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Asthma, hay fever and eczema are three comorbid diseases with high prevalence
and heritability. Their common genetic architectures have not been well-elucidated.
In this study, we first conducted a linkage disequilibrium score regression analysis to
confirm the strong genetic correlations between asthma, hay fever and eczema. We then
integrated three distinct association analyses (metaCCA multi-trait association analysis,
MAGMA genome-wide and MetaXcan transcriptome-wide gene-based tests) to identify
shared risk genes based on the large-scale GWAS results in the GeneATLAS database.
MetaCCA can detect pleiotropic genes associated with these three diseases jointly.
MAGMA and MetaXcan were performed separately to identify candidate risk genes for
each of the three diseases. We finally identified 150 shared risk genes, in which 60
genes are novel. Functional enrichment analysis revealed that the shared risk genes
are enriched in inflammatory bowel disease, T cells differentiation and other related
biological pathways. Our work may provide help on treatment of asthma, hay fever and
eczema in clinical applications.
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INTRODUCTION

Asthma is a bronchial disease characterized by chronic inflammation and narrowing of the airways.
It results in recurring coughing, periods of wheezing, chest tightness, and mucus production
(Moffatt et al., 2010; Vicente et al., 2017; Pividori et al., 2019). Hay fever (allergic rhinitis) is
an inflammation disease of the nasal mucous membranes. Its symptoms include sneezing, nasal
congestion, rhinorrhea, and itching (Ramasamy et al., 2011; Bunyavanich et al., 2014; Ferreira et al.,
2014). Eczema (atopic dermatitis) is a form of dermatitis. Its manifestations include itching and
dryness, recurring skin rashes with redness, blistering and skin edema (Sun et al., 2011; Weidinger
et al., 2013; Paternoster et al., 2015). The three diseases have high global prevalence. Nearly 15% of
the world population are affected by asthma (Vicente et al., 2017), 10∼20% by hay fever (Ober and
Yao, 2011), 15∼30% of children and 5∼10% of adults are affected by eczema (Waage et al., 2018).
Poor life quality and substantial medical expenditure bother the patients (Ober and Yao, 2011;
Waage et al., 2018). Moreover, the three diseases have significant genetic contributions in different
patients. The heritability ranges from 35% to 95% for asthma, from 33% to 91% for hay fever
and from 71% to 84% for eczema (Ober and Yao, 2011; Zhu et al., 2018; Johansson et al., 2019).
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Genome-wide association studies (GWAS) are the most powerful
tools to identify the disease-associated variants. GWAS have been
carried out separately for asthma, hay fever and eczema in the
last two decades (Moffatt et al., 2010; Paternoster et al., 2015;
Waage et al., 2018). To date (2019.11), hundreds of statistically
significant single-nucleotide polymorphisms (SNPs) have been
identified to be associated with each of three diseases according
to GWAS-catalog database (MacArthur et al., 2017).

Clinical and epidemiological studies have found that the three
diseases often co-occur in the same person or different members
from the same family (Ober and Yao, 2011; Ferreira et al.,
2017). Up to 90% of asthmatics suffer from allergic diseases
such as hay fever and eczema (Leynaert et al., 2000; Zhu et al.,
2018). Furthermore, eczema was demonstrated to be a major risk
factor for the development of asthma and hay fever (Spergel,
2010). About 30% eczema patients were affected by asthma, and
approximately 66% eczema patients were affected by hay fever
(Ober and Yao, 2011). Similarly, 19∼38% hay fever patients
were affected by asthma simultaneously (Ober and Yao, 2011).
These phenomena indicate potential genetic pleiotropy and co-
morbidity between asthma, hay fever and eczema. Therefore,
identifying shared risk genes between these three diseases can
broaden our knowledge of the underlying shared genetic causes,
as well as lead the way to prevention and treatments based on
the molecular mechanisms (Marenholz et al., 2013; Ferreira et al.,
2017; Zhu et al., 2018).

In the past 3 years, several large-scale GWAS focused on
unraveling the shared genetic architectures between asthma, hay
fever and eczema based on data from UK Biobank (Sudlow
et al., 2015; Ferreira et al., 2017; Zhu et al., 2018; Johansson
et al., 2019). Researchers (Ferreira et al., 2017) performed meta-
analysis of allergic diseases (asthma and/or hay fever and/or
eczema) based on GWAS results from 13 studies by using
METAL (Willer et al., 2010) software to identify the associations,
and used GeneNetwork (Fehrmann et al., 2015) to identify
biological processes enriched among the genes. Finally the reason
why asthma, hay fever and eczema partly coexist was revealed,
i.e., they share many genetic variations that dysregulate the
expression of immune-related genes. Subsequently, another study
(Zhu et al., 2018) applied cross-trait GWAS meta-analysis by
using R package ASSET (Bhattacharjee et al., 2012) to combine
the associations for asthma and allergic diseases (hay fever and/or
eczema) at individual variants. They demonstrated that shared
risk loci not only influence immune/inflammatory systems but
also tissues with epithelium cells. A recent work showed that these
three diseases shared a large amount of genetic contributions,
but part of which is more disease specific (Johansson et al.,
2019). However, these studies did not make strict distinction
between the three diseases in phenotypic definition. Either they
used a broad allergic disease defined as asthma and/or hay
fever and/or eczema, or a slightly more narrow definition which
distinguished asthma from allergic diseases, i.e., asthma and
allergic diseases (hay fever and/or eczema). This may cause
inaccurate conclusions. Moreover, the pleiotropic effect between
each gene (including multiple variants) and these three correlated
diseases jointly were not taken into account, which may lead
to low statistical power or small percentage of explainable

genetic variance. Multi-trait association study method metaCCA
(Cichonska et al., 2016) enables the pleiotropy to be resolved
effectively. It has been applied to identify shared pleiotropic
genes for three correlated diseases (type 2 diabetes, obesity and
dyslipidemia) (Chen et al., 2018) and five major psychiatric
disorders (Jia et al., 2019), respectively. However, the sample
sizes in the above-mentioned two studies were not large enough
(several tens of thousands), and only genome data was used,
resulting in only 25 and 66 shared risk genes obtained, separately.

