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Abstract: Accumulating data show the involvement of intestinal microbiota in the development
and maintenance of numerous diseases. Many environmental factors influence the composition and
function of the gut microbiota. An animal model subjected to the same environmental constraints
that will allow better characterization of the microbiota–host dialogue is awaited. The domestic dog
has physiological, dietary and pathological characteristics similar to those of humans and shares
the domestic environment and lifestyle of its owner. This review exposes how the domestication
of dogs has brought them closer to humans based on their intrinsic and extrinsic similarities which
were discerned through examining and comparing the current knowledge and data on the intestinal
microbiota of humans and canines in the context of several spontaneous pathologies, including
inflammatory bowel disease, obesity and diabetes mellitus.
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1. Introduction

It is estimated that there are 100 trillion microorganisms in the human body containing
more than 11 million genes [1]. Most of these microbial cells reside within the gut and have
a profound influence on physiology [2]. Causal links between several noncommunicable
chronic diseases and gut microbiota have now been established using animal models [3,4].
Mice have been chosen as a model to study nutritional impacts, the development of
illnesses, and the effects of antimicrobials. Aiming to extrapolate such an understanding
from mice to humans, the commonalities and disparities between their gut microbiota
were reviewed [5,6]. Many differences between the physiologies of the mouse and human
intestinal and immune systems have now been identified [7]. Comparative genomic studies
show that the immune system and its regulatory pathways underwent major changes
throughout evolution, demonstrating the host-specific adaptation of the gastrointestinal
immune system [8]. Furthermore, wild mice are vegetarian omnivores, while humans
are historically omnivorous, and only 4% of the microbial genes of the mouse microbiota
catalog share at least 95% sequence identity with the human microbiota catalog [6,9]. The
two datasets exhibit partial functional overlap. It is therefore essential to expand such
studies to other animal models before extrapolating the findings to humans.
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The domestic dog, Canis lupus familiaris, is regarded as the first domesticated ani-
mal [10]. The dog provides a large animal model that is more comparable to humans than
mice from physical and clinical perspectives (Table 1). Indeed, the domestic dog has an
omnivorous metabolism and can digest, absorb and metabolize dietary carbohydrates [11].
More importantly, pet dogs also share their owners’ environments and are hence affected
by their “lifestyles” in addition to their own genetic traits. Many naturally occurring canine
diseases have similar human counterparts, notably noncommunicable chronic disorders
such as chronic inflammatory diseases, diabetes mellitus and obesity [12] (Figure 1). Ad-
ditionally, a comparison of the canine and human microbiota reveals both commonalities
and discrepancies [13]. When comparing the human gut microbiota gene catalog to the
catalogs of swine, mice and dogs built with datasets obtained via similar technology, the
canine gastrointestinal microbiota has the highest taxonomic and functional overlap with
the human intestinal microbiota [6,7,14,15]. In this review, we provide a concise analysis of
the domestic environment shared by humans and pet dogs, and we focus on comparing the
composition and function of the gut microbiota of both species in addition to the relevance
of the canine model for studying interactions between the gut microbiota and its host.

Table 1. Comparative physiology of humans, dogs, mice and pigs.

Human Pet Dog Mouse Pig

Lifestyle Sedentary, active,
athletic

Frequently similar to its
owner

Standard laboratory
accommodation

Standard laboratory
accommodation

Environmental exposure Domestic environment Domestic environment Laboratory
environment

Laboratory or farm
environment

Diet Omnivorous Omnivorous Vegetarian omnivores Omnivorous

Diseases
Spontaneous diseases
(IBD, obesity, diabetes

mellitus, etc.)

Spontaneous diseases
similar to those in

humans (IBD, obesity,
diabetes mellitus, etc.)

Induced models of IBD,
obesity, diabetes

mellitus, etc.

Induced models of
IBD, obesity, diabetes

mellitus, etc.
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2. Pet Dogs Share Domestic Environments with Their Owners
2.1. Domestic Dogs’ Lifestyles

The domestic dog and humans share a long common history that has intensified over
time to the point of the dog becoming “man’s best friend”. Today, we can distinguish, on the
one hand, the pet dog of industrialized countries, which lives in one’s home and occupies
the full place of a family member, and on the other hand, the stray dog of developing
countries, which can be stray or semi-stray. The former is in daily contact with its owner
and shares resting and cooking areas, which promotes the transmission of commensals and
pathogens in both directions [16]. Its food is mainly industrially composed of sources of
protein, lipids and cooked starch. Its health is closely monitored, which exposes it to the
same constraints of hygiene and medicalization (vaccination, antiparasitic drugs, etc.) as
the humans around it. In 2018, 34% of American households owned a pet dog [17].

