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Abstract: Various organisms exist in the oceanic environment. These marine organisms provide
an abundant source of potential medicines. Many marine peptides possess anticancer properties,
some of which have been evaluated for treatment of human cancer in clinical trials. Marine anticancer
peptides kill cancer cells through different mechanisms, such as apoptosis, disruption of the
tubulin-microtubule balance, and inhibition of angiogenesis. Traditional chemotherapeutic agents
have side effects and depress immune responses. Thus, the research and development of novel
anticancer peptides with low toxicity to normal human cells and mechanisms of action capable of
avoiding multi-drug resistance may provide a new method for anticancer treatment. This review
provides useful information on the potential of marine anticancer peptides for human therapy.
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1. Introduction

The oceans are a diverse environment comprising about 75% of living organisms [1]. The oceanic
environment is an abundant source of nutraceuticals and potential candidates with therapeutic
functions [2].

Cancer is among the major causes of death with high morbidity and mortality [3]. Cell division
that occurs within the cell tissue is a normal process. Under normal conditions, apoptosis constantly
maintains the equilibrium between proliferating cells and programmed cell death. Additionally,
DNA mutations cause cancer by interruption of the regulating programs. In carcinogenesis, normal
cells are transformed into cancer cells [4,5]. In recent decades, marine compounds were studied
for the treatment of cancer. Various types of marine products, such as alkaloids, polyketides,
terpenes, peptides, and carbohydrates, have the potential to prevent and cure cancer [6]. Therefore,
these products may be important in the development of anticancer drugs [7].

In recent years, novel peptides with antibacterial, antidiabetic, antifungal, anti-inflammatory,
antiprotozoal, antituberculosis, and antiviral activities have been found in marine organisms and
studied [2]. Many marine peptides also possess anticancer activity. Some of these peptides have been
studied as cancer treatment in human clinical trials [8–10]. Marine anticancer peptides can kill cancer
cells through different mechanisms, such as apoptosis, affecting the tubulin-microtubule imbalance,
and inhibition of angiogenesis [11]. Understanding the structure and function of pharmacologically
active marine-derived anticancer peptides will enhance the development of lead drug candidates.

This review focuses on the function and structure of pharmacologically active marine peptides
with anticancer activity. Research on peptides derived from marine sources is underway to develop
new potential cancer treatments.
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2. Marine Organisms that are Sources of Anticancer Peptides

Many researchers have isolated anticancer peptides from various marine sources, such as,
cyanobacteria, fungi, sponges, tunicates, ascidians, mollusks, and fish. Anticancer peptides cause cell
death through a unique mechanism involving selectivity to cancer cells and membrane breakdown.
The outer portion of the cell membrane of cancer cells has a higher concentration of anionic
phosphatidylserine than found in normal cells, resulting in a total negative charge on the cell
surface. As a result, the cationic anticancer peptide is attracted to the surface of the cancer cell
and binds to the cell membrane, resulting in the collapse of the membrane and rapid cell death [12,13].
The structural properties of these peptides are attributable to diverse unusual amino acid residues
exhibiting anticancer activity [14].

2.1. Cyanobacteria

Cyanobacteria (marine blue-green algae) are an abundant source of established and novel
bioactive compounds with powerful therapeutic applications [15,16]. The cyanobacteria population
has considerable diversity, comprising 150 genera and about 2000 species [17]. Most studies involve
anticancer agents derived from marine cyanobacteria, which kill cancer cells by inducing apoptotic
cell death or affecting cell signaling [5]. In addition to their cytotoxic effect on human cancer cell lines,
some peptides have been found as templates for the development of new anticancer drugs. Moreover,
these anticancer peptides possess anti-inflammatory and antibacterial properties [18].

2.2. Fungi

Marine fungi produce various secondary metabolites with biological activity and may be
structurally unique [19,20]. Increasing attention regarding the pharmaceutical potential of marine
fungi and screening for novel compounds with anticancer properties have led to the discovery of
several related marine products. In recent years, some marine fungi-derived compounds have shown
potent anticancer activity through different mechanisms, such as cell death induced via multiple cell
death pathways and stimulation of cell cycle arrest [21]. Facultative marine fungi have been researched
since they are known to produce novel compounds having anticancer activities [18].

2.3. Sponges

One of the most abundant sources of therapeutically effective products in marine organisms
are marine sponges [22]. Every year, around 5300 different new compounds are being found from
sponges [22]. Among the sponge-derived peptides reported so far, peptides having anticancer activity
are mainly produced in Haliclona, Petrosia, and Discodemia [22]. Sponge-derived peptides have broad
biological activities [22–24]. Among these peptides, dolastatins, didemnin B and aplidine have been
recently reported in clinical trials [25]. Natural products isolated from sponges are of interest to
the pharmaceutical industry, but most are cyclodepsipeptides, secondary metabolites which contain
specific amino acids and non-amino acid moieties. For this reason, natural products isolated from
sponges are difficult to isolate sufficiently in order to conduct pharmacological testing. Nevertheless,
a great deal of research has been done on these products because of their various biological activities.

2.4. Tunicates and Ascidians

The novel structured peptides found in tunicates and ascidians often possess physiological
activity. This is also the case with sack-like sea squirts that produces complex antitumor compounds.
Only a small number of these are currently being used in cancer treatment [11]. Tunicates are a group
of marine organisms that belong to Tunicata, a subphylum of Chordata. Although ascidians were
considered as tunicates, recent studies have shown that ascidians and tunicates are actually a different
species [7]. Many of these ascidian species produce anticancer peptides, steroids and antioxidants in
novel structures that have biological activity [18].
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2.5. Mollusks and Fish

Mollusks are organisms with a broad range of pharmacological uses. Mollusks are a major
source of primary metabolites because they produce a variety of peptides, enzymes, polysaccharides,
and lipids. In the case of a Sea hare, a shelled organism, it produces a variety of peptides in linear,
cyclic and conjugated forms, with potent anticancer activity [26].

Marine fish are an important source of bioactive peptides and proteins. For this reason,
the importance of fish producing novel bioactive materials is rapidly increasing. Fish-derived peptides
are involved in various pharmacological effects, including antihypertensive, immunomodulatory,
antioxidant, antitumor, and antimicrobial activities [18,27,28].

3. Bioactive Peptides with Anticancer Potential Isolated from Marine Organisms

Most of the commercially useful anticancer drugs are naturally derived compounds [25].
The suitability of novel marine-derived anticancer compounds has been determined through discovery,
development, and marketing approval. These results were used for the prediction and development
of potential marine-derived compounds for cancer chemotherapy [6]. Most of the marine natural
products used for research are secondary metabolites. However, primary metabolites such as various
types of peptides are of growing interest to the pharmaceutical industry [11].

This review describes the development of marine anticancer peptides derived from different
organisms. Furthermore, a list of marine-derived anticancer peptides and their mode of action are
summarized in Table 1.

3.1. Cyanobacteria-Derived Peptides

Cyanobacteria are regarded as a significant source of various biologically and chemically active
natural peptides. Various types of peptides derived from cyanobacteria (such as linear or cyclic peptide,
lipopeptides, and linear or cyclic depsipeptides) are able to induce anticancer effects on various animal
and human tumor cell lines.

3.1.1. Apratoxin A–D

Apratoxins are cyclic depsipeptides with cytotoxic activity. They were isolated from a variety
of Lyngbya sp. found in Papua New Guinea, Palau and Guam (Figure 1) [29,30]. Apratoxins are
metabolites of high cytotoxicity and have a novel skeleton composed of peptides and polyketide
fragments [31]. Apratoxin A (1) was mainly discovered in the cyanobacterium Lyngbya majuscula.
It showed potent cytotoxic activity in human tumor cell lines and showed half-maximal inhibitory
concentration (IC50) values ranging from 0.36 nM and 0.52 nM in LoVo colon carcinoma cancer cells
and epidermal KB carcinoma cancer cells, respectively [32]. On comparison with other natural analogs,
such as apratoxin B (2) and C (3), it was observed to be structurally biologically active due to the
N-methylated Ile residue and the hydroxyl group at C-35 [32]. In the case of apratoxin D (4), IC50 value
for H-460 lung cancer cells was 2.6 nM, indicating strong in vitro cytotoxicity [33,34].
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Table 1. List of marine-derived anticancer peptides and their mode of action.

Name of Peptide Natural Sources Class/Types Mode of Action/Investigative
Status

Growth Inhibition Concentration
(Cell Line) Ref.

Apratoxin A–D
(1–4)

Cyanobacteria:
Lyngbya majuscula, L. sordida

Cyclic
depsipeptide

Induction of G1 phase cell cycle
arrest and apoptosis/in vitro only

IC50: 0.36 nM (LoVo), 0.52 nM (KB),
2.6 nM (H-460) [29–35]

Aurilide (5), B (6), C (7) Cyanobacteria:
Lyngbya majuscula

Cyclic
depsipeptide

Cytotoxicity
/in vitro only

LC50: 40–130 nM (NCI-H460),
10–50 nM (neuro-2a),

GI50 < 10 nM (NCI 60 cell line panel)
[36,37]

Bisebromoamide (8) Cyanobacteria:
Lyngbya majuscula Linear peptide Activation of ERK

pathway/in vitro only
IC50: 0.04 µg/mL (HeLa S3),

GI50 = 40 nM (JFCR39 cell line panel) [38]

Coibamide A (9) Cyanobacteria:
Leptolyngbya sp.