In this study, we firstly performed a linkage disequilibrium
(LD) score regression to evaluate genetic correlations between
asthma, hay fever and eczema. We then integrated three
distinct association analyses (metaCCA multi-trait association
analysis, MAGMA genome-wide and MetaXcan transcriptome-
wide gene-based tests) to identify shared risk genes based on
the large-scale GWAS results in GeneATLAS database (Canela-
Xandri et al., 2018). MetaCCA can detect pleiotropic genes jointly
associated with these three diseases (Cichonska et al., 2016).
MAGMA (de Leeuw et al., 2015) considers the correlations
between genes and each disease, and MetaXcan (Gamazon
et al., 2015) merges the gene expression information to identify
candidate risk genes for each of the three diseases. Through these
three different analyses, we obtained the potential shared risk
genes associated with these three diseases. Finally we verified
them by GWAS-catalog analysis, enrichment analysis and
protein–protein interaction (PPI) network analysis to provide
biology insights.

MATERIALS AND METHODS

GWAS Result Datasets
We downloaded the GWAS results from a publicly accessible
database GeneATLAS (Canela-Xandri et al., 2018), including
asthma (Ncases = 52269, Ncontrols = 399995), hay fever
(Ncases = 25473, Ncontrols = 426791) and eczema (Ncases = 11552,
Ncontrols = 440712). The total 452264 samples are all European-
ancestry individuals from UK Biobank. In this study, we used
the same 623944 genotyped variants in each sample that passed
quality control in GeneATLAS.

Methods
LD Score Regression Analysis
We applied linkage disequilibrium score regression (LDSC)
(Bulik-Sullivan et al., 2015) to estimate genetic correlations, as
well as SNP heritability and LD-score intercept for asthma, hay
fever and eczema, respectively. We used the reference panel from
European-ancestry population of 1000 Genome Project Phase 3
(The 1000 Genomes Project Consortium, 2015).

Multi-Trait Association Analysis
After estimating genetic correlations between asthma, hay fever
and eczema, we used metaCCA multi-trait GWAS approach
to identify pleiotropic genes associated equally with the three
diseases. MetaCCA enables the measure of correlation between
the gene (including multiple variants) and multiple traits using
canonical correlation analysis (CCA) (Cichonska et al., 2016).
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This takes into consideration that there exist dependencies
(i.e., covariances) between genotypic and phenotypic variables,
and the cross-covariance between all genotypic and phenotypic
variables is made of univariate regression coefficients in
linear model.

In order to reduce the computation time and memory,
we first conducted gene annotation by referring NCBI human
genome build 37 (including 19427 gene locations), and found
that 301949 (48.39%) of the total 623944 SNPs are mapped to
17446 genes. Then we performed linkage disequilibrium (LD)
based pruning to filter SNPs using PLINK software (version:
1.90b) with parameters (–indep-pairwise 50 5 0.2) (Jia et al.,
2019), i.e., calculating LD between each pair of SNPs in a window
of 50 SNPs, removing one of a pair of SNPs if the LD is
greater than 0.2, shifting the window of 5 SNPs forward and
repeating the procedure until no pairs of SNPs with high LD
remain. We selected those SNPs which overlap with variants
from the European population in HapMap3. After pruning,
24946 of the input 301949 SNPs are mapped to 6575 genes. We
used 24946 SNPs to estimate genotypic correlation structure.
301949 SNPs were applied to estimate phenotypic correlation
structure due to the fact that the larger number of variants,
the higher the estimation accuracy (Cichonska et al., 2016).
The covariance matrix between all genotypic and phenotypic
variables is made up of regression coefficients in the GWAS
results. The majority of the CPU memory in metaCCA is spent
on estimating the covariance between genotypic variables. The
space complexity is O(n2), where n is the number of SNPs,
and it used about 6.3 gb memory for 24946 SNPs. MetaCCA
mainly uses CPU time in estimation of genotypic correlation
structure and canonical correlations. In our study, metaCCA
took about 4 h for multi-trait gene test of the three diseases. We
performed the operations on a computer of Intel Xeon E5-2640
CPU 2.40 GHz.

To determine significant loci (p < 5 × 10−8) that are
independent from each other, we used the clump procedure
of PLINK software (Purcell et al., 2007). We set parameters
(–clump-p1 5 × 10−8 –clump-p2 1 × 10−5 –clump-r2
0.2 –clump-kb 500) (Zhu et al., 2018) indicating the SNPs with
a p-value less than 1 × 10−5, LD statistic r2 more than 0.2,
and within 500 kb distance from the peak, will be assigned to
that peak’s clump.

Genome-Wide Gene-Based Analysis
Gene-based analysis is a statistical method for simultaneous
analysis of multiple genetic variations to determine their joint
effect. MAGMA, a genome-wide gene-based association method
based on a multiple linear principal components regression
model (de Leeuw et al., 2015), was used to identify significant
genes using the GWAS results for asthma, hay fever and eczema,
respectively. We regarded the individual-level genotype data
from European-ancestry population of 1000 Genomes Project
Phase 3 as reference. 19427 genes in the whole genome were used
to determine the significance threshold in Bonferroni correction.
The space complexity of MAGMA is O(k2), where k is the
number of genes. For a human genome, the required memory is
about 5 gb. In MAGMA, the majority of the CPU time is spent

on the ordinary least squares method, the time complexity is
O(k2

× (n + k)), where k is the number of genes and n is the
number of SNPs. In our study, MAGMA took about 1 min to
analyze each disease.