2.2. Domestic Environmental Exposure

The pet dog shares the domestic environment of its owners and is therefore exposed to
the same environmental factors. Some studies tend to show that the owners of dogs affected
by noncommunicable diseases are more prone to said diseases than those with disease-free
dogs. Delicano et al. reported an increased risk of type 2 diabetes in the owners of diabetic
dogs compared to those of nondiabetic dogs, supporting their role as sentinels of shared
diabetogenic health behaviors or environmental exposures [18]. Previously, Glickman et al.
reported a higher risk of mesothelioma in dogs whose owners are exposed to asbestos,
confirming the sentinel role of the pet dog in identifying environmental health hazards
for humans [19]. This sentinel role has also been demonstrated for exposure to various
environmental toxins, such as diethylhexyl phthalate, polychlorinated biphenyl 153 and
lead [20,21].

In addition, several diseases are common to pet dogs and humans, including metabolic
disorders (diabetes mellitus, obesity, etc.), cardiovascular diseases (systemic arterial hyper-
tension, etc.), chronic inflammatory diseases (inflammatory bowel disease, chronic bron-
chitis, etc.), neuropsychiatric diseases, and neoplastic diseases [13]. Recently, Yaglom et al.
detected cross-species SARS-CoV-2 transmission between humans and dogs [22]. Veteri-
nary therapies for dogs are similar to those for humans, so pet dogs are subjected to the
same pharmacopeia used in humans [12]. Some of these diseases are favored by factors
clearly identified in humans that are shared by their pets, such as eating, physical activity
habits and exposure to xenobiotics.

2.3. Pet Dogs’ Diets

Like humans, pet dogs are considered omnivores [23]. After domestication, the dog
made a transition from a carnivorous diet, facilitated by hunting, to an industrialized
omnivorous diet higher in fiber and starch [11]. Recent studies have shown that three
genes (AMY2B, MGAM and SGLT1) involved in the digestion of starch and in the uptake
of glucose have been positively selected during dog domestication and are considered
to represent evolutionary adaptation to their modern starch-rich diet. As is the case in
humans, dogs digest starch very well, with an apparent ileal digestibility greater than 90%
and a proportion of resistant starch available for the colonic microbiota [24–26]. Other
recent studies showed that certain metabolic characteristics of the dog, such as the ability
to synthesize enough niacin, taurine, and arginine, make it more similar to omnivores such
as humans [27].

The pet dog provides valuable insights, as it shares the home environment, diet and
eating habits, as well as spontaneous diseases and therapies of its owner. We can therefore
anticipate that the environmental factors that interact with the human gut microbiota could
have similar effects on the gut microbiota of pet dogs.
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3. Pet and Human Gut Microbiota in Health Conditions
3.1. From Birth to Adulthood

It has been widely documented, both in pets and humans, that the composition of the
gut microbiota changes over time.

In dogs, the bacterial composition of the fecal microbiota shows significant interindi-
vidual variability. At the age of 2 days, it was mainly represented by 29–95% Firmicutes, fol-
lowed by Proteobacteria and Fusobacteria [28]. At the age of 2 months, the fecal microbiota
presented a higher diversity at the phylum level, with a predominance of Bacteroidetes, fol-
lowed by Firmicutes, Fusobacteria and Proteobacteria [28]. At this age, the fecal microbiota
profile was markedly different from that of bitches, predominantly represented by Firmi-
cutes, Fusobacteria and Bacteroidetes [28]. A significant depletion in the representation of
the Bifidobacterium genus was identified in adult and senior dogs compared to puppies [2].

Early studies of human neonatal development showed that the gut microbiota starts to
exhibit adult-like characteristics by the age of three years, but recent studies have suggested
that its complete development may take longer [29,30]. Many factors not yet studied in
pet dogs influence the composition of the human gut microbiota of a newborn and its
evolution, such as the mode of feeding (breastfeeding or formula feeding) and delivery
(natural delivery or C-section) [31]. The gut microbiota of 0–1- and 1–6-month-old groups
are characterized by low biodiversity and are mostly represented by two main phyla, Acti-
nobacteria (Bifidobacterium genus) and Proteobacteria. Firmicutes are poorly represented at
this age, in contrast to pet dogs. However, the humans of 6–36 months are characterized
by the presence of the Bacteroides, Faecalibacterium, Blautia and Ruminococcus genera, which
are typical of adult microbiota [31]. The bacterial species found in adult human microbiota
mostly belong to Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes.