Cyclic
depsipeptide

Cancer cell proliferation
inhibition/in vitro only

LC50 < 23 nM (NCI-H460, neuro-2a)
GI50 < 7.6 nM (NCI 60 cell line panel) [39]

Cryptophycin (10) Cyanobacteria: Nostoc sp. Depsipeptide

Apoptosis and microtubule
inhibition

/in vitro only
(Cryptophycin-52:

Phase II human clinical trial)

IC50 < 50 pM (MDR tumor cell lines), [40–44]

Desmethoxymajusculamide
C (11)

Cyanobacteria:
Lyngbya majuscula

Cyclic
depsipeptide

Tubulin polymerization
Inhibition/in vitro only IC50: 20 nM (HCT-116), [45]

Grassypeptolide A–E
(12–16)

Cyanobacteria:
Lyngbya confervoides

Cyclic
depsipeptide

Induction of G2/M phase cell cycle
arrest

/in vitro only

IC50: 192–335 nM (HeLa),
407–599 nM (neuro-2a) [46,47]

Hantupeptin A (17) Cyanobacteria:
Lyngbya majuscula

Cyclic
depsipeptide

Cytotoxicity
/in vitro only IC50: 32 nM (MOLT-4), 4 µM (MCF-7) [48–50]

Hectochlorin (18) Cyanobacteria:
Lyngbya majuscula Lipopeptide Hyperpolymerization

/in vitro only IC50: 20 nM (CA46), 300 nM (PtK2) [51]

Hormothamnin A (19) Cyanobacteria:
Hormothamnion enteromorphoides Cyclic undecapeptide Cytotoxicity

/in vitro only
IC50: 0.13–0.72 µg/mL (SW1271,

A529, B16-F10, HCT-116)) [52]

Itralamide A (20), B (21) Cyanobacteria:
Lyngbya majuscula

Cyclic
depsipeptide

Antiproliferative
activity/in vitro only IC50: 6 µM (HEK293) [53]

Lagunamide A–C (22–24) Cyanobacteria:
Lyngbya majuscula

Cyclic
depsipeptide

Antiproliferative activities and
apoptosis/in vitro only IC50: 6.4–24.4 nM (P388) [54,55]

Largazole (25) Cyanobacteria: Symploca sp. Cyclic
depsipeptide

Stimulation of histone
hyperacetylation in the

tumor/in vitro only

GI50: 7.7 nM (MDA-MB-231),
122 nM (NMuMG), 55 nM (U2OS),

480 nM (NIH3T3)
[56–60]
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Table 1. Cont.

Name of Peptide Natural Sources Class/Types Mode of Action/Investigative
Status

Growth Inhibition Concentration
(Cell Line) Ref.

Laxaphycin A (26), B (27) Cyanobacteria:
Lyngbya majuscula Cyclic peptide Antiproliferative

activities/in vitro only IC50 < 2 µM (CEM-WT) [61–63]

Lyngbyabellin A (28),
E (29), B (30)

Cyanobacteria:
Lyngbya majuscula Lipopeptides Cytoskeletal actin

disruption/in vitro only

IC50: 0.03–0.1 µg/mL (KB),
IC50: 0.5–0.83 µg/mL (LoVo),

LC50: 0.4–1.2 µg/mL (NCI-H460,
neuro-2a)

[64,65]

Lyngbyastatin 4–7 (31–34) Cyanobacteria: Lyngbya sp. Depsipeptide Porcine pancreatic elastase inhibition
/in vitro only

IC50: 120–210 µM
(elastase inhibition) [66,67]

Symplocamide A (35) Cyanobacteria: Symploca sp. Cyclic depsipeptide Proteasome inhibition/in vitro only IC50: 40 nM (NCI-H460),
29 nM (neuro-2a) [68]

Tasiamide (36), B (37) Cyanobacteria: Symploca sp. Linear peptide Cytotoxicity
/in vitro only

IC50: 0.48 µg/mL (KB),
3.47 µg/mL (LoVo) [69–71]

Veraguamide A (38),
D (39), E (40)

Cyanobacteria:
Oscillatoria margaritifera,

Symploca cf. Hydnoides sp.
Cyclic depsipeptide Cytotoxicity

/in vitro only
LC50: 141 nM (H-460),

IC50: 0.5–1.5 µM (HT29, HeLa) [72,73]

Azonazine (41) Fungus: Aspergillus insulicola Hexacyclic dipeptide Cytotoxicity
/in vitro only IC50 < 15 ng/mL (HCT-116) [74]

Sansalvamide A (42) Fungus: the genus Fusarium Cyclic
depsipeptide

Apoptosis and inhibition of
topoisomerase I
/in vitro only

IC50: 4.5 µg/mL (HT29) [75,76]

Scopularides A (43), B (44) Fungus:
Scopulariopsis brevicaulis

Cyclic
depsipeptide

Cytotoxicity
/in vitro only

IC50: 10 µg/mL (Colo357,
Panc89, HT29) [77]

Arenastatin A (45) Sponge: Dysidea arenaria Cyclic
depsipeptide

Inhibition of microtubule assembly
/in vitro only IC50: 5 pg/mL (KB) [78–83]

Discodermin A–H (46–53) Sponge: Discodermia kiiensis Tetra-
decapeptide

Membrane permeabilization
/in vitro only IC50: 0.02–20 µg/mL (P388, A549) [84]

Geodiamolide H (54) Sponge: Geodia corticostylifera Cyclic
depsipeptide

Antiproliferative activity
/in vitro only G100: 18.6 nM (OV Car-4), [85–87]

Hemiasterlin (55), A (56),
C (57)

Sponge: Auletta sp.,
Siphonochalina sp.

Linear
tripeptide

Inhibition of tubulin polymerization
/Phase I human clinical trial,

(HT1286: Phase I)

IC50: 0.0484–0.269 nM (PC3),
0.404–10.3 nM (NFF), [88–95]

Homophymine A–E
(58–62), A1–E1 (63–67)

Sponge:
Homophymia sp.

Cyclic
depsipeptide

Activation of caspase-3 and
7/in vitro only

IC50: 2–100 nM (MCF7/MCF7R,
HCT116/HCT15, HL60/HL60R) [96]
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Table 1. Cont.

Name of Peptide Natural Sources Class/Types Mode of Action/Investigative
Status

Growth Inhibition Concentration
(Cell Line) Ref.

Jaspamide (68) Sponge: Jaspis johnstoni Cyclic
depsipeptide

Activation of caspase-3, depression
of Bcl-2 protein expression

/in vitro only
IC50 : 0.04 ng/mL (P388) [97–99]

Koshikamide B (69), F–H
(70–72) Sponge: Theonella sp. Peptide lactone Cytotoxicity

/in vitro only
IC50: 0.45–2.3 µM (P388),

5.5–10 µM (HCT-116) [100,101]

Microcionamide A (73),
B (74)

Sponge:
Clathria (Thalysias) abietina

Cyclic
heptapeptide

Cytotoxicity
/in vitro only

IC50: 125–177 nM (MCF-7),
98–172 µM (SKBR-3) [102]

Orbiculamide A (75) Sponge: Theonella sp. Cyclic peptide Cytotoxicity
/in vitro only IC50: 4.7 µg/mL (P388) [103]

Papuamide A–F (76–81) Sponge: Theonella mirabilis,
T. swinhoei Cyclic depsipeptide

Cytotoxicity and inhibition of
infection

/in vitro only

IC50: 0.75 ng/mL (human cell
line panel) [83,104,105]

Phakellistatin 1 (82),
13 (83) Sponge: Phakellia carteri Cyclic heptapeptides Antiproliferative

activity/in vitro only
ED50: 7.5 ug/mL (P388),

IC50: 0.75 ng/mL (BEL-7404) [106–108]

Rolloamide A (84) Sponge: Eurypon laughlini Cyclic heptapeptides Tubulin polymerization
inhibition/in vitro only IC50: 0.4–5.8 µM (SKBR3, A2780) [109]

Scleritodermin A (85) Sponge: Scleritoderm nodosum Cyclic peptide Microtubule assembly
inhibition/in vitro only IC50 < 2 µM (HCT116, SKBR3, A2780) [110,111]

Aplidin
(plitidepsin, 86) Tunicate: Aplidium albicans Cyclic

depsipeptide
Activation of JNK and p38

MAPK/Phase III human clinical trial
IC50: 0.2–27 nM (CFU-GEMM,

CFU-GM, BFU-E) [112–121]

Didemnin B (87) Tunicate: Trididemnum solidum Cyclic
depsipeptide

Apoptosis/Phase II
human clinical trial IC50: 2 ng/mL (L1210) [122–124]

Cycloxazoline (88) Ascidia:
Lissoclinum bistratum

Cyclic
hexapeptide Apoptosis/in vitro only IC50: 0.5 µg/mL (MRC5CV1, T24) [125]

Diazonamide A (89) Ascidia: Diazona angulata Macrocyclic
peptide

Tubulin polymerization
inhibition/in vitro only

IC50: 2–5 nM (CA46, MCF7,
PC3, A549) [126,127]

Mollamide B (90), C (91) Ascidia: Didemnum molle Cyclic depsipeptide Antiproliferative
activity/in vitro only

IC50: 1 µg/mL (P388), 1 µg/mL
(A549, HT29) [128–130]

Tamandarin A (92), B (93) Ascidia: Didemnum sp. Cyclic
depsipeptide

Cytotoxicity
/in vitro only

IC50: 1.79 µg/mL (BX-PC3),
1.36 µg/mL (DU145),

0.99 µg/mL (UMSCC10b)
[131]

Trunkamide A (94) Ascidia:
Lissoclinum sp. Cyclic peptide Cytotoxicity

/in vitro only
IC50: 0.5 µg/mL (P388, A549, HT29),

1.0 µg/mL (MEL-28) [132]
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Table 1. Cont.