Transcriptome-Wide Gene-Based Analysis
We used the MetaXcan framework to integrate expression
quantitative trait loci (eQTL) information with GWAS results
and map genes associated with disease traits. MetaXcan is
a transcriptome-wide gene-based association approach that
estimates tissue-specific gene expression profiles from GWAS
results using prediction models trained in large reference
databases, and correlates predicted expression levels with diseases
(such as asthma) to detect potential disease-associated genes
(Barbeira et al., 2018). It has high concordance (correlation
coefficient: R2 > 0.999) with the individual-level version
PrediXcan (Gamazon et al., 2015). Training sets are reference
transcriptome datasets from the Genotype-Tissue Expression
Project (GTEx: version 7) (GTEx Consortium, 2017), the weights
and covariances of prediction model for different tissues are
available from PredictDB (http://predictdb.org/).

In order to reduce multiple-testing burden, we analyzed 10 of
the total 48 tissues, 4 obvious tissues (Whole Blood, Lung, Skin
Sun Exposed and Skin Not Sun Exposed) plus 6 other relevant
tissues (Cells EBV-transformed lymphocytes, Cells Transformed
fibroblasts, Esophagus Gastroesophageal Junction, Esophagus
Mucosa, Esophagus Muscularis and Vagina) reported in previous
studies (Ferreira et al., 2017; Zhu et al., 2018). The total number
of genes (27314) in the 10 tissues was used to determine the
Bonferroni correction threshold. We ran MetaXcan separately in
asthma, hay fever and eczema, each with the same 10 tissues,
and used per SNP p-value from GWAS results after correction
for the LD-score intercept. MetaXcan uses a small amount of
memory and very little CPU time. MetaXcan’s CPU time is
primarily spent on the calculation of covariance of the gene
matrix. The space and time complexity are O(k2) and O(k3)
respectively, where k is the number of genes in the tissue. In our
study, 18 min were spent on MetaXcan’s analysis of 10 tissues
for each disease.

GWAS-Catalog Analysis, Enrichment Analysis and
PPI Network Analysis
To understand whether the identified genes have been reported
in the previous GWAS studies for asthma, hay fever and eczema,
we downloaded the corresponding GWAS catalog from NHGRI-
EBM (3 November, 2019), and searched the genes one by one. To
gain biology insights from the shared risk genes, we performed
KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway
analysis using the Enrichr web server (Kuleshov et al., 2016) from
http://amp.pharm.mssm.edu/Enrichr. The significant criterion is
that the adjusted p-value is less than 0.05. In addition, we used
STRING v10 (Szklarczyk et al., 2015) from https://string-db.org/
to analyze the PPI network.

A flow chart of our work is shown in Figure 1. That
is, we integrated three association studies (metaCCA multi-
trait association analysis, MAGMA genome-wide and MetaXcan
transcriptome-wide gene-based tests) to identify candidate risk
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FIGURE 1 | Flow chart of the present work.

genes, and then conducted GWAS-catalog analysis, enrichment
analysis and PPI network analysis to the shared risk genes.

RESULTS

Genetic Correlation Between Asthma,
Hay Fever and Eczema
We evaluated the genetic correlation between asthma, hay
fever and eczema using LD score regression (LDSC). Genetic
correlation between asthma and hay fever (rg = 0.665,
SE = 0.0457, P = 5.26 × 10−48) is the strongest, followed
by the correlation between asthma and eczema (rg = 0.4519,
SE = 0.0577, P = 4.93 × 10−15), then between hay fever
and eczema (rg = 0.3297, SE = 0.0714, P = 3.85 × 10−6)
(Table 1). In summary, significant genetic correlations are
observed between any pair of the three diseases. Additionally,
estimates of SNP heritability (h2) on the liability scale (assuming
15% disease prevalence) is 11.85% (SE = 1.15%) for asthma, 4.65%
(SE = 0.41%) for hay fever and 2.36% (SE = 0.53%) for eczema.
Furthermore, the LD score intercepts for asthma, hay fever and
eczema are 1.043 (SE = 0.0143), 1.0195 (SE = 0.0102) and 1.0085
(SE = 0.0105), respectively, indicating most of the inflation is due
to polygenic effect rather than population structure or sample
overlap (An et al., 2019).

Pleiotropic Genes Identified by
Multi-Trait Association Study
We performed metaCCA multi-trait association study to identify
pleiotropic genes that are associated jointly with asthma,

TABLE 1 | Genetic correlation between asthma, hay fever, and eczema.

Diseases1 Asthma Hay fever Eczema

Asthma 1 0.665 (0.0457) 0.4519 (0.0577)

Hay fever 5.256 × 10−48 1 0.3297 (0.0714)

Eczema 4.930 × 10−15 3.848 × 10−6 1

1Element in upper off-diagonal is the genetic correlation rg (standard deviation SE),
element in lower off-diagonal is the corresponding genetic correlation P-value.

hay fever and eczema. There were 66 pleiotropic genes that
reached the significant threshold (PmetaCCA < 7.6 × 10−6)
after the Bonferroni correction of the LD pruned 6575 genes,
the canonical correlations of which ranged from 0.0077 to
0.0302. The results for the metaCCA gene-based test are shown
in Supplementary Data 1.

Genes Identified by Genome-Wide and
Transcriptome-Wide Studies
We conducted MAGMA genome-wide gene-based analysis
to identify genes associated with asthma, hay fever and
eczema, respectively. 287, 80, and 57 significant genes
(PMAGMA < 2.57 × 10−6) were identified after Bonferroni
correction of the total 19427 genes (Supplementary Data
2). Moreover, we carried out MetaXcan transcriptome-wide
gene-based analysis, and detected 204, 48, and 53 genes that
were above the significance level (PMetaXcan < 1.84 × 10−6)
determined by 27314 genes in 10 relevant tissues
(Supplementary Data 3–5).

Noticing that some overlapping genes exist for the same
gene-based test, we took the results in MAGMA as an
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TABLE 2 | Number of genes identified by MAGMA and MetaXcan.

Methods Asthma Hay fever Eczema Asthma and Hay
fever

Asthma and
Eczema

Hay fever and
Eczema

Asthma and Hay
fever and Eczema

MAGMA 287 80 57 65 36 19 17

MetaXcan 204 48 53 37 33 5 4

Combined1 397 109 91 94 59 24 23

1Number of genes identified by MAGMA and/or MetaXcan.