These observations give rise to the hypothesis that the bifidobacterial community
shows comparable trends in the canine and human gut microbiota [2,30].

3.2. Gut Microbiota along the Gastrointestinal Tract

It is widely known that the gut microbiota varies along the gastrointestinal tract [32].
The particularity of each region of the GI tract, such as the acidic nature of the stomach,
the profile of bile acids and enzyme richness in the small intestine and the low oxygen
availability in the colon, have a great impact on which microbiota species colonize each
segment [32,33]. In dogs, most reports focus on the analysis of fecal microbiota due to the
practical difficulties and ethical constraints related to sample collection from each intestinal
compartment in privately owned animals [28,29]. Suchodolski et al. evaluated the microbial
communities of the duodenal, jejunal, ileal and colonic digesta of healthy dogs through 16S
rRNA gene analysis [33]. Firmicutes, Fusobacteria, Bacteroidetes and Proteobacteria were
the predominant phyla from the four sites, and there was a gradual increase in bacterial
diversity along the gastrointestinal tract from the duodenum to the colon [30]. Similarly,
Honneffer et al. analyzed the contents of the duodenum, ileum, colon and rectum from
six healthy dogs via Illumina sequencing of 16S rRNA genes [34]. In addition to the four
previously mentioned phyla, Actinobacteria was identified but contributed minimally in
each segment [32].

For humans, there are only a few studies describing the bacterial biogeography of
the entire GI tract. Vuik et al. characterized the mucosal microbiota along the entire GI
tract using mucosal biopsies taken from nine different regions from the distal esophagus to
rectum in 14 individuals [35]. The upper GI tract was dominated by Proteobacteria and
Firmicutes, followed by Bacteroidetes and Actinobacteria at low concentrations. However,
in the lower GI tract, the representation of Proteobacteria consistently decreased, while that
of Firmicutes increased, and they dominated the large intestine in the distal colon, followed
by Bacteroidetes, which had become a dominant phylum [32–35].

Although it is difficult to compare human and canine data due to methodological
differences, the examination of the horizontal distribution of the gut microbiota reveals
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similarities and differences between the two species (Figure 2). Further studies using a
standardized methodology are needed in the future.
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3.3. Effects of Diet

In both humans and their pet dogs, diet is considered a key factor that influences the
gut microbiota structure and host metabolic functions [36,37]. Evidence shows that the gut
microbiota evolves to adapt to high intakes of fiber, carbohydrate and proteins. Several
studies have compared the effects on the gut microbiota of feeding dogs with bones and raw
food (BARF) diets (uncooked meat and bones) vs. commercial food (nutritionally balanced
for omnivores, with a high abundance of fibers and carbohydrates). Bermingham et al. and
Schmidt et al. demonstrated an overall decrease in the relative abundance of Firmicutes and
Bacteroidetes involved in the digestion of dietary fibers in dogs fed with BARF diets [38,39].
They also identified a higher abundance of Proteobacteria, Fusobacterium, Lactobacillus and
Clostridium. Most of the bacteria that decreased in abundance are associated with the
production of short-chain fatty acids (SCFAs) from dietary carbohydrates, indicating a
decrease in the fermentation of carbohydrates due to a decrease in carbohydrate intake [40].
Alessandri et al. showed a gradual rise in the relative abundance of bacterial taxa such
as Prevotella and Sutterella, which break down carbohydrates, and a notable decline in the
relative abundance of Parabacteroides and Ruminococcaceae in dogs fed with commercial
food compared to dogs fed with a BARF diet [2].

These data mirror those for humans, especially when we compare Mediterranean-style
with Western-style diets. While the Mediterranean diet (MD) is characterized by a high
amount of dietary fiber, the Western diet (WD) is rich in animal protein and saturated
fat [41,42]. In the majority of published studies, the gut microbiota composition differs
between those consuming MD- and WD-style diets [41]. For example, high levels of
Bacteroides sp. are found in WD-style diets, while Prevotella sp. have been observed to
increase under an MD diet [41,43]. Shankar et al. demonstrated that the differences in gut
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metabolites and microbial composition and functions between Egyptian and US children
are consistent with their diets [43]. While the gut microbiota of Egyptian children was
found to be characterized by higher levels of SCFAs and increases in several polysaccharide-
degrading microbes and end-products of polysaccharide fermentation, the gut microbiota
of US children was found to have increased proteolytic microbes and end-products of
protein and fat metabolism [43].