Name of Peptide Natural Sources Class/Types Mode of Action/Investigative
Status

Growth Inhibition Concentration
(Cell Line) Ref.

Virenamides A–C (95–97) Ascidia:
Diplosoma virens Linear tripeptides Apoptosis

/in vitro only
IC50: 5–10 µg/mL (P388, A549,

HT29, CV1) [133]

Vitilevuamide (98)
Ascidia:

Didemnum cuculiferum,
Polysyncranton lithostrotum

Bicyclic depsipeptide Tubulin polymerization
inhibition/in vitro only IC50: 6–311 nM (P388, A549, HT29) [122,134]

Dolastatin 10 (99), 15 (100) Mollusk: Dolabella auricularia Linear peptide

Microtubule assembly
inhibition and Bcl-2 phosphorylation

/Human clinical trial
Dolastatin 10: phase II
(TZT-1027: Phase III)

Dolastatin 15: preclinical
(ILX651: Phase II,

LU-103793: Phase I)

IC50: 50–5000 pM (CA46),
0.5–3 nM (L1210) [135–141]

Kahalalide F (101) Mollusk: Elysia rufescens Depsipeptide

ErbB3 protein and PI3K-Akt pathway
involved in necrosis induction,

apoptosis
/Phase I human clinical trial

(Elisidepsin: phase II)

IC50: 0.162–0.288 µM (colon),
0.135 µM (A549), 0.162 µM (H5578T),

0.479 µM (HS-578T)
[142–155]

Keenamide A (102) Mollusk:
Pleurobranchus forskalii Cyclic hexapeptide Cytotoxicity

/in vitro only
IC50: 2.5 µg/mL (P388, A549,

MEL-20), 5 µg/mL (HT29) [156]

Kulokekahilide-2 (103) Mollusk: Philinopsis speciosa Cyclic depsipeptide Cytotoxicity
/in vitro only

IC50: 4.2–59.1 nM (P388, SKOV-3,
MDA-MB-435, A-10) [157]

Ziconotide (104) Mollusk: Conus magus Linear peptide Selective N-type calcium channel
blocker/FDA approved IC50: 100 nM (HEK), 10 nM (IMR32) [158–161]

Pardaxin (105) Fish: Pardachirus marmoratus Linear peptide

Caspase-dependent and
ROS-mediated

Apoptosis
/active in animal

IC90: 13 µg/mL (NH-11) [162,163]

YALRAH (106) Fish: Setipinna taty Linear peptide Antiproliferative
activity/in vitro only IC50: 11.1 µM (PC3) [164]
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Dose-dependent DNA content analysis and gene expression profiling of apratoxin A revealed
critical inhibition of cell division, delay in the G1 stage cell cycle arrest, and apoptosis-induced cell
death. Apratoxin A was found to inhibit fibroblast growth factor receptor (FGFR) signaling pathway,
which is generally associated with cancer [35]. Also, it prevented phosphorylation or activation of
signal transducer and activator of transcription 3 (STAT3), a downstream transcriptional effector of
FGFR signaling, in the functional genome approach [35]. STAT3 is expressed and activated in a broad
range of cancers, which makes it an important anticancer drug target [35]. Because FGF is important for
cell proliferation and angiogenesis, the inactivation of STAT3 occurs through angiogenesis mediated
by the FGF signaling pathway and initiates the apoptotic cascade [35]. On the basis of proteomic
studies, apratoxin A inhibits the N-glycosylation of endoplasmic reticulum receptors, thereby depleting
cancer-associated receptor tyrosine kinases only in cancer cells [29].
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Figure 1. Structures of apratoxins A–D (1–4) [29,30].

3.1.2. Aurilides

The aurilides (5–7) are cyclic depsipeptides containing a polyketoide that is part of a macrocyclic
carbon skeleton and six amino acid-derived moieties (Figure 2) [36,37]. Aurilide (5) was isolated from
the Dolabella auricularia in Japanese sea hare, whereas aurilide B (6) and C (7) were isolated from the
oceanic cyanobacterium Lyngbya majuscula in the Papua New Guinea collection [36,37]. Aurilide B
and C exhibited in vitro cytotoxicity against NCI-H460 (LC50 of 40 and 130 nM, respectively) and the
neuro-2a mouse neuroblastoma cell line (LC50 of 10 and 50 nM, respectively) [37]. The effect of aurilide
B on the NCI 60 cell line panel was also analyzed and it was found to exhibit high cytotoxicity with a
50% growth inhibition (GI50) value of less than 10 nM in the leukemia cell line and renal and prostate
cancer cell lines [37]. The net tumor cell killing activity of aurilide B was confirmed by the National
Cancer Institute (NCI)’s hollow fiber assay for preliminary in vivo screening of novel anticancer drugs.
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3.1.3. Bisebromoamide

Bisebromoamide (8) is a linear peptide that is a marine toxic substance isolated from Lyngbya sp.
in the Okinawan collection (Figure 3) [38]. Bisebromoamide consists of the N-pivaloyl-alanine,
N-methyl-3-bromo-tyrosine, 4-methylproline, 2-(1-oxo-propyl)-pyrrolidine and 2-methylcystine,
leucine, N-methylphenyl-alanine.

Bisebromoamide is a strong cytotoxin with an IC50 value of 40 ng/mL in HeLa S3 cells. Also, for a
panel of 39 human cancer cell lines (JFCR39), it showed an average GI50 value of 40 nM. Moreover,
a wealth of experimental data demonstrated that the extracellular signal-regulated protein kinase
(ERK) signaling cascade recognized its targets through interaction with bisebromoamide [38].
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3.1.4. Coibamide A

Coibamide A (9) was isolated from Leptolyngbya sp., a Panamanian marine cyanobacterium,
which is a cyclic depsipeptide (Figure 4) [39]. Testing of coibamide A in the NCI-H460 lung cancer cells
and mouse neuro-2a cells showed strong cytotoxicity with LC50 values of less than 23 nM. Furthermore,
coibamide A, a powerful cancer cell toxin with an unique selectivity for the NCI 60 cancer cell line panel,
showed significant cytotoxicity against HL-60 human myeloid cells, LOX IMVI human melanoma
cell, MDA-MB-231 breast cancer cells and SNB-75 cells with low nM potency. In addition, powerful
anti-proliferative activity of the cancer cell was found via a novel target or mechanism of action using
COMPARE assays [39].
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3.1.5. Cryptophycin

Cryptophycin (10) was isolated from the marine cyanobacteria Nostoc sp. ATCC 53789 and GSV
224 and is a depsipeptide with potent antifungal activity (Figure 5) [40]. Cryptophycin bound strongly
to the microtubule ends at the vinca-binding site and inhibited the microtubule polymerization.
It showed marked cytotoxicity with an IC50 value of less than 50 pM for multidrug-resistant (MDR)
tumor cell lines [41].

The synthetic derivative of cryptophycin, cryptophycin-52 (LY355703), is produced by total
synthesis. Cryptophycin-52 induced apoptosis, which is confirmed through the hyperphosphorylation
of Bcl-2, cell cycle arrest, and growth inhibition in preclinical trials for the in vitro human non-small



Int. J. Mol. Sci. 2018, 19, 919 10 of 40

cell lung carcinoma (NSCLC) cell line [42]. A clinical phase II study of cryptophycin-52 revealed the
antitumor effect in advanced NSCLC and platinum-resistant advanced ovarian cancer in patients [43,44].
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3.1.6. Desmethoxymajusculamide C

Desmethoxymajusculamide C (11) is a cyclic depsipeptide produced by the L. majuscula. It has
strong and selective antitumor activity when tested against HCT-116 human colon carcinoma cells as
demonstrated by an IC50 of 20 nM and the destruction of cell microfibrils networks (Figure 6) [45]. In the
disk diffusion assay, linear desmethoxymajusculamide C maintained powerful actin depolymerization
ability as well as solid tumor selectivity [45].
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3.1.7. Grassypeptolides

Grassypeptolides A–C (12–16) are cyclic depsipeptides containing bis-thiazoline and were
isolated from Lyngbya confervoides [46]. Grassypeptolides also contains an unusual β-amino acid
(2-methyl-3-aminobutyric acid), many D-amino acids, and a number of N-methylated amino acids.
When the ethyl substituent of Grassypeptolide A (12) (IC50 = 1.22 and 1.01 µM against HT29 and
HeLa cancer cell lines, respectively) turned to the methyl group in grassypeptolide B (13), the activity
decreases to an extent (3–4-fold; IC50 = 4.97 and 2.93 µM), while the reversal of the Phe unit adjacent to
the bis-thiazoline moiety (grassypeptolide C (14)) results in 16–23 fold greater efficacy (IC50 = 76.7 and
44.6 nM) (Figure 7) [46]. Grassypeptolide A and C induce G1 cell cycle arrest at lower concentrations
and induce G2/M cell-cycle arrest at higher concentrations in HeLa cells [46].