TABLE 3 | Details of overlapping genes in Type I and II of shared risk genes.

Genes1 PmetaCCA Asthma Hay fever Eczema Literature PMID

PMAGMA PMetaXcan PMAGMA PMetaXcan PMAGMA PMetaXcan

TNXB† 7.12e-29 3.51e-35 1.39e-10 1.20e-09 23886662

C6orf10‡ 1.60e-18 1.59e-22 1.01e-12 9.84e-10 21804548,

23042114

CLEC16A* 8.26e-16 4.24e-22 3.51e-10 5.92e-11 31036433,

30013184,

26482879

C2* 1.84e-06 1.31e-14 3.51e-21 1.08e-13 5.06e-08 1.45e-08 29551627,

25085501,

26542096

WDR36* 1.95e-26 1.61e-24 5.68e-14 2.58e-14 2.52e-08 30929738,

24388013,

30595370

PSORS1C2 3.54e-15 3.77e-13 6.80e-07

HLA-DMB 7.72e-14 6.67e-14 3.34e-07

BTNL2† 1.14e-12 1.03e-59 5.08e-09 29273806

BAG6 5.69e-11 9.44e-19 6.64e-15 7.05e-10 6.03e-18

SLC25A46* 2.79e-09 1.35e-09 9.52e-09 31036433,

22036096,

30595370

CAMK4‡ 2.31e-08 5.12e-11 1.28e-08 29785011,

30013184

MUC22 8.56e-07 1.56e-13 2.01e-11

PLCL1‡ 6.08e-06 2.23e-06 9.73e-12 30013184,

30595370

RNF5 4.31e-17 1.75e-12 3.39e-13 2.06e-10 5.84e-11

KIF3A‡ 7.05e-16 5.35e-13 6.57e-14 7.51e-08 31036433,

26542096

DDAH2 1.78e-07 1.43e-08 3.10e-08

RAD50* 4.05e-06 6.20e-29 9.21e-31 6.36e-07 30929738,

30013184,

26482879

1Symbol †, ‡, and * behind the genes represents 1, 2, and 3 associated diseases (asthma, hay fever, eczema) reported in GWAS-catalog, respectively. PMID, PubMed
unique identifier. The blank cells are non-significant p-values or no supporting literature.

example, there are 65 overlapping genes between asthma and
hay fever, 36 between asthma and eczema, 19 between hay
fever and eczema, and 17 among the three diseases. Similarly,
some genes detected by both MAGMA and MetaXcan for
the same disease, such as 94 overlapping genes are identified
in asthma. We combined the genes identified by MAGMA
and/or MetaXcan, and obtained 397, 109, and 91 significant
genes for asthma, hay fever and eczema, respectively. The

numbers of genes identified by the two approaches are shown
in Table 2.

Shared Risk Genes for Asthma, Hay
Fever, and Eczema
We considered the shared risk genes from two types. Type
I includes the pleiotropic genes by metaCCA which were
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FIGURE 2 | Venn diagram of the pleiotropic genes identified by metaCCA (A)
and the combined genes identified by MAGMA and/or MetaXcan for asthma
(B), hay fever (C) and eczema (D).

associated with at least one disease by MAGMA and/or
MetaXcan, it is inspired by these two studies (Chen et al., 2018;
Jia et al., 2019); Type II includes the pleiotropic genes associated
with at least two diseases by MAGMA and/or MetaXcan. We
found that type I includes 36 genes (PmetaCCA < 7.6 × 10−6,
PMAGMA < 2.57 × 10−6, and/or PMetaXcan < 1.84 × 10−6

in at least one of asthma, hay fever and eczema), and type
II contains 131 genes (PMAGMA < 2.57 × 10−6 and/or
PMetaXcan < 1.84 × 10−6 in at least two of asthma, hay fever
and eczema). After removing the repetitions in these two types,
150 shared risk genes were obtained (Supplementary Data 6).
Here we only showed the details of the 17 overlapping genes
in type I and II in Table 3. A Venn diagram (Figure 2)
shows the pleiotropic genes identified by metaCCA and the
combined genes identified by MAGMA and/or MetaXcan
for asthma, hay fever and eczema. We can see that four
overlap genes can not only be detected by metaCCA but also

associated with all of the three diseases by MAGMA and/or
MetaXcan analyses.

GWAS-Catalog Analysis, Enrichment
Analysis and PPI Network Analysis
To see whether the 150 shared risk genes have been reported
previously, GWAS-catalog analysis was carried out for each gene.
We found 23 genes have been reported to be associated with
all of the three diseases, 31 genes have been reported to be
associated with two diseases, and 36 genes have been reported
to be associated with one disease. Furthermore, 60 genes have
never been reported, suggesting that these are novel ones. Gene
names involved in these four different classes are listed in Table 4,
their corresponding PubMed IDs of supporting literatures are
shown in Supplementary Data 7. Among the 90 genes which
have been reported as associated with diseases before, 85, 31,
and 51 of them have been reported as associated with asthma,
hay fever and eczema (Supplementary Data 7), respectively.
Some genes are only detected by metaCCA. CGN has been
reported associated with asthma, but it was not detected by
MAGMA and/or MetaXcan for asthma data; RAD50 has been
reported as associated with hay fever, but it was not detected
by MAGMA and/or MetaXcan for hay fever data; eight genes
(AHI1, IL2, MICB, NDFIP1, PLCL1, PRKCQ, SLC25A46, and
WDR36) have been reported as associated with eczema, but they
were not detected by MAGMA and/or MetaXcan for eczema
data (Supplementary Data 6, 7). Similarly, there are also some
reported genes that can only be detected by MAGMA and/or
MetaXcan. 67 of the reported genes which are associated with
asthma can only be successfully identified by MAGMA and/or
MetaXcan, but not by metaCCA. For hay fever and eczema,
gene numbers of this class are 22 and 15 (Supplementary Data
7), respectively. In addition, there are 5 genes (C2, CLEC16A,
RAD50, SLC25A46, and WDR36) have been reported to be
associated with all of the three diseases for the 66 pleiotropic
genes by metaCCA (Supplementary Data 1). For the 424 genes
(287 for asthma, 80 for hay fever, 57 for eczema) detected by
MAGMA, there are 141, 23, and 24 that have been reported
associated with asthma, hay fever and eczema in the GWAS-
catalog (Supplementary Data 2), respectively.