3.4. Effects of Xenobiotics

Pet dogs benefit from advanced veterinary care and are treated with the same classes of
drugs as humans (antibiotics, anticancer chemotherapeutic drugs, proton-pump inhibitors,
anti-inflammatory agents, vaccines, etc.). Therefore, pet dogs can contribute to studies of
the impact of exposure to these substances on gut microbiota and health throughout life.

In recent years, several studies have evaluated the effects of certain xenobiotics on the
gut microbiota of humans and pet dogs. The administration of omeprazole (a proton-pump
inhibitor (PPI)) to healthy dogs results in higher proportions of Firmicutes and Fusobacteria,
a decrease in gastric Helicobacter and an increase in total bacteria in the duodenum [44].
In humans, PPI administration also alters the gut microbiota composition but results in a
different profile [45,46]. Jackson et al. reported a lower abundance of Firmicutes and higher
abundance of Bacteroidales in PPI users [46].

Other changes in the composition of the gut microbiota community following exposure
to xenobiotics were reviewed by Lu et al. [47].

In addition to the administration of xenobiotics for medical reasons, humans and
pet dogs are exposed to environmental chemicals that affect the host and resident gut
microbiota on a daily basis. In this context, the study of Koestel et al. evidenced an
effect of bisphenol A, an endocrine-disrupting chemical widely present in food-can linings,
on the bacterial gut composition in pet dogs [48]. The authors identified disturbances
in many bacterial genera and species, including Bacteroides spp., Clostridium hiranonis,
Bacteroides uniformis, Ruminococcus spp., Roseburia spp., Megamonas spp., Fusobacterium spp.,
Ruminococcus spp., Pectinatus spp., Catenibacterium spp. and Faecalibacterium prausnitzii.
According to the authors, the effects of bisphenol A could be extrapolated to humans, and
therefore, dogs are considered to be bio-sentinels for human health concerns.

4. Pet Dog and Human Gut Microbiota in Disease Conditions

The gut microbiota is essential in the gastrointestinal homeostasis of animals and
humans. Numerous studies have reported an association between the imbalances in the
intestinal microbial ecosystem of pets and humans, also known as dysbiosis, with the pres-
ence of several inflammatory and endocrine diseases. The gut microbiota is also involved
in extraintestinal diseases such as obesity, atopic dermatitis and diabetes mellitus [49].

4.1. Inflammatory Bowel Diseases

Inflammatory bowel diseases (IBDs) have emerged as a global health problem [49–51].
Similarly to humans, dogs also develop IBD as a result of genetic and environmental
factors, aberrant immune responses, and the gut microbiota [14,52]. Unlike in humans,
little is known about canine gut microbiota in IBD, and most observations originate from
the analysis of fecal samples using 16S rDNA gene sequencing on limited numbers of
dogs. The comparison of microbial populations from the studies available in dogs show
noticeable variability among studies, and this may be related to numerous factors such as
differences in the methodology (e.g., total headcounts, DNA extraction method and primer
bias), age, breed, diet, geographical origin and housing environment of the studies together
with the disease stage and medications.