Grassypeptolide D (15) and E (16) exhibit potent cytotoxicity against HeLa (IC50 = 335 and 192 nM,
respectively) and mouse neuro-2a blastoma cells (IC50 = 599 and 407 nM, respectively) (Figure 7) [47].
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3.1.8. Hantupeptin A

Hantupeptin A (17) is a cyclodepsipeptide with a potent cytotoxicity, isolated from Lyngbya majuscula
(Figure 8) [48]. Hantupeptin A is a 19-membered cyclic tetrapeptide, which consists of α-amino
acids, α-hydroxy acid residue (either phenyl lactic acid, proline, N-methylvaline, valine,
or N-methylisoleucine), and an α-methyl-β-hydroxy acid unit with an alkyne at the C-terminal
end. The hydroxyl group is attached on the carbon (C-35) of an unusual hydroxy acid, 3-hydroxy-2-
methyloctynoic acid [49,50]. Hantupeptin A has shown cytotoxicity with IC50 values of 32 nM and
4.0 µM when tested against MOLT-4 leukemia and MCF-7 breast cancer cells, respectively [49,50].
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3.1.9. Hectochlorin

Hectochlorin (18) was identified from L. majuscula and showed potent activity in promoting actin
polymerization (Figure 9) [51].

The pharmacological target for hectochlorin has been proposed as actin microfilaments owing
to the cumulation of CA46 cells in the G2/M phase. Subsequently, hectochlorin induced actin
polymerization with a half-maximal effective concentration (EC50) value of 20 µM in PtK2 cells.
Among the NCI 60 cancer cell lines, 23 cancer cell lines such as colon melanoma, ovarian tumor,
and renal cells showed strong cytotoxicity. Hectochlorin (18) showed cytotoxic activity with IC50

values of 20 and 300 nM for CA46 human Burkitt lymphoma cell and PtK2 cells, respectively [51].
However, the dose-response curve of hectochlorin was flat, suggesting that hectochlorin is more
antiproliferative than cytotoxic [51].
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3.1.10. Hormothamnin A

Hormothamnin A (19) isolated from Hormothamnion enteromorphoides is a cyclic undecapeptide
containing six common and five uncommon or novel amino acid residues (Figure 10) [52].
Hormothamnin A (19) was significantly cytotoxic in a variety of solid cancer cell lines, including human
lung cell (SW1271 and A529), murine melanoma cell (B16-F10), and human colon cell (HCT-116) [47]
with IC50 values ranging from 0.13 to 0.72 µg/mL.
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3.1.11. Itralamide A and B

Caribbean sources of L. majuscula yielded two cytotoxic cyclodepsipeptides: itralamide A (20)
and B (21) (Figure 11) [53]. Itralamide B (21) showed a higher activity than the former, in addition
to displaying moderate activity against human embryonic kidney cells 293 (HEK293, IC50 = 6 µM).
Itralamide A (20) is structurally similar to itralamide B, but has a much lower activity [53].
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3.1.12. Lagunamides

The cyclodepsipeptides lagunamide A (22) and B (23) were isolated from the filamentous marine
cyanobacterium L. majuscule. These compounds were cytotoxic against P388 murine leukemia cell lines
with IC50 values of 6.4–20.5 nM, respectively (Figure 12) [54]. Furthermore, a biochemical analysis
using HCT8 and MCF7 cancer cells indicated that lagunamide A and B exhibit cytotoxicity by inducing
mitochondria-mediated apoptosis [54].

Lagunamide C (24) exhibited strong cytotoxicity against P388, A549, PC3, HCT8, and SK-OV3
cell lines with IC50 values ranging from 2.1–24.4 nM [55].

3.1.13. Largazole

Largazole (25) is a cytotoxic cyclic depsipeptide isolated from Symploca sp. (Figure 13) [56].
Largazole is a potent growth inhibitor against transformed human mammary epithelial cells
(MDA-MB-231, GI50 of 7.7 nM) over non-transformed murine mammary epithelial cells (NMuMG, GI50

of 122 nM) [56]. These molecules also showed strong antiproliferative activity of the transformed U2OS
fibroblastic osteosarcoma cells (GI50 = 55 nM). However, it was less active in non-transformed NIH3T3
fibroblasts (GI50 = 480 nM) than in transformed U2OS cells (GI50 = 55 nM). Due to its biological activity
and selectivity, several research groups investigated the total chemical synthesis of largazole [57–60].
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3.1.14. Laxaphycin A and B

Laxaphycins (26, 27) are cyclic peptides isolated from Anabaena laxa. Laxaphycins A (26) and B (27)
were re-isolated from an assemblage of L. majuscule, together with Anabaena sp. [61,62]. Laxaphycin
A is a cyclic undecapeptide containing a 3-aminooctanoic acid residue, and laxaphycin B has a
3-aminodecanoid acid moiety (Figure 14). Laxaphycin A exhibited weak cytotoxicity on a panel
of solid cancer cell lines. These include A549 (human lung adenocarcinoma epithelial cell), MCF7
(human breast adenocarcinoma cell), PA1 (human ovarian teratocarcinoma cell), PC3 (human prostate
cancer cell), DLD1 (human colorectal adenocarcinoma cell), and M4Beu (human pigmented malignant
melanoma) cell lines [63]. Laxaphycins A and B also showed synergistic inhibitory effects on cancer
cells in an antifungal assay [63]. Furthermore, laxaphycin B exhibited strong anticancer activity against
both sensitive and resistant cancer cell lines [63].

The mode of action of laxaphycin B (27) alone may be different from that of laxaphycin A in
combination with laxaphycin B (26) [63]. Therefore, laxaphycins A and B could offer new visions into
the clinical use of combinatorial drugs in the treatment of cancer.
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3.1.15. Lyngbyabellin A, E, and B

Lyngbyabellin A (28) and E (29) isolated from L. majuscula are hectochlorin-related lipopeptides
with potent actin polymerization activity, and lyngbyabellin A (28) showed moderate cytotoxicity in
KB (IC50 values of 0.03 µg/mL) and LoVo (IC50 = 0.5 µg/mL) cells (Figure 15) [64,65]. It disrupted the
cellular actin microfilament network in A10 cells at 0.01–7.2 µM. Furthermore, lyngbyabellin A was
fatal to mice when injected at a median lethal dose (LD50) value of 1.2–1.5 mg/kg [64].

Lyngbyabellin E (29) also exhibited actin polymerization ability at 60 nM; it completely blocked the
cellular microfilaments in A10 cells, forming binucleated cells [65]. Furthermore, it showed cytotoxic
activity against NCI-H460 (human lung carcinoma cell, LC50 values of 0.4 µM) and neuro-2a (mouse
neuroblastoma cell (LC50 = 1.2 µM) [65].

Lyngbyabellin B (30) showed effects on A10 human Burkitt lymphoma cells [64]. Furthermore,
the cytotoxic effect of lyngbyabellin B was weaker than that of lyngbyabellin A against KB (IC50 values
of 0.1 µg/mL) and LoVo (IC50 = 0.83 µg/mL) cells [64].
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3.1.16. Lyngbyastatin 4–7

Many cyclic depsipeptides isolated from marine cyanobacteria show strong inhibition of serine
proteases such as pepsin, trypsin, α-chymotrypsin, and elastase. Serine protease is involved in a variety
of disease states, including extermination of the extracellular surface of the cartilage covering bones
(articular cartilage) in arthritic refractory, emphysema, and inflammatory infections. For this reason,
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inhibition of serine proteases will be available as a new potential drug target for cancer therapy [66].
Lyngbyastatin 4–7 were depsipeptides isolated from Lyngbya (31–34) (Figure 16) [67].

Lyngbyastatins showed in vitro inhibitory effect against elastase, chymotrypsin, and trypsin.
Lyngbyastatins 4–7 are potent inhibitors of elastase with IC50 values between 120 and 210 nM [67].

Int. J. Mol. Sci. 2018, 19, x 15 of 40 

 

bones (articular cartilage) in arthritic refractory, emphysema, and inflammatory infections. For this 
reason, inhibition of serine proteases will be available as a new potential drug target for cancer 
therapy [66]. Lyngbyastatin 4–7 were depsipeptides isolated from Lyngbya (31–34) (Figure 16) [67]. 

Lyngbyastatins showed in vitro inhibitory effect against elastase, chymotrypsin, and trypsin. 
Lyngbyastatins 4–7 are potent inhibitors of elastase with IC50 values between 120 and 210 nM [67]. 

 
Figure 16. Structures of lyngbyastatin 4–7 (31–34) [67]. 

3.1.17. Symplocamide A 

Symplocamide A (35), isolated from Symploca sp. is a cyclodepsipeptide that showed potent 
cytotoxicity to non-small cell lung cancer cells H-460 (IC50 = 40 nM) and to neuro-2a neuroblastoma 
cells (IC50 = 29 nM) (Figure 17) [68]. Symplocamide A also inhibited serine proteases, and its 
inhibitory activity on chymotrypsin was 200-fold higher than trypsin (IC50 = 0.38 μM) [68]. 

 
Figure 17. Structure of Symplocamide A (35) [68]. 

3.1.18. Tasiamides 

Tasiamide (36) and tasiamide B (37) are linear peptides isolated from the cyanobacterium 
Symploca sp. (Figure 18) [69]. Tasiamide (36) showed strong toxicity to human nasopharyngeal 
carcinoma (KB) and human colon carcinoma (LoVo) cells, with IC50 values of 0.48 and 3.47 μg/mL, 
respectively [69]. 

Tasiamide B (37) (an octapeptide) contains 4-amino-3-hydroxy-5-phenylpentanoic acid, a 
unique amino acid moiety, and have cytotoxity against KB cell lines [70]. The synthetic analogues of 
tasiamide also inhibited KB and non-small cell lung tumor cell lines [71]. 

Figure 16. Structures of lyngbyastatin 4–7 (31–34) [67].