TABLE 4 | List of 150 shared risk genes divided into four categories.

Related
diseases1

Gene names

3 BACH2, C11orf30, C2, CLEC16A, GSDMA, HLA-B, HLA-C, HLA-DQA1, IKZF3, IL13, IL18R1, IL1RL1, IL2, IL2RA, IL7R, LPP, RAD50, SLC25A46,
SMAD3, TLR1, TNF, TSLP, WDR36

2 AAGAB, ADAD1, C6orf10, CAMK4, CD247, D2HGDH, ERBB3, FLG, GSDMB, HLA-DQB1, HLA-DRB1, IL18RAP, IL1R1, IL33, KIAA1109, KIF3A,
MICA, MICB, NDFIP1, PBX2, PLCL1, PRKCQ, PRR5L, RORC, RPS26, RTEL1, SMARCE1, STAT6, TLR10, TMEM232, ZBTB46

1 AHI1, BRD2, BTNL2, C4A, CGN, FAM114A1, GAL3ST2, GLDC, GPSM3, HLA-DPA1, HLA-DQA2, HLA-DQB2, HLA-DRA, HLA-DRB5, HLA-DRB6,
HLA-DRB9, IKZF4, IL21R, ITPR3, LCE3D, MRVI1, NOTCH4, ORMDL3, PSORS1C1, S100A1, SLC22A4, SLC22A5, SLC9A2, SLC9A4, SPRR2D,
SUOX, TAP2, TLR6, TNXB, TRIM26, ZGPAT

0 AGER, AGPAT1, AIF1, ARNT, ATF6B, BAG6, BAK1, C4B, C6orf25, C6orf47, C6orf48, CCHCR1, CFB, CXXC11, CYP21A2, DDAH2, DIS3L,
DOCK3, DPP4, DXO, EGFL8, EHMT2, FKBPL, GNL1, HCG27, HCG4B, HLA-DMB, HSPA1B, HSPA1L, HSPA4, KPRP, LEMD2, LINGO4,
LOC101929163, LST1, MRPL9, MSH5, MUC21, MUC22, NELFE, PGLYRP4, PPT2, PRRC2A, PRRT1, PRUNE, PSMD4, PSORS1C2, RNF5,
S100A2, SAPCD1, SEMA6C, SKIV2L, SLC44A4, STK19, TAP1, TCF19, TNXA, VWA7, ZBTB12, ZKSCAN3

1The digit in the first column means the number of associated diseases (asthma, hay fever, eczema) reported in GWAS-catalog.
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Before conducting enrichment analysis, we excluded the
genes in the major histocompatibility complex (MHC) region
(Zhu et al., 2019). On the one hand, a majority of genes in
MHC region are related to immune response which may
bring false positives (Pividori et al., 2019); on the other
hand, for asthma and allergy diseases, MHC region was
reported as containing some of the strongest association signals
such as HLA-DQB and HLA-B (Waage et al., 2018). We
expected to find other biological pathways besides immunity.
KEGG pathway enrichment analysis by Enrichr web server
(http://amp.pharm.mssm.edu/Enrichr) shows that 6 biological
pathways were significantly enriched (Supplementary Data
8). They are inflammatory bowel disease (IBD) (hsa05321),
Th17 cell differentiation (hsa04659), cytokine–cytokine receptor
interaction (hsa04060), Th1 and Th2 cell differentiation
(hsa04658), JAK-STAT signaling pathway (hsa04630) and chagas
disease (American trypanosomiasis) (hsa05142). The most
strongly enriched one is IBD pathway (hsa05321) including 8
enriched genes (IL18RAP, SMAD3, IL13, RORC, IL21R, STAT6,
IL2, IL18R1). A bubble chart shows the result of KEGG pathway
analysis (Figure 3).

To understand the interactions between shared risk genes
(excluding those in MHC region), we conducted PPI network
analysis using STRING tool. There are in total 168 pairs of
interaction in PPI network (Supplementary Data 9), all the
interacting genes have combined scores of no less than 0.4, in
which 9 pairs of genes (IL2RA-IL2, IL33-IL1RL1, TSLP-IL7R,
IL18R1-IL18RAP, IL13-STAT6, IKZF3-IL2, CD247-IL2, LCE3D-
SPRR2D, TLR6-TLR1) with scores ≥ 0.95. The 10 hub genes
(degree ≥ 10) that interact extensively with other genes in PPI

network are IL2, IL13, TSLP, IL2RA, IL33, STAT6, ORMDL3,
IL1R1, IL1RL1 and IL7R. The PPI network for shared risk genes
are shown in Figure 4.

DISCUSSION

Two-thirds of our identified shared risk genes were reported
to associate with at least one of the three diseases, asthma,
hay fever and eczema. Results obtained by Enrichment analysis
are mostly consistent with the findings in previous researches.
For example, we found substantial shared genes in the HLA
region, which was highlighted by their prominent role in
immune response (Pividori et al., 2019), and immune response
is one of the major factors influencing asthma, hay fever and
eczema (Ferreira et al., 2017; Zhu et al., 2018). Additionally,
IBD pathway (hsa05321) is the most strongly enriched pathway
in our study, which was demonstrated to share susceptibility
genes with allergic disease (Kreiner et al., 2017). Moreover,
there are also some T cell (including TH17, TH1, TH2)
related pathways enriched, involving Th17 cell differentiation
(hsa04659), Th1 and Th2 cell differentiation (hsa04658). This
conclusion supports that of a previous study which widely
documented contribution of these T cell subsets to allergic
responses (Farh et al., 2015).