Alterations in the gut microbiota composition and function are also associated with
canine IBD [53] (Figure 3). Similarly to human patients, dogs with IBD have a decreased
microbial richness and diversity compared to healthy subjects [54]. Some deviations in
the gut microbiota are common between humans and dogs with IBD, whereas others are
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host-specific [13]. Common modifications are characterized by both a superabundance
of Enterobacteriaceae and Proteobacteria and a decline in Bacteroidetes and Firmicutes
in the majority of subjects [55–58]. A decline in Faecalibacterium prausnitzii is reported in
both humans and dogs with IBD in comparison to healthy individuals [13,59–61]. More
specific changes include the overrepresentation of species of the Paraprevotellaceae family
and Porphyromonas genus in dogs with IBD. Adherent-invasive E. coli (AIEC) is found
in Crohn’s disease (CD) and ulcerative colitis (UC) patients [62–64] and in dogs with
granulomatous colitis [65] (Figure 4). This breed-specific canine disorder has been described
in Boxer and French Bulldogs and is sporadically reported in other breeds. The clinical
and histopathological features are similar to those of CD and parallel to those of Whipple’s
disease in humans [66,67]. Membranous colitis induced by Clostridioides difficile infection
has been extensively studied in humans [67]. In dogs, the clinical involvement of C. difficile
has not been established, given there is a prevalence of between 30 and 36% in the stools of
asymptomatic dogs [68,69].
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Dysbiosis induces metabolic alterations, including changes in SCFA and trypto-
phan metabolite production, which may affect gut homeostasis and immunological tol-
erance [70,71]. Increasing evidence demonstrates that the abundance of SCFA-producing
bacteria dramatically decreases in fecal samples from human IBD patients, leading to
reduced levels of SCFAs in the gut and the exacerbation of intestinal inflammation [68].
In dogs with chronic enteropathy, the fecal concentrations of acetate and propionate are
also lower than those in healthy dogs [70]. As previously mentioned, the representation
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of the SFCA-producing bacterial phylum Bacteroidetes is decreased in human and canine
IBD patients [70–73]. Other SFCA-producing bacteria, including some strains of Faecal-
ibacterium spp., Roseburia, Eubacterium and Ruminococcus, are also reduced in human and
canine IBD patients [70–75]. Butyrate is known to inhibit neutrophil recruitment, restore
intestinal barrier function and alleviate the clinical and pathological features of Clostridioides
difficile-induced colitis in mice [76,77].
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The biotransformation of bile acids (BAs) by colonic microbiota is also involved in
the pathogenesis of IBD in humans and pet dogs. The secondary bile acids (deoxycholic
acid (DCA), lithocholic acid (LCA) and ursodeoxycholic acid (UDCA)) exhibit intestinal
anti-inflammatory properties as demonstrated in vitro and in vivo in rodent models [78,79].
However, the formation of secondary BAs involves a deconjugation step mediated by the
microbial bile salt hydrolase (BSH), followed by 7-alpha-dehydroxylation and epimerization
supported by the colonic microbiota [80]. BSH has been identified in many bacterial
genera, including Lactobacillus, Bifidobacterium, Clostridium, Bacteroides, Faecalibacterium
and Enterococcus [78,81]. The conversion to secondary BAs is attributed to a smaller
number of bacteria with bile-acid-inducible enzymes, including Clostridium cluster XIVa
and Eubacterium among the genera of the phylum Firmicutes, whose populations are
reduced during the course of human and canine IBD [81,82]. A preliminary study using
untargeted metabolomics on fecal specimens from dogs with IBD confirmed increased
primary BAs and decreased in secondary BAs in comparison to healthy dogs [61]. This
pattern for secondary BAs in dogs with IBD was confirmed by two other studies [83,84],
and the findings were similar to those of numerous reports on CD and UC [69,85].

Altogether, the data published for humans and dogs show a reduction in the diversity
and richness of the intestinal microbiota with the progression of IBD. Functionally, the
conversion of primary bile acids to secondary bile acids and SCFA synthesis by the gut
microbiota appear to be similarly impaired in both species. Further studies with a standard-
ized methodology and sufficient sample sizes are needed to compare the characteristics of
the gut microbiota in humans and dogs with IBD.
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4.2. Diabetes Mellitus

In recent years, changes in gut microbiota composition were suggested to be a potential
contributor to type 2 diabetes mellitus (DM) [86]. While much of this understanding comes
from studies in mice, which have highlighted the influence of the gut microbiota on glucose
homeostasis, alterations in gut microbiota composition have also been noted in pet dogs,
with DM. Jergens et al. observed intestinal dysbiosis and altered fecal bile acid (BA) levels
in dogs with insulin-dependent DM, found to be similar to humans with T2DM [87].
Bacteria from the Enterobacteriaceae family were more abundant in diabetic dogs, whereas
those from the Erysipelotrichia class and from Mogibacteriaceae and Anaeroplasmataceae
families were overrepresented in healthy controls. At the species level, the proportion of
an unclassified bacterial species from the Enterobacteriaceae family was most significantly
correlated with DM, whereas the abundances of Bacteroides plebeius and Lactobacillus reuteri
was associated with healthy individuals. Dogs suffering from DM had higher levels of
total primary fecal unconjugated BAs in comparison to healthy dogs. The level of cholic
acid was increased in the feces of diabetic dogs relative to controls. The link between
BAs and host–microbiota interactions appears to be complex and bidirectional. Several
pathways are involved in the microbial metabolism of BAs, including BA deconjugation
by bacterial species possessing bile salt hydrolase activity and the generation of iso-BA by
bacteria-producing hydroxysteroid dehydrogenases [88].