3.1.17. Symplocamide A

Symplocamide A (35), isolated from Symploca sp. is a cyclodepsipeptide that showed potent
cytotoxicity to non-small cell lung cancer cells H-460 (IC50 = 40 nM) and to neuro-2a neuroblastoma
cells (IC50 = 29 nM) (Figure 17) [68]. Symplocamide A also inhibited serine proteases, and its inhibitory
activity on chymotrypsin was 200-fold higher than trypsin (IC50 = 0.38 µM) [68].
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3.1.18. Tasiamides

Tasiamide (36) and tasiamide B (37) are linear peptides isolated from the cyanobacterium Symploca
sp. (Figure 18) [69]. Tasiamide (36) showed strong toxicity to human nasopharyngeal carcinoma (KB)
and human colon carcinoma (LoVo) cells, with IC50 values of 0.48 and 3.47 µg/mL, respectively [69].

Tasiamide B (37) (an octapeptide) contains 4-amino-3-hydroxy-5-phenylpentanoic acid, a unique
amino acid moiety, and have cytotoxity against KB cell lines [70]. The synthetic analogues of tasiamide
also inhibited KB and non-small cell lung tumor cell lines [71].
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3.1.19. Veraguamide A, D, and E

Veraguamides, a family of cyclodepsipeptides, were isolated from Oscillatoria margaritifera
(Figure 19) [72]. Veraguamide A (38) was highly toxic in the H-460 human lung cancer cell line
(LD50 = 141 nM) [72]. In addition, veraguamides A–G were isolated from Symploca cf. hydnoides.
Veraguamides D (39) and E (40) showed cytotoxicity against both HT 29 and HeLa cell lines
(IC50 = 0.5–1.5 µM) [73]. The increase in the hydrophobicity of specific units in veraguamides results
in their increased activity.
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3.2. Fungi-Derived Peptides

Marine fungi produce biologically active and chemically solitary peptides that have offered
research opportunities for effective cancer treatments. However, fungi-derived peptides, like sponge-
derived peptides, are mostly secondary metabolites that are difficult to isolate. For this reason,
the fungi-derived peptides are less studied than other marine peptides [11].

3.2.1. Azonazine

Azonazine (41) is a hexacyclic dipeptide from Aspergillus insulicola, a Hawaiian marine
sediment-derived fungus (Figure 20) [74]. Azonazine showed cytotoxicity with IC50 values < 15 ng/mL
against HCT-116. This peptide showed anti-inflammatory activity by inhibition of NF-κB luciferase
(IC50 = 8.37 µM) and nitrite production (IC50 = 13.70 µM).
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3.2.2. Sansalvamide A

The cyclic depsipeptide, Sansalvamide A (42), was isolated from Fusarium sp. living on the marine
plant Halodule wrightii (Figure 21) [75]. This peptide showed cytotoxicity against different cell lines
such as pancreatic, colon, breast, prostate sarcoma and melanoma cancer cell lines, which suggests
it is a potent chemotherapeutic agent (cytotoxicity against the HT29 cell was IC50 = 4.5 µg/mL) [76].
Until now, the exact mechanism of sansalvamide A is unknown. A recent research showed interaction
between the HSP90 heat shock protein and client cancer proteins in mammalian cell lines. Sansalvamide
A-amid is a synthetic peptide that has similar action to Sansalvamide A [76]. Sansalvamide A-amid
was reported to bind to the N-middle domain of HSP90 and allosterically inhibits the formation of
protein complex needed to promote tumor growth [76]. In addition, Sansalvamide A-amid caused G1
phase cell cycle arrest in the AsPC-1 and CD18 human pancreatic cancer cell lines. Ssansalvamide A
acts as an inhibitor of topoisomerase I by inducing cell death by negligible apoptosis in several cancer
cell lines [76].
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3.2.3. Scopularide A and B

Scopularide A (43) and B (44) are cyclodepsipeptides isolated from the marine fungi Scopulariopsis
brevicaulis and the marine sponge Tethya aurantium (Figure 22) [77]. Both compounds have the ability to
inhibit the growth of pancreatic and colon tumor cell lines [77]. These peptides have no antimicrobial
activity against gram-negative bacteria and have weak activity against gram-positive bacteria [77].
However, the cytotoxicity of various tumor cell lines including the Colo357 and Panc89 pancreatic
tumor cell lines and the HT29 colon tumor cell line was confirmed at the concentration of 10 µg/mL
(IC50) [77].
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3.3. Sponge-Derived Peptides

Anticancer peptides from sponges are mostly cyclodepsipeptides with unusual amino acids or
non-amino acid parts. These sponge-derived peptides showed a broad range of anticancer or antitumor
activity [78].

3.3.1. Arenastatin A

Arenastatin A (45), a macrocyclic depsipeptide, was isolated from Dysidea arenaria with extremely
strong cytotoxic activity (IC50 = 5 pg/mL) against a human nasopharyngeal carcinoma (KB) cell line
(Figure 23) [79]. Arenastatin A inhibits microtubule assembly due to the binding rhizoxin/maytansine
sites of tubulin, resulting in cytotoxicity [80,81]. However, arenastatin A is unstable in mouse serum;
there is little in vivo antitumor activity. The high sensitivity of the ester linkage to hydrolysis
and degradation in blood is a disadvantage [82,83]. The synthesized 15-tert-butyl derivative of
arenastatin A overcomes this disadvantage and exhibits improved serum stability as well as in vivo
antitumor activity.
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3.3.2. Discodermin A–H

Discodermins are cytotoxic tetradecapeptides obtained from Discodermia sp. containing a
macrocyclic ring formed by lactonization of a threonine amino acid unit at the C-terminal and 13–14
common and unusal amino acids-linked structures [84].

Discodermin A–H (46–53) are all cytotoxic; tests against murine leukemia cell line (P388), human
lung cell line (A549), and the inhibition of starfish development resulted in IC50 values of 0.02 to
20 µg/mL [84]. Among these, discodermin A (46) was shown to permeabilize the plasma membrane
of tissues and vascular smooth muscle cells (Figure 24) [84].Int. J. Mol. Sci. 2018, 19, x 18 of 39 
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3.3.3. Geodiamolide H

Geodiamolides were originally isolated from Geodia sp. as cyclic forms of peptides consisting
of three amino acid residues with a common polyketide unit [85,86]. Geodiamolide H (54) is a cyclic
depsipeptide isolated from G. corticostylifera, which showed in vitro cytotoxicity against several human
cancer cell lines such as ovarian cancer, OV Car-4 (G100 = 18.6 nM). Also, it has antiproliferative activity
against the human breast cancer cells by altering the actin cytoskeleton (Figure 25) [87].
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3.3.4. Hemiasterlin

Hemiasterlin (55), a linear tripeptide consisting of three sterically congested amino acids, was
isolated from Hemiasterella minor [88]. In particular, Hemiasterlin, hemiasterlin A and hemiasterlin C
(55–57) showed strong cytotoxic activity against the P388 leukemia cell (Figure 26) [88–90].
Hemiasterlins show inhibition with IC50 ranges of 0.0484–0.269 nM and 0.404–10.3 nM in PC3 and
NFF cells, respectively. They block mitotic spindle formation and induce mitotic arrest and apoptosis,
resulting in tubulin depolymerization by binding to the Vinca alkaloid binding site [91]. Hemiasterlin
is in phase I clinical trials for patients with solid malignancies [92].

HT1286 (also called SPA-110 or taltobulin), a synthetic derivative of hemiasterlin, showed stronger
cytotoxicity against human cancer cell lines than hemiasterlin, although both hemiasterlin and HT1286
have a similar mechanism of action. HT1286 has been shown to inhibit the growth of human tumor
xenografts in mice, in a preclinical study [93]. The observed side effects, including alopecia, pain,
and nausea, resulted in the cessation of HT1286 phase I clinical trials. However, HT1286 has high
potential in the treatment of solid tumors in humans. Therefore, the development of new synthetic
derivatives with fewer side effects is an important step toward the use of hemiasterlin as an anticancer
drug [94,95].
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3.3.5. Homophymine A–E and A1–E1

Homophymine A–E (58–62) and A1–E1 (63–67), isolated from Homophymia sp. are cyclodepsipeptides
with very strong cytotoxicity against tumor cell lines (Figure 27) [96]. Homophymines (58–67)
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showed strong cytotoxicity with IC50 values of 2–100 nM against a panel of human cancer cell
lines. They exhibited the highest activity against human prostate adenocarcinoma (PC3) and ovarian
adenocarcinoma (SK-OV3) cell lines. Additional research on homophymines (58–67) was conducted to
determine whether these were toxic or antiproliferative. They have been shown to induce apoptosis on
the part of a caspase-independent mechanism and cytotoxicity through non-specific mechanism [96].
Homophymine A1–E1 (63–67) differ from homophymine A–E (58–62) owing to an amide residue
instead of the carboxylic acid in the 4-amino-2,3-dihydroxy-1,7-heptanedioic acid residue and exert
stronger potency than their corresponding homophymine A–E structures (58–62) [96].
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3.3.6. Jaspamide

Jaspamide (Jasplakinolide, 68) was isolated from Jaspis johnstoni as a cyclic depsipeptide with a
15-carbon macrocyclic ring of three amino acid residues (Figure 28) [97].

Jaspamide was found to be highly cytotoxic with an IC50 value of 0.04 ng/mL in P388 murine
leukemia cells. It is a bioactive peptide that induces apoptosis in human leukemia cell lines and brain
tumor Jurkat T cells by activation of caspase-3 protein expression and decrease in Bcl-2 levels [97–99].

In particular, transformed cell lines were more sensitive to jaspamide-induced cell death
(apoptosis) than normal non-transformed cells [98].

