bioinformatic analysis were
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carried out using Illumina HiSeq2000 (Novogene Bioin-
formatics Technology, China). After removing adaptor
and low quality reads, clean reads were mapped onto oil
palm reference genome accession number PRJNA192219
deposited in NCBI, using TopHat2 algorithm with a
maximum mismatch set at 2 [57]. Gene expression level
was quantified using fragments per kilobase of transcript
over million mapped reads (FPKM) method and analysed
using HTSeq software [58]. Subsequent identification of
DEGs was performed using DESeq software with a cor-
rected p-values < 0.05 [59]. TF analysis on the DEGs was
conducted using iTAK program V1.2 according to default
parameters [60].

Sequence analysis

Gene and protein sequences of the Dro-EgWRKY can-
didates identified from RNA-Seq were retrieved from
National Center for Biotechnology Information (NCBI)
and matched with the sequences reported by Xiao et al.
[25] by using BLAST-N and BLAST-P tools at default
setting. Protein sequences of WRKY domain found in
the EgWRKYs were aligned using Clustal W prior to
phylogenetic tree construction using MEGA X based on
UPGMA method using Jones-Taylor-Thronton (JTT)
substitution model and partial deletion method with
1000 bootstrap value. . Conserved domains in EgWRKY
amino acid sequences were identified using CDD data-
base (http://www.ncbi.nlm.nih.gov/cdd/). The conserved
motifs in the full length EgWRKY proteins were analysed
using the Multiple Em for Motif Elicitation (MEME)
program  (https://meme-suite.org/meme/tools/meme).
MEME motifs are represented by position-dependent
letter-probability matrices which describe the probabil-
ity of possible letter at each position in the pattern. The
maximum number of motifs was set at 15, the maximum
motif length was set at 60 amino acids, the optimum
motif width was restricted at 6 to 300 residues, and the
other default parameters were used. Subcellular locali-
zation prediction was conducted using WoLF PSORT
(https://wolfpsort.hgc.jp/). Identification of rice ortholog
genes was performed using BLASTP search with default
parameters and top hit was selected based on the align-
ment result (http://rice.plantbiology.msu.edu/analyses_
search_blast.shtml). Identification of cis-regulatory ele-
ments in the putative 5-UTR and promoter regions of
the targeted EgWRKY genes was conducted on the 2
kb upstream sequence from the start codon of genomic
sequence using PlantCARE (http://bioinformatics.psb.
ugent.be/webtools/plantcare/html/).

Quantitative RT-PCR (qRT-PCR) analysis of transcripts
The first-strand cDNA was synthesized from total RNA
of oil palm tissue using Maxima First Strand cDNA
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Synthesis Kit (Thermo Scientific, USA) and quantified
using StepOne Plus (Applied Biosystems, USA) and Fast
SYBR Green Master Mix (Applied Biosystems, USA)
according to the manufacturer’s instructions. Dissocia-
tion curves were generated to verify the amplification
specificity. Independent qRT-PCR runs were conducted
in technical triplicates for different tissues and both bio-
logical and technical triplicates for abiotic stress, hormo-
nal and H,0, treatments and the calibrated normalized
relative quantity (CNRQ) values of the transcripts were
calculated using delta—delta Ct method [61]. Expression
of target genes in oil palm mesocarp were normalized to
Gibberellin-responsive protein 2 (EgGRAS), cyclophilin 2
(EgCyp2) and Pre-mRNA splicing factor SLU7 (EgSLU7)
[62]. Student’s t-test was conducted using the log, value
of relative expression level to evaluate the statistical
significance in the differences observed in target gene
expression between the control and treated samples.
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