In humans, the relative abundance of Firmicutes, for instance, and Clostridia was
significantly reduced in the diabetic group, compared to in healthy controls, in a study
by Larsen et al. [89]. The ratios of Bacteroidetes/Firmicutes and the Bacteroides–Prevotella
group to the Clostridium coccoides–Eubacterium rectal group were positively correlated with
plasma glucose concentrations [89]. Other differences included decreased abundances of
Roseburia species and F. prausnitzii, which are known to be producers of SCFAs [86,89–91].
Butyrate provides energy to colonic epithelial cells and has the potential to increase insulin
sensitivity and energy expenditure [92].

4.3. Obesity

According to the World Health Organization (WHO), approximately 39% of human
adults are considered obese and overweight [93,94]. The etiology is related to various
factors, and the gut microbiota continues to draw attention as an element that affects
disease status.

In pets, overweight and obesity are also frequent conditions that decrease life ex-
pectancy and trigger several comorbidities such as insulin resistance, systemic arterial
hypertension and osteoarthritis [95]. Several authors have reported decreased bacterial
diversity in the fecal microbiota of overweight (OW) and obese (OB) dogs when compared
to normal weight (NW) dogs [96,97]. Handl et al. identified a greater abundance of the
phylum Actinobacteria and the genus Roseburia in OB dogs [98]. When comparing 17 NW,
27 OW and 22 OB dogs, Forster et al. showed that the Erysipelotrichi class was more
abundant in OW compared to OB dogs, and this was essentially led by differences in
the Eubacterium genus [99]. The Actinobacteria class was determined to be present at
higher levels in OB dogs relative to NW dogs. At the order level, Bifidobacteriales were
significantly less abundant and Aeromonadales showed a tendency to be more abundant
in OW relative to OB dogs. Comparatively to OB dogs, NW individuals exhibited higher
levels of Erysipelotrichaceae, Erysipelotrichales and Erysipelotrichi and also had a lower
abundance of the order Bifidobacteriales. When studied as operational taxonomic units
(OTUs), the genus Blautia was more represented in NW and OW dogs than in OB dogs, as
was the Lachnospiraceae family and the Eubacterium biforme species. The Ruminococcus
family was more relatively abundant in NW than OB dogs. OTUs within the Prevotella
copri species and the Clostridium genus were more abundant in OW than OB dogs. The
order Clostridiales was also shown to increase in research dogs subjected to long-term
ad libitum feeding when compared with NW control dogs [98]. Other authors reported a
higher abundance of Fusobacteria, and more specifically, of the species Fusobacteria perfoetens
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in OW dogs in comparison to LN dogs [97]. Another study identified a predominance of
the phylum Proteobacteria in OB dogs [96]. From a functional perspective, they speculated
that an enrichment of Gram-negative bacteria may be implicated in chronic low-grade
inflammation in OB dogs via increased levels of intestinal LPSs [100]. Gram-positive bac-
teria could modulate inflammation. In fact, Kainulainen et al. reported a beneficial role
for the canine indigenous strain Lactobacillus acidophilus LAB20 and its ability to attenuate
LPS-induced IL-8 production in HT-29 cells [101].

The impacts of dietary intervention and exercise on the canine gut microbiota have
been investigated in several clinical trials [102,103]. Kieler et al. did not show any effects
of exercise on the gut microbiota composition during a weight-loss program based on a
commercial low-fat, high-protein and high-fiber, dry diet [103]. A negative correlation
between the abundance of Megamonas and weight-loss rate was identified. The relative
abundance of Ruminococcaceae was significantly lower at the end of the trial and the
mid-term fecal concentrations of acetic and propionic acid were lower in dogs with rapid
weight loss compared to dogs with slow weight loss. These data suggest that obese dogs
exhibiting fecal bacteria that are able to produce acetic and propionic acids may be less
amenable to weight loss due to an increased ability to extract energy from the diet through
the production of SCFAs.