Apoptosis induced by Jaspamide was associated with caspase-3 activation, decreased Bcl-2 protein
expression, and increased Bax levels, suggesting that jaspamide induced a caspase-independent cell
death pathway for cytosolic and membrane changes in apoptosis cells, and a caspase-dependent cell
death pathway for PARP protein degradation [99].

Int. J. Mol. Sci. 2018, 19, x 20 of 40 

 

Homophymines (58–67) showed strong cytotoxicity with IC50 values of 2–100 nM against a panel of 
human cancer cell lines. They exhibited the highest activity against human prostate adenocarcinoma 
(PC3) and ovarian adenocarcinoma (SK-OV3) cell lines. Additional research on homophymines 
(58–67) was conducted to determine whether these were toxic or antiproliferative. They have been 
shown to induce apoptosis on the part of a caspase-independent mechanism and cytotoxicity 
through non-specific mechanism [96]. Homophymine A1–E1 (63–67) differ from homophymine A–E 
(58–62) owing to an amide residue instead of the carboxylic acid in the 4-amino-2,3- 
dihydroxy-1,7-heptanedioic acid residue and exert stronger potency than their corresponding 
homophymine A–E structures (58–62) [96]. 

 
Figure 27. Structures of homophymine A–E (58–62) and A1–E1 (63–67) [96]. 

3.3.6. Jaspamide 

Jaspamide (Jasplakinolide, 68) was isolated from Jaspis johnstoni as a cyclic depsipeptide with a 
15-carbon macrocyclic ring of three amino acid residues (Figure 28) [97]. 

Jaspamide was found to be highly cytotoxic with an IC50 value of 0.04 ng/mL in P388 murine 
leukemia cells. It is a bioactive peptide that induces apoptosis in human leukemia cell lines and brain 
tumor Jurkat T cells by activation of caspase-3 protein expression and decrease in Bcl-2 levels 
[97–99]. 

In particular, transformed cell lines were more sensitive to jaspamide-induced cell death 
(apoptosis) than normal non-transformed cells [98]. 

Apoptosis induced by Jaspamide was associated with caspase-3 activation, decreased Bcl-2 
protein expression, and increased Bax levels, suggesting that jaspamide induced a caspase- 
independent cell death pathway for cytosolic and membrane changes in apoptosis cells, and a 
caspase-dependent cell death pathway for PARP protein degradation [99]. 

 
Figure 28. Structure of jaspamide (68) [97]. 

  

Figure 28. Structure of jaspamide (68) [97].



Int. J. Mol. Sci. 2018, 19, 919 21 of 40

3.3.7. Koshikamide B and F–H

Koshikamide B (69) has been identified as the major cytotoxic constituent in two separate
collections of the Theonella sp. Koshikamide B is a peptide lactone of 17-residue consisting of
6 proteinogenic amino acids, 2 D-isomers of proteinogenic amino acids, 2 unusual amino acids, and 7
N-methylated amino acids (Figure 29) [100]. It was confirmed that the IC50 values for human leukemia
cells (P388) and human colon tumor (HCT-116) cell lines were 0.22 and 3.7 µM, respectively [100].

Koshikamide F–H (70–72) are 17-residue depsipeptides with macrolactone, their IC50 values
were inhibited entry from 2.3 to 5.5 µM. (Figure 29) [101]. Koshikamide H (72) was found to have
moderate cytotoxicity against the HCT-116 colon cancer cell line with IC50 value of 10 µM. However,
koshikamides F–H did not inhibit the growth of Candida albicans, indicating that it is cytotoxic without
antifungal activity [101].
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3.3.8. Microcionamide A and B

Microcionamide A (73) and B (74) isolated from the Clathria (Thalysias) abietina are linear peptides
cyclized via cyclic hexapeptides. Microcionamide A (A) and B (B) showed significant cytotoxicity
with IC50 ranges of 125 (A) and 177 nM (B) and 98 (A) and 172 nM (B) in MCF-7 and SKBR-3 cells,
respectively (Figure 30) [102]. In addition, these compounds were found to induce apoptosis in MCF-7
cells within 24 h at 5.7 µM. Microcionamides A and B showed cytotoxicity for Mycobacterium tuberculosis
H37Ra with MIC values of 5.7 µM [102].
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3.3.9. Orbiculamide A

Orbiculamide A (75) is a cyclic peptide from Theonella sp. with reported cytotoxicity in P388
murine leukemia cells (IC50 = 4.7 µg/mL) and several other melanoma cell lines (Figure 31) [103].
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3.3.10. Papuamides

Papuamide A–D (76–79), cyclic depsipeptides isolated from Theonella mirabilis and T. swinhoei,
are known as the first marine-derived peptides to effectively inhibit the infection of human
T-lymphoblastoid cells by HIV-1 in vitro (Figure 32) [83,104]. Especially, papuamides A (76) and
B (77) blocked the infection with an EC50 value of about 4 ng/mL and papuamide A has an average
IC50 of 75 ng/mL, indicating cytotoxicity against a panel of human cancer cell lines. Papuamide E (80)
and F (81) were isolated from Melophlus and LD50 values for brine shrimp were 104 and 106 µg/mL,
respectively, confirming cytotoxicity [105].
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3.3.11. Phakellistatins

Proline rich-cyclic heptapeptides, Phakellistatins, are isolated from Phakellia carteri and these
compounds inhibit leukemia cell growth (Figure 33) [106]. Phakellistatin 1 (82) significantly inhibited
growth of the P388 lymphocytic leukemia (50% effective dose, ED50 = 7.5 µg/mL) and other different
melanoma cell lines [107]. Phakellistatin 13 (83) isolated from Phakellia fusca showed cytotoxicity
against the BEL-7404 human hepatoma cell line (IC50 < 10 ng/mL). When synthetic phakellistatins
were tested, they were inactive, unlike natural products. This may be explained by conformational
differences, especially around the proline residue [108]. In other words, the biological properties of
synthetic products were found to be significantly different from the products isolated from nature.
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3.3.12. Rolloamide A and B

Rolloamide A (84) and B are two cyclic heptapeptides contained in the Dominican sponge
Eurypon laughlini. Rolloamide A (84) showed antiproliferative activity against a panel of histologically
diverse cancer cells and showed moderate activity in prostate (LNCap and DU145), breast (MDA468,
MDA435 and so on), ovarian (OVCAE3 and SKOV3) and diverse cell lines with IC50 value range from
0.4 to 5.8 µM, while rolloamide B was largely inactive (Figure 34) [109]. Rolloamide B has been shown
to have potent activity against several gram-negative bacteria along with high antifungal potency [109].
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Figure 34. Rolloamide A (84) isolated from the Dominican sponge Eurypon laughlini [109].

3.3.13. Scleritodermin A

Scleritodermin A (85) isolated from Scleritoderma nodosum is a cyclic peptide and showed in vitro
cytotoxicity against human tumor cell lines, including HCT116 colon carcinoma (IC50 = 1.92 µM), A2780
ovarian carcinoma (IC50 = 0.94 µM), and SKBR3 breast carcinoma (IC50 = 0.97 µM) (Figure 35) [110,111].
Scleritodermin A has a structure that combines the keto-Ile-Pro-Ser-Pro-SerOMe portion and the
conjugated thiazole moiety. Scleritodermin A (85) has been observed to potently inhibit tubulin
polymerization in different cancer cells because of the cell cycle arrest in the G2/M phase [110,111].
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3.4. Tunicate and Ascidia-Derived Peptides

Marine tunicates and ascidiae produce many biologically active peptides; they produce more
antitumor and anticancer peptides than any other group of marine organisms [7,11].

3.4.1. Aplidin

Aplidin, the trade name for dehydrodidemnin B/plitidepsin (86), is a cyclic depsipeptide isolated
from the ascidian Aplidium albicans (Figure 36) [112]. It has shown strong anticancer activity against
a variety of human cancer cell lines including melanoma, breast and lung [113–115]. The toxicity of
aplidine in normal hematopoietic tissue (IC50 = 150–2250 nM) was lower than that in tumor cells
(IC50 = 0.2–27 nM).

The mechanism of action of aplidin involves cell cycle arrest at the G1-G2 phase, inhibition of
protein synthesis, and induction of cancer cell death through induction of apoptosis [115]. Aplidin (86)
induced early oxidative stress and then, the activation of both JNK and p38 mitogen-activated protein
kinases (MAPK) occurred rapidly and steadily. Phosphorylation by the activation of both kinases
occurred rapidly and fully in the drug treatment of HeLa human tumor cells. Activation of JNK and p38
MAPK resulted in downstream of cytochrome c release, upstream of caspase-9 and caspase-3 activation,
and PARP cleavage, indicating the strong suppressor of the mitochondrial apoptosis pathway [115,116].
The two mechanisms (apoptosis via caspase-dependent and -independent mechanisms) by which
aplidin activated JNK are rapid induction of Rac1 small GTPase and downregulation of MKP-1
phosphatase. Furthermore, aplidin induced other kinases such as the epidermal growth factor receptor
(EGFR), the non-receptor protein-tyrosine kinase Src, and the serine/threonine kinases JNK and p38
MAPK in the MDA-MB-231 breast cancer cells.

The availability of the natural marine resource of aplidin is limited due to the difficulty of
collecting A. albicans. The limited availability has led to the development of the synthetic analogues.

In patients with advanced melanoma, multiple myeloma, non-Hodgkin’s lymphoma, advanced
medullary thyroid carcinoma, or urothelium carcinoma, relevant anticancer activity of plitidepsin has
been shown in Phase III clinical studies [117–120].