We found four genes (C2, CLEC16A, C6orf10, TNXB)
which have statistical significance in metaCCA, MAGMA and
MetaXcan association studies for the three diseases. C2 and
CLEC16A have been reported to associate with all the three
diseases (Waage et al., 2018; Zhu et al., 2018; Kichaev et al., 2019).

FIGURE 3 | Bubble chart of enrichment analysis of shared risk genes (excluding those in MHC region).
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FIGURE 4 | PPI network for shared risk genes (excluding those in MHC region).

Although TNXB has only been reported to associate with eczema
(Baurecht et al., 2015), it may be very important for asthma
and hay fever. Among the 17 overlapping genes from types
I and II of shared risk genes, six genes (PSORS1C2, HLA-
DMB, BAG6, MUC22, RNF5, DDAH2) have never been reported
before. Furthermore, cytokine-cytokine receptor interaction
(hsa04060), JAK-STAT signaling pathway (hsa04630) and chagas

disease (American trypanosomiasis) (hsa05142) also enriched
in our study. These findings may be helpful in pathological
diagnosis studies.

From the single-trait GWAS results of asthma, hay fever
and eczema, only one independent loci (rs61893460) is found
to associate with these three diseases. rs61893460 locates in
C11orf30-LRRC32 region on chromosome 11 and was reported
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associated with total serum IgE levels (Li et al., 2012). IgE is
released from the immune system and travels to local organs
or tissues to type 2 cytokines, which can further cause asthma,
hay fever and eczema (Ferreira et al., 2017). However, metaCCA
multi-trait analysis identifies 66 pleiotropic genes, which implies
stronger statistical power. We did not regard all of the 66
pleiotropic genes as shared risk genes, but refined them under a
restraint, that is, they must be associated with at least one of the
three diseases by MAGMA/MetaXcan. This idea derives from the
two studies (Chen et al., 2018; Jia et al., 2019).

Using multi-trait analysis, we only identified five genes which
have been reported associated with the three diseases, while
23 reported genes are detected by integrating multi-trait and
multiomic methods. In addition, among the 90 genes which have
been reported, some cannot be detected by a single method.
Take gene RAD50 for example, it was reported to be associated
with the three diseases in GWAS-catalog and can be identified
by multi-trait method (metaCCA), but it cannot be detected
by multiomic methods (MAGMA and/or MetaXcan) for hay
fever disease. RAD50 promotes the development of asthma by
inducing inflammatory factors secreted by Th2 cell (Li et al.,
2010), and it was found to be associated with hay fever (Waage
et al., 2018). These results imply the benefits of integration.

Note that 73 of 136 independent risk variants are novel in
Ferreira et al. (2017), 41 of 141 loci are novel in Johansson
et al. (2019), and 60 of 150 shared risk genes are novel in
our study. Besides the different phenotypic definitions which
we have explained in the Introduction section, the determining
of novel status is also different. The novel variants not only
included those risk loci that never reported to associate with any
of the three diseases in GWAS-catalog, but also contained the
variants that had LD statistic r2 < 0.05 with all reported variants
(Ferreira et al., 2017). Moreover, the novel loci were composed
of variants if the locus was distanced >1 Mb from any of the
previously reported loci for any of the three diseases in GWAS-
catalog, PubMed or bioRxiv, as well as those variants if r2 < 0.05
between the identified variant and previously reported variants
(Johansson et al., 2019). Both of the definitions of “novel” in these
two studies are broader than ours. In addition, we investigated
genetic overlap on gene level rather than genetic variant level.

Compared with the previous studies, our work has some
achievements. First, we confirmed strong genetic correlations
between the three diseases. Second, we considered the pleiotropic
effects via multi-trait association analysis, which yields a
statistical power advantage compared to single-trait modeling
strategies. Third, we identified more shared risk genes from
multi-omic (genome-wide and transcriptome-wide) perspective.

Limitations
First, our results cannot be used to represent the worldwide
population or children, because the samples are of European-
ancestry individuals aged between 40 and 69 years old from UK
Biobank. Second, association studies results in our work mean
potential shared risk genes, they do not represent the causative
genes. Mendelian randomization analysis can be used to reveal
the causality (Verbanck et al., 2018), and fine mapping is helpful
in detecting the pathogenic variants and genes (Marenholz

et al., 2013; Farh et al., 2015). Third, the functions of novel
shared risk genes are still unknown. There is a long way to
go in understanding the gene functions and their roles in
disease pathophysiology. Further studies should also highlight
and explore the biological interpretation and try to translate the
findings to clinical research or practice.

CONCLUSION

We confirmed strong genetic correlations between asthma,
hay fever and eczema. Three different association studies
are integrated to identify the shared risk genes between
these three diseases. One is metaCCA multi-trait association
analysis considering the joint effect, another two are MAGMA
and MetaXcan gene-based tests using genome-wide and
transcriptome-wide data referring to 1000 Genomes and GTEx
project, respectively. We identified 150 shared risk genes, in
which 60 are novel. Functional enrichment analysis reveals
that the shared risk genes are enriched in inflammatory bowel
disease (IBD), T cells differentiation and other related biological
pathways. Our work may provide help on treatment of asthma,
hay fever and eczema in clinical application.

DATA AVAILABILITY STATEMENT

The GWAS result datasets analyzed for this study can be found in
the GeneALTAS http://geneatlas.roslin.ed.ac.uk/.

AUTHOR CONTRIBUTIONS

HG conceived the project, performed the data analysis, and wrote
the manuscript. JA participated in guidance and discussion. ZY
contributed to guidance and supervised the project. All authors
read and approved the final manuscript.