In humans, it was demonstrated that obese people present a lower diversity and
richness in gut microbiota composition [104,105]. Indeed, several studies highlight an
increase in the Firmicutes/Bacteroidetes ratio in obese people compared to healthy indi-
viduals [97,99,100]. Recently, a study by Palmas et al. showed an altered abundance of
several taxa belonging to Bacteroidetes (Bacteroides, Rikenella and Parabacteroides), Firmicutes
(Eubacterium, Ruminococcus and Streptococcus) and Proteobacteria (Escherichia, Enterobacter
and Klebsiella) [106]. To better characterize the extent of its contribution to the disease,
some mechanisms were proposed. Metabolites, especially SFCAs, produced by gut mi-
crobiota can regulate host energy metabolism, thereby increasing de novo lipogenesis in
the liver and lipid accumulation in host adipocytes [107–109]. Studies of obese people
have demonstrated a positive correlation between fecal SCFA concentrations and obe-
sity [110,111]; however, others have reported a negative relationship between SCFA levels
and the obese phenotype [112]. Moreover, Morrison and Preston postulated that SCFAs con-
stitute signaling molecules mediating crosstalk between the host and its corresponding gut
microbiota [108]. Hence, changes in SCFAs are representative of major carbon fluxes from
the diet through the gut microbiota to the host, which serves as evident of their regulatory
role in the overall metabolism [113]. Another proposed mechanism includes an increase
in lipopolysaccharides (LPSs) produced by gut microbiota [93]. Indeed, LPSs can affect
intestinal permeability, leading to an increase in their plasmatic concentration, which is
correlated with the chronic low-grade inflammation characteristic of obese human patients.
Additionally, it is well known that LPSs are able to bind to Toll-like receptor-4 (TLR-4),
which upregulates the production of inflammatory cytokines and chemokines [114].

4.4. Kidney and Urinary Tract Diseases

The link between the gut microbiota and chronic kidney disease (CKD) has been
investigated in large human cohorts showing a significant reduction in microbial diversity
compared to healthy controls. The bacterial communities are distinct with an enrich-
ment of the genera Akkermansia, Klebsiella and Enterobacteriaceae and a depletion of
the genera Blautia and Roseburia in patients with non-hemodialyzed CKD. Some func-
tions are predicted upward such as the metabolism of tryptophan and phenylalanine and
others are predicted downward such as the metabolism of arginine and proline during
CKD [115,116]. Patients with end-stage kidney disease on peritoneal dialysis were less
likely to have Bifidobacterium catenulatum, Bifidobacterium longum, Bifidobacterium
bifidum, Lactobacillus plantarum, Lactobacillus paracasei and Klebsiella pneumoniae than
healthy controls [117]. These populational and functional changes are suspected to be due
to the exposure of intestinal bacteria to urea crossing the gut barrier leading to a selec-
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tion of bacterial families containing urease, uricase or indole- and p-cresyl enzymes [118].
Unfortunately, there is no comparative data available for dogs.

Few data on the link between gut microbiota and urolithiasis in humans and dogs
are available. In dogs, Oxalobacter formigenes, a bacterium that degrades oxalates, was
shown to exhibit significantly contrasting prevalence between dogs with oxalate calcium
uroliths (25%), healthy dogs belonging to a breed predisposed to oxalate calcium uroliths
(50%), and healthy non-predisposed dogs (75%) [119]. The significant underabundance
of O. formigenes in the human gut has also been reported in patients with calcium oxalate
urolithiasis since the early 2000s [120].

Very recently published data for humans make it possible to establish a correlation
between a decrease in the abundance of SCFA-producing bacteria and the formation of
calcium oxalate nephrolithiasis [121]. Liu et al. showed that SCFAs have the ability to
reduce the formation of stones via regulating the expression of the intestinal transporter
SLC26A6 involved in oxalate excretion [121]. This communication route between gut
microbiota and the host has not been studied in the context of lithiasic disease in dogs.

4.5. Neuropsychiatric Diseases

Understanding the microbiota–gut–brain axis, with the goal of identifying innova-
tive therapeutic approaches for mental disorders in humans and dogs is a current chal-
lenge [116]. Laboratory animals, and especially germ-free and gnotobiotic mice, have been
invaluable tools for proof-of-principle studies demonstrating the impact of the gut micro-
biota in the healthy development and homeostasis of the nervous system and in psychiatric
diseases, autism spectrum disorder, schizophrenia, Alzheimer’s disease, Parkinson’s dis-
ease and stroke [117]. Communication between the gut microbiota and the brain takes
place via endocrine, immune, humoral and nervous channels, with particular attention
given to the vagus nerve [118]. Data published by Cummings et al. show that 96.4% of new
drugs developed for treating Alzheimer’s disease as a result of basic research using mouse
models fail in human clinical trials [122]. There is an urgent need for novel models that
will allow scientists to better translate the findings to humans.