Aplidin also inhibited the expression of the vascular endothelial growth factor gene, resulting
in biological effects such as angiogenesis, hematopoiesis, and vascular homeostasis [121]. However,
aplidin was more effective than didemnin B in preclinical models and, to date, there is no evidence of
toxicity to life-threatening neuromuscular disease [112,115].
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3.4.2. Didemnin B

Some peptides derived from natural marine resource are shown to induce apoptosis through
various mechanisms including cell membrane blebbing, nuclear condensation, and DNA fragmentation.
However, the actual mechanism of action for this cytotoxic activity is still unclear. The cycle
depsipeptides didemnins were first isolated from Trididemnum solidum, which showed strong antitumor,
immunosuppressive, and antiviral properties [8,83].
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Didemnin B (87) showed the highest anticancer activity against human prostatic cancer cell lines
(IC50 = 2 ng/mL in L1210 leukemia cell) and antiproliferative activity against P388 leukemia as well as
B16 melanoma (Figure 37) [83]. For this reason, didemnin B (87) became the first ascidiacea cytotoxin
to enter into clinical trials as a potent anticancer drug [122].

Didemnin B has shown impressive anti-cancer activity via the inhibition of protein synthesis [123].
Didemnin B has been approved for clinical use as an anticancer agent, but its use is limited due
to toxicity and lack of efficacy during a phase II study and an unclear mechanism of action [124].
Furthermore, its low solubility and a short lifespan led to the termination of didemnin B phase II
clinical trials [122]. Dehydrodidemnin B (aplidin), an oxidative derivatve of didemnin B, was isolated
from A. albicans and exhibits more potent anticancer activity than didermin B [25]. Currently
dehydrodidemnin B is in phase II clinical trials in the USA and Europe [25].
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3.4.3. Cycloxazoline

Cycloxazoline (88), a cyclic hexapeptide found from Lissoclinum bistratum, showed potent
anti-apoptotic activity in various cancer cell lines but the exact target is presently unknown
(Figure 38) [124,125]. The compound displayed cytotoxicity against MRC5CV1 and T24 cells
(IC50 = 0.5 µg/mL). Cycloxazoline caused accumulation of HL-60 leukemia cells in the G2/M phase and
interference with cytokinesis by phosphorylation of cellular proteins involved in cell-cycle control [125].
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3.4.4. Diazonamide A

Diazonamide A (89), a complex cytotoxic peptide was isolated from Diazona angulate,
and displayed potent inhibition of tubulin polymerization in several cancer cells (Figure 39) [126,127].
It showed strong antitumor activity with an IC50 value of 2–5 nM against four human cancer cell lines
(CA46, MCF7, PC-3, and A549). Furthermore, diazonamide A has a unique binding site for tubulin that
differs from the vinca alkaloid or dolastatin 10 binding sites. So, it weakly inhibits the polymerization
of tubulin into strong microtubules ends [126,127].
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3.4.5. Mollamide B and C

Mollamide from Didemnum molle was cyclodepsipeptide and showed cytotoxicity in P388 murine
leukemia cells (IC50 values of 1 µg/mL) and in A549 human lung carcinoma and HT29 human colon
carcinoma cells (2.5 µg/mL) (Figure 40) [128,129]. Among these, mollamide B (90) showed significant
percent growth inhibition at 100 µM in the H460 non-small cell lung cancer cell, MCF7 breast cancer
cell, and SF-268 CNS cancer cell line, but the National Cancer Institute (NCI) 60-cell line panel lacked
tumor cell selectivity [130]. In contrast to mollamide B, mollamide C (91) showed strong in vitro
cytotoxicity against leukemias (L1210 and CCRF-CEM), solid tumors (38, HCT-116, H125, MCF-7,
and LNCaP), and a human normal cell (hematopoietic progenitor cell, CFU-GM); this was observed
using a disk diffusion assay. The results showed that the leukemia and normal cells were slightly toxic
but showed a larger difference in the solid tumor group [130].
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3.4.6. Tamandarin A and B

Tamandarin A (92) and B (93) are cyclodepsipeptides associated with didemnins known as
highly active antiviral, antitumor, and immunosuppressive peptides [131]. Tamandarin A (92) and
B (93) were isolated from Trididemnum solidum, Trididemnum cyanophorum, Aplidium albicans, and an
unidentified ascidian (family Didemnidae) (Figure 41) [131]. Tamandarin A (92) and B (93) showed
strong cytotoxicity against human cancer cell lines, and appeared to be a more potent inhibitor of
protein synthesis in comparison with dedermin B [131]. However, their molecular mechanism of action
is still unclear. Tamandarin A (92) was found to show cytotoxic activity on three cell lines, BX-PC3
pancreatic carcinoma, DU145 carcinoma, and UMSCC10b head and neck carcinoma with IC50 values
of 1.79, 1.36, and 0.99 ng/mL, respectively [131].
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3.4.7. Trunkamide A

Trunkamide A (94) is a cyclopeptide with a triazoline ring similar to mollamide, obtained from
Lissoclinum (Figure 42) [132]. Trunkamide A exhibited cytotoxicity with an IC50 of 0.5 µg/mL
against P388 mouse lymphoma, A-549 human lung carcinoma, and HT29 human colon cell lines,
and 1.0 µg/mL for MEL-28 human melanoma cell lines.
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3.4.8. Virenamide A–C

The linear cytotoxic tripeptides virenamide A–C (95–97) were isolated from Diplosoma virens and
showed strong anti-apoptotic activity in several cancer cell lines (Figure 43) [133]. Virenamide A
(95) had an IC50 of 2.5 µg/mL for P388 and 10 µg/mL for A549, HT29, and CV1 cells, and inhibited
topoisomerase II activity. Both virenamide B (96) and C (97) had an IC50 of 5 µg/mL against P388,
A549, HT29, and CV1 cells [133].
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3.4.9. Vitilevuamide

Vitilevuamide (98), a bicyclic depsipeptide isolated from Didemnum cuculiferum and Polysyncranton
lithostrotum, is a tubulin-interactive agent, and potentially positive in a cell-based screening for tubulin
polymerization inhibitors of purified tubulin (IC50 = 2.5 µM) (Figure 44) [134]. This demonstrates that
vitilevuamide (98) showed non-competitive inhibition of vinblastine binding to tubulin.

The colchicine binding to tubulin was tested at concentrations up to 80 µM, and was found to
be stabilized in the presence of vitilevuamide. It has also been shown to be weakly affected by the
presence of GTP-binding in the presence of vitilevuamide, suggesting that vitilevuamide may inhibit
tubulin polymerization through interaction at a unique site [134].

Vitilevuamide inhibited the growth of various human cancer cell lines with IC50 values in the range
of 6–311 nM, confirming that they were associated with G2/M cell cycle arrest. In mice implanted
with P388 lymphocytic leukemia, the intraperitoneal administration of vitilevuamide at doses of
12–30 mg/kg on days 1.5 and 9 after administration resulted in increased life span [122,134].
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3.5. Mollusk and Fish-Derived Anticancer Peptides

Marine mollusks and fish-derived peptides are pharmacologically active products and often have
activity in cancerous tumors. For this reason, many research groups have been interested in identifying
anticancer peptides from fish for many years. However, there are few reports of marine mollusks
and fish-derived anticancer peptides compared to other marine resources. Therefore, further research
is needed to develop mollusks and fish-derived anticancer peptide and other physiologically active
peptides, and it is expected to be a biomass in the future.

3.5.1. Dolastatins

Dolastatins are cytotoxic linear or cyclic peptides isolated from Dolabella auricularia, among the
dolastatins, dolastatin 10 (99) and 15 (100) showed the most promising antiproliferative action
(Figure 45) [135]. Dolastatin 10 is a linear pentapeptide that contains several unique amino acid
residues and is the most potent antiproliferative dolastatin. It inhibited the cell growth of L1210
murine leukemia (IC50 = 0.5 nM) and human bucket lymphoma CA46 cells (IC50 = 50 pM). For this
reason, dolastatin 10 (99) has been selected for clinical trials because of its favorable preclinical
advantage and is currently on clinical trials in Phase I as an anticancer drug [136].

The depsipeptide dolastatin 15 (100) inhibited the growth of L1210 cells (IC50 = 3 nM) and CA46
cells (IC50 = 5 nM) [137]. Dolastatin 10 was also extremely potent in vitro. Microtubule assembly
and tubulin polymerization were inhibited, causing the accumulation of cells that were arrested in
metaphase [138,139]. Dolastatin 10 is a promising candidate with an antineoplastic profile against
various cancer cell lines. It has been investigated in various phase I clinical studies, which reported
good tolerability and identified bone marrow depression as dose-limiting toxicity. However, dolastatin
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10 has been found to cause myelosuppression, peripheral sensory neuropathy, and local irritation at the
drug injection site. Structural complexity, low synthetic yield and low water solubility of dolastatins
are critical barriers to their broadly clinical evaluation as anticancer drugs [137].

Based on the structural model of dolastatin 10, various analogs were synthesized. Among these
analogs, TZT-1027 is a drug with antivascular activity that depolarizes microtubules and disrupts newly
formed tumor vasculature. TZT-1027 was found to possess antiangiogenic activity in chorioallantoic
membrane embryo (CAM) and human umbilical vein endothelial cells (HUVECs) in vivo [140].
However, it did not show anticancer activity in a phase II clinical trials in patients with advanced
non-small cell lung cancer treated with platinum-based chemotherapy [141].