FUNDING

This research was funded by the National Natural Science
Foundation of China (Grant No. 11871061); Collaborative
Research project for Overseas Scholars (including Hong Kong
and Macau) of National Natural Science Foundation of China
(Grant No. 61828203); Chinese Program for Changjiang Scholars
and Innovative Research Team in University (PCSIRT) (Grant
No. IRT_15R58); Hunan Provincial Innovation Foundation for
Postgraduate (Grant No. CX2018B375); Project for Excellent
Young and Middle-aged Science and Technology Innovation
Team of Hubei Province (Grant No. T201731).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fgene.2020.
00270/full#supplementary-material

Frontiers in Genetics | www.frontiersin.org 9 April 2020 | Volume 11 | Article 270

http://geneatlas.roslin.ed.ac.uk/
https://www.frontiersin.org/articles/10.3389/fgene.2020.00270/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2020.00270/full#supplementary-material
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00270 April 15, 2020 Time: 16:11 # 10

Guo et al. Identifying Shared Genes by MTMAA

REFERENCES
An, J., Gharahkhani, P., Law, M. H., Ong, J.-S., Han, X., Olsen, C. M., et al.

(2019). Gastroesophageal reflux GWAS identifies risk loci that also associate
with subsequent severe esophageal diseases. Nature Communications 10, 4219.
doi: 10.1038/s41467-019-11968-2

Barbeira, A. N., Dickinson, S. P., Bonazzola, R., Zheng, J., Wheeler, H. E., Torres,
J. M., et al. (2018). Exploring the phenotypic consequences of tissue specific
gene expression variation inferred from GWAS summary statistics. Nature
Communications 9, 1825. doi: 10.1038/s41467-018-03621-1

Baurecht, H., Hotze, M., Brand, S., Buning, C., Cormican, P., Corvin, A., et al.
(2015). Genome-wide comparative analysis of atopic dermatitis and psoriasis
gives insight into opposing genetic mechanisms. American Journal of Human
Genetics 96, 104–120. doi: 10.1016/j.ajhg.2014.12.004

Bhattacharjee, S., Rajaraman, P., Jacobs, K. B., Wheeler, W. A., Melin, B. S., Hartge,
P., et al. (2012). A subset-based approach improves power and interpretation
for the combined analysis of genetic association studies of heterogeneous traits.
American Journal of Human Genetics 90, 821–835. doi: 10.1016/j.ajhg.2012.03.
015

Bulik-Sullivan, B. K., Loh, P.-R., Finucane, H. K., Ripke, S., Yang, J., Schizophrenia
Working Group of the Psychiatric Genomics Consortium, et al. (2015). LD
score regression distinguishes confounding from polygenicity in genome-wide
association studies. Nature Genetics 47, 291–295. doi: 10.1038/ng.3211

Bunyavanich, S., Schadt, E. E., Himes, B. E., Lasky-Su, J., Qiu, W., Lazarus, R.,
et al. (2014). Integrated genome-wide association, coexpression network, and
expression single nucleotide polymorphism analysis identifies novel pathway in
allergic rhinitis. BMC Medical Genomics 7:48. doi: 10.1186/1755-8794-7-48

Canela-Xandri, O., Rawlik, K., and Tenesa, A. (2018). An atlas of genetic
associations in UK Biobank. Nature Genetics 50, 1593–1599. doi: 10.1038/
s41588-018-0248-z

Chen, Y., Xu, C., Zhang, J., Zeng, C., Wang, X., Zhou, R., et al. (2018). Multivariate
analysis of genomics data to identify potential pleiotropic genes for type 2
diabetes, obesity and dyslipidemia using Meta-CCA and gene-based approach.
PLoS ONE 13:e0201173. doi: 10.1371/journal.pone.0201173

Cichonska, A., Rousu, J., Marttinen, P., Kangas, A. J., Soininen, P., Lehtimaki, T.,
et al. (2016). metaCCA: summary statistics-based multivariate meta-analysis
of genome-wide association studies using canonical correlation analysis.
Bioinformatics 32, 1981–1989. doi: 10.1093/bioinformatics/btw052

de Leeuw, C. A., Mooij, J. M., Heskes, T., and Posthuma, D. (2015). MAGMA:
generalized gene-set analysis of GWAS data. PLoS Computational Biology
11:e1004219. doi: 10.1371/journal.pcbi.1004219

Farh, K. K.-H., Marson, A., Zhu, J., Kleinewietfeld, M., Housley, W. J., Beik, S.,
et al. (2015). Genetic and epigenetic fine mapping of causal autoimmune disease
variants. Nature 518, 337–343. doi: 10.1038/nature13835

Fehrmann, R. S. N., Karjalainen, J. M., Krajewska, M., Westra, H.-J., Maloney,
D., Simeonov, A., et al. (2015). Gene expression analysis identifies global gene
dosage sensitivity in cancer. Nature Genetics 47, 115–125. doi: 10.1038/ng.3173

Ferreira, M. A., Matheson, M. C., Tang, C. S., Granell, R., Ang, W., Hui, J., et al.
(2014). Genome-wide association analysis identifies 11 risk variants associated
with the asthma with hay fever phenotype. Journal of Allergy and Clinical
Immunology 133, 1564–1571. doi: 10.1016/j.jaci.2013.10.030

Ferreira, M. A., Vonk, J. M., Baurecht, H., Marenholz, I., Tian, C., Hoffman, J. D.,
et al. (2017). Shared genetic origin of asthma, hay fever and eczema elucidates
allergic disease biology. Nature Genetics 49, 1752–1757. doi: 10.1038/ng.3985

Gamazon, E. R., Wheeler, H. E., Shah, K. P., Mozaffari, S. V., Aquino-Michaels,
K., Carroll, R. J., et al. (2015). A gene-based association method for mapping
traits using reference transcriptome data. Nature Genetics 47, 1091–1098. doi:
10.1038/ng.3367

GTEx Consortium. (2017). Genetic effects on gene expression across human
tissues. Nature 550, 204–213. doi: 10.1038/nature24277

Jia, X., Yang, Y., Chen, Y., Cheng, Z., Du, Y., Xia, Z., et al. (2019). Multivariate
analysis of genome-wide data to identify potential pleiotropic genes for five
major psychiatric disorders using MetaCCA. Journal of Affective Disorders 242,
234–243. doi: 10.1016/j.jad.2018.07.046

Johansson, A., Rask-Andersen, M., Karlsson, T., and Ek, W. E. (2019). Genome-
wide association analysis of 350000 caucasians from the UK Biobank identifies
novel loci for asthma, hay fever and eczema. Human Molecular Genetics 28,
4022–4041. doi: 10.1093/hmg/ddz175