Dogs exhibit behavioral problems of interest for exploring the links between gut mi-
crobiota and host behavior. They could serve as a model of spontaneous pathologies for
investigating new therapeutic pathways. In particular, Kirchoff et al. studied a cohort of
21 conspecifically aggressive dogs and showed that the composition of the gut microbiota
differed between aggressive and non-aggressive dogs [123]. More precisely, Proteobacteria
and Fusobacteria displayed greater relative abundances in samples from non-aggressive
animals, whereas Firmicutes were more abundant in samples from aggressive dogs. The
Fusobacteriaceae family and more specifically, the Fusobacteria genus, were more abundant
in specimens from non-aggressive dogs, whereas the Lactobacillaceae family and more
specifically, the Lactobacillus genus, were more abundant in specimens from aggressive dogs.
Mondo et al. compared the gut microbiota of dogs with behavioral disorders (aggressive
and phobic conditions) with that of healthy controls [124]. The gut microbiota structure
exhibited a robust dissociation of the aggressive population that seemed to be driven
by a greater abundance of classically subdominant taxa, such as Blautia, Catenibacterium,
Collinsella, Ruminococcus Dorea, Megamonas and Slackia. In contrast, the phobic population
showed an enrichment of the Lactobacillus genus which comprises well-documented GABA
producers. The major determinants of the segregation of the normal-behavior population
were Bacteroides, Faecalibacterium, Fusobacterium, Phascolarctobacterium and Prevotella, evi-
dencing the preponderance of bacterial genera typically contributing to the gut microbiota
of healthy dogs. Mondo et al. applied a machine-learning technique (random forest)
to their genus-level dataset and established Catenibacterium and Megamonas as bacterial
determinant factors of aggressiveness [125]. Regarding idiopathic epilepsy, a pilot study
using 16S rRNA gene amplicon sequencing failed to identify differences in overall fecal
bacterial patterns and did not show quantitative variations in Lactobacillus species between
untreated epileptic dogs and paired healthy dogs from the same household [125].
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5. Conclusions

As shown in this review, the physiologies of the domestic dog and human are more
similar than those of the human and mouse. Thus, the dog has the potential to be a
useful animal model. The pet dog may be utilized in the field of translational sciences to
identify novel therapies and maximize clinical benefits for both species. To the best of our
knowledge, there are few (or no) studies in the field of gut microbiota that have used dogs
as a larger animal model for the assessment of treatments to improve human wellbeing
or health.

The vast majority of canine studies to date have focused on the phylogenetic structure
of the microbiota and, in most cases, the bacterial fraction of the canine microbiota. Al-
though this will increase the complexity of microbiota analyses, the characterization of the
whole microbe community residing in the canine gut—i.e., the bacteria and archaea, fungi
and yeasts, and protozoans and viruses—along with their interplay and their dynamics
over time is likely to be key for understanding the ecology and physiology of the microbiota.
The microbiota’s phylogenetic structure is undoubtedly an important parameter, but it is
becoming clearer that functional information has to be associated with the microbiome
structure in order to decipher the basis of the symbiotic crosstalk between the host and its
microbiota to identify active compounds or species in addition to obtaining hints regarding
the mode of action that determines the success of interventions.

Another challenge is to define what a healthy (or unhealthy) microbiota is and when
appropriate, to evaluate whether microbiota or microbiota-produced compound(s) could
help to better characterize a population of patients in order to develop efficient diagnostic
tools using a combination of microbiota-based marker(s). It is likely that the meta-analyses
of datasets, provided that the procedures are described and correspond to standards and
best practices, would allow overcoming the limited number of dog samples included in
most of the published studies. This raises the question of how the scientific community can
develop and regularly update the required/useful best practices, standards and reference
materials and define the type of information that has to be disclosed with the datasets.
On these latter aspects, several international efforts are in progress, as are more specific
initiatives. This question of larger numbers of samples and diversity of dog environments
also highlights the potential of large international collaborative projects that would allow
overcoming some of the putative biases associated with microbiome/population studies
and determining whether local or worldwide scales will have to be considered for further
developments in research and innovation.
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