Dolastatin 15 (100) isolated from D. auricularia has not yet been clinically studied, but water-soluble
derivates LU-103793 (cematodin) and ILX651 (synthadotin) were developed as cancer drug candidates
for clinical studies. LU-103793 was successful in a phase I clinical trial for the treatment of several
cancers. The phase II trial was interrupted by unexpected research results. ILX-651 successfully
completed the phase I clinical trial and a phase II trial has been recommended owing to its good
tolerability with no cardiotoxicities, unlike LU-103793. ILX651 has finished at the least three rounds
of phase II clinical trials in patients with advanced and/or metastatic hormone-refractory prostate
cancer [29].
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3.5.2. Kahalalides

Kahalalides are peptides isolated from Elysia rufescens. Among the kahalalides, kahalalide
F (101) is a depsipeptide [142], displaying both in vitro and in vivo antitumor activity in colon
(IC50 = 0.162–0.288 µM), A549 breast (IC50 = 0.135 µM), H5578T non-small cell lung (IC50 = 0.162 µM),
and HS-578T-particular prostate cancer (IC50 = 0.479 µM) (Figure 46) [142–144].

Kahalalide F exhibits various mechanisms, such as lysosomal membrane, inhibition of ErbB
(HER3) receptor tyrosine kinase, induction of oncosis, influence on the cell membrane permeability,
and mediation of necrosis-like apoptosis [142–148]. Furthermore, kahalalide F protects tumor cell
growth and spreading by inhibiting the expression of specific genes that trigger DNA replication
and cell proliferation [149]. Extensive data indicated that kahalalide F exhibits strong cytotoxicity
against lung non-small cell carcinoma (A549), melanoma, androgen-independent prostate cancer,
hepatocellular carcinoma (HepG2), colon cancer (LoVo), and breast cancer (SKBR-3, BT474, MCF7,
and MDA-MB-231) cell lines [149]. Kahalalide F is currently in phase I clinical trials for advanced
malignant melanoma patients [150].

A synthetic cyclic depsipeptide kahalalide F derivative, elisidepsin (PM02734, also known
as Irvalec®) has potential antineoplastic activity similar to kahalalide F. Elisidepsin shows
anti-proliferative activity in a broad variety of cancer cell types [151–153]. The action of elisidepsin
appears to be as a result of the induction of oncolysis rather than cell death by apoptosis in cancer cells.
Elisidepsin is also in phase II clinical trials on metastatic or advanced gastroesophageal cancer [154].
These results were promising and presented a rational basis for further investigations and clinical trials
for cancer treatment [155].
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3.5.3. Keenamide A

Keenamide A (102) is a cyclic hexapeptide isolated from Pleurobranchus forskalii, which has been
shown to cause antitumor activity through undiscovered mechanisms (Figure 47) [156]. Keenamide A
(102) showed anticancer activity against several tumor cell lines such as P-388, A-549, MEL-20
(IC50 = 2.5 µg/mL) and HT29 (5.0 µg/mL). In addition, the anti-malarial activity for D6 and W2
clones of Plasmodium falciparum was tested using keenamide A but showed no significant activity [156].
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3.5.4. Kulokekahilide-2

The cyclic depsipeptide, kulokekahilide-2 (103), is the potent aurilide-related substance first
isolated from Philinopsis speciosa and it is biosynthesized by marine cyanobacteria owing to its
structural similarities with the aurilides (Figure 48) [157]. Kulokekahilide-2 (103) showed strong
antitumor activity against various cell lines, such as P388, SKOV-3, MDA-MB-435, and A-10
(IC50 = 4.2~59.1 nM) [157].

Int. J. Mol. Sci. 2018, 19, x 30 of 40 

 

 
Figure 46. Structure of kahalalide F (101) [142]. 

3.5.3. Keenamide A 

Keenamide A (102) is a cyclic hexapeptide isolated from Pleurobranchus forskalii, which has been 
shown to cause antitumor activity through undiscovered mechanisms (Figure 47) [156]. Keenamide 
A (102) showed anticancer activity against several tumor cell lines such as P-388, A-549, MEL-20 
(IC50 = 2.5 μg/mL) and HT29 (5.0 μg/mL). In addition, the anti-malarial activity for D6 and W2 clones 
of Plasmodium falciparum was tested using keenamide A but showed no significant activity [156]. 

 
Figure 47. Structure of keenamide A (102) [156]. 

3.5.4. Kulokekahilide-2 

The cyclic depsipeptide, kulokekahilide-2 (103), is the potent aurilide-related substance first 
isolated from Philinopsis speciosa and it is biosynthesized by marine cyanobacteria owing to its 
structural similarities with the aurilides (Figure 48) [157]. Kulokekahilide-2 (103) showed strong 
antitumor activity against various cell lines, such as P388, SKOV-3, MDA-MB-435, and A-10 (IC50 = 
4.2~59.1 nM) [157]. 

 
Figure 48. Structure of kulokekahilide-2 (103) [157]. 

3.5.5. Ziconotide 

Ziconotide (104) present in the venom of Conus magus, has a structure in which 25 amino acid 
peptides linked by three disulfide bonds (Figure 49) [158]. Ziconotide has been developed as an 

Figure 48. Structure of kulokekahilide-2 (103) [157].

3.5.5. Ziconotide

Ziconotide (104) present in the venom of Conus magus, has a structure in which 25 amino acid
peptides linked by three disulfide bonds (Figure 49) [158]. Ziconotide has been developed as an
atypical analgesic to relieve severe and chronic pain by acting as an optional N-type voltage gated
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calcium channel blocker. This action has been shown to relieve pain by inhibiting the release of
glutamate, calcitonin gene related peptide and pro-invasive neurochemicals such as substance P in the
brain and spinal cord [158,159].

It has been shown to have a 1000-fold higher activity than morphine in animal models of
nociceptive pain and has a remarkable analgesic character [158]. Ziconotide (trade name Prialt®)
was the first marine peptide to receive FDA approval for analgesic use in 2004 and another marine
peptide Brentuximab vedotin (trade name Adcetris®) was approved by the FDA in 2011 for drugs
that are effective against cancer [159,160]. Various marine peptides are now entering phases of clinical
trials in the United States and Europe [161].
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3.5.6. Pardaxin

Pardaxin (105, GFFALIPKIISSPLFKTLLSAVGSALSSSGGQE-NH2) is an antimicrobial peptide
consisting of 33 amino acids, isolated from the fish Pardachirus marmoratus [77]. This peptide showed
antitumor activity in human fibrosarcoma (HT1080) cells and HeLa cells, which inhibited proliferation
in a dose-dependent manner in HT1080 cells and induced programmed cell death in HeLa cells [77].
In HT1080 cells, pardaxin induced apoptosis by causing caspase-dependent and ROS-mediated cell
death [162].

Pardaxin plays important roles in the scavenging of reactive oxygen species (ROS) to alleviate
c-Jun activation. Small interfering RNA-mediated knockdown of c-Jun requiring ROS and c-Jun in
pardaxin-induced apoptosis signaling as it abrogates pardaxin-induced caspase activation and cell
death [162].

Pardaxin, unlike HT1080 cells, causes caspase-dependent and caspase-independent apoptosis
in human cervical cancer cells. Pardaxin also induces >90% inhibition of colony formation in MN-11
cells derived from MC1A fibrosarcoma in male C57BL/10 mice at a concentration of 13 µg/mL [163].
In addition, pardaxin has a potential veterinary application because it has a lytic action with potent
activity against canine perianal gland adenomas [163].

3.5.7. YALRAH

Tyr-Ala-Leu-Pro-Ala-His (106), an anticancer peptide consisting of six residues derived from
the half-fin anchovy (Setipinna taty), has been shown to inhibit the proliferation of prostate cancer
cells [164]. YALPAH and three analogs (YALRAH, YALPAR and YALPAG) exhibited anti-proliferative
activity in PC3 cells. Among them, the modified peptide YALRAH showed the strongest activity (IC50

value of 11.1 µM). It has been confirmed that arginine (R) is an important residue for anticancer activity,
but the mechanism for this is still unclear [164].

4. Anticancer Peptide-Based Drug Therapeutics Developed from Marine Organisms and
Future Prospects

Many factors are involved in the discovery and development of anticancer drugs from marine
natural products. However, there are various reasons that have ensured the use of marine peptides in
the search for anticancer drugs. Marine-derived peptides are chemically diverse, have a wide range
of therapeutic activities, and are highly specific to cells or tissues. These peptides can act specifically
against cancer cells by either membranolytic mechanisms or mitochondrial disruption [165]. Generally,
the negative net charge of the cancer membrane is an important factor for peptide selectivity and
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toxicity, especially relative to the typically zwitterionic properties of normal cell membranes [166].
Amphiphilicity levels and hydrophobic arc size allow the penetration of these peptides through
cancerous cell membranes, leading to destabilization of membrane integrity [167,168]. Since they
are composed of metabolically and allergenically tolerable amino acids, the risk of undesirable
destructive side-reactions is reduced, and they are usually safe and non-toxic compounds. Furthermore,
anticancer peptides are also used as vehicles in drug formulations for the improvement of biological
properties, targeted drug delivery, or transport through target cell membranes [169]. Several potential
anticancer peptides, such as stimuvax, primovax, melanotan, and cilengitide, are in clinical trials [170].
Combination therapy has emerged as an important strategy for fighting cancer in recent years because
a single method may not be enough to completely cure the disease and prevent recurrence [159].
For the purpose of synergistic effects, combinations of anti-angiogenic compounds and traditional
therapies are currently being investigated in clinical trials and will make anticancer peptide discovery
more interesting in the next few years.
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