Kichaev, G., Bhatia, G., Loh, P.-R., Gazal, S., Burch, K. K., Freund, M., et al.
(2019). Leveraging polygenic functional enrichment to improve GWAS power.
American Journal of Human Genetics 104, 65–75. doi: 10.1016/j.ajhg.2018.11.
008

Kreiner, E., Waage, J., Standl, M., Brix, S. H., Pers, T., Alves, A. C., et al. (2017).
Shared genetic variants suggest common pathways in allergy and autoimmune
diseases. Journal of Allergy and Clinical Immunology 140, 771–781. doi: 10.1016/
j.jaci.2016.10.055

Kuleshov, M., Jones, M., Rouillard, A., Fernandez, N., Duan, Q., Wang, Z., et al.
(2016). Enrichr: a comprehensive gene set enrichment analysis web server 2016
update. Nucleic Acids Research 44, W90–W97. doi: 10.1093/nar/gkw377

Leynaert, B., Neukirch, F., Demoly, P., and Bousquet, J. (2000). Epidemiologic
evidence for asthma and rhinitis comorbidity. Journal of Allergy and Clinical
Immunology 106, S201–S205. doi: 10.1067/mai.2000.110151

Li, X., Howard, T. D., Zheng, S. L., Haselkorn, T., Peters, S. P., Meyers, D. A.,
et al. (2010). Genome-wide association study of asthma identifies RAD50-IL13
and HLA-DR/DQ regions. Journal of Allergy and Clinical Immunology 125,
328–335. doi: 10.1016/j.jaci.2009.11.018

Li, X. J., Ampleford, E. D., Howard, T. C., Moore, W., Li, H. W., Busse, W.,
et al. (2012). The C11orf30-LRRC32 region is associated with total serum IgE
levels in asthma. Journal of Allergy and Clinical Immunology 129, 575–578.
doi: 10.1016/j.jaci.2011.09.040

MacArthur, J., Bowler, E., Cerezo, M., Gil, L., Hall, P., Hastings, E., et al. (2017).
The new NHGRI-EBI Catalog of published genome-wide association studies
(GWAS Catalog). Nucleic Acids Research 45, D896–D901. doi: 10.1093/nar/
gkw1133

Marenholz, I., Esparza-Gordillo, J., and Lee, Y.-A. (2013). Shared genetic
determinants between eczema and other immune-related diseases. Current
Opinion in Allergy and Clinical Immunology 13, 478–486. doi: 10.1097/ACI.
0b013e328364e8f7

Moffatt, M. F., Gut, I. G., Demenais, F., Strachan, D. P., Bouzigon, E., Heath, S.,
et al. (2010). A large-scale, consortium-based genomewide association study of
asthma. The New England Journal of Medicine 363, 1211–1221. doi: 10.1056/
NEJMoa0906312

Ober, C., and Yao, T.-C. (2011). The genetics of asthma and allergic disease: a 21st
century perspective. Immunological Reviews 242, 10–30. doi: 10.1111/j.1600-
065X.2011.01029.x

Paternoster, L., Standl, M., Waage, J., Baurecht, H., Hotze, M., Strachan, D. P.,
et al. (2015). Multi-ancestry genome-wide association study of 21,000 cases and
95,000 controls identifies new risk loci for atopic dermatitis. Nature Genetics 47,
1449–1456. doi: 10.1038/ng.3424

Pividori, M., Schoettler, N., Nicolae, D. L., Ober, C., and Im, H. K. (2019). Shared
and distinct genetic risk factors for childhood-onset and adult-onset asthma:
genome-wide and transcriptome-wide studies. The Lancet Respiratory Medicine
7, 509–522. doi: 10.1016/S2213-2600(19)30055-4

Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D.,
et al. (2007). PLINK: a tool set for whole-genome association and population-
based linkage analyses. American Journal of Human Genetics 81, 559–575. doi:
10.1086/519795

Ramasamy, A., Curjuric, I., Coin, L. J., Kumar, A., McArdle, W. L., Imboden, M.,
et al. (2011). A genome-wide meta-analysis of genetic variants associated with
allergic rhinitis and grass sensitization and their interaction with birth order.
Journal of Allergy and Clinical Immunology 128, 996–1005. doi: 10.1016/j.jaci.
2011.08.030

Spergel, J. (2010). Epidemiology of atopic dermatitis and atopic march in children.
Immunology and allergy clinics of North America 30, 269–280. doi: 10.1016/j.iac.
2010.06.003

Sudlow, C., Gallacher, J., Allen, N., Beral, V., Burton, P., Danesh, J., et al. (2015).
UK Biobank: an open access resource for identifying the causes of a wide
range of complex diseases of middle and old age. PLoS Medicine 12:e1001779.
doi: 10.1371/journal.pmed.1001779

Sun, L., Xiao, F., Li, Y., Zhou, W., Tang, H., Tang, X., et al. (2011). Genome-wide
association study identifies two new susceptibility loci for atopic dermatitis in
the Chinese Han population. Nature Genetics 43, 690–694. doi: 10.1038/ng.851

Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas,
J., et al. (2015). STRING v10: protein–protein interaction networks, integrated
over the tree of life. Nucleic Acids Research 43, D447–D452. doi: 10.1093/nar/
gku1003

Frontiers in Genetics | www.frontiersin.org 10 April 2020 | Volume 11 | Article 270

https://doi.org/10.1038/s41467-019-11968-2
https://doi.org/10.1038/s41467-018-03621-1
https://doi.org/10.1016/j.ajhg.2014.12.004
https://doi.org/10.1016/j.ajhg.2012.03.015
https://doi.org/10.1016/j.ajhg.2012.03.015
https://doi.org/10.1038/ng.3211
https://doi.org/10.1186/1755-8794-7-48
https://doi.org/10.1038/s41588-018-0248-z
https://doi.org/10.1038/s41588-018-0248-z
https://doi.org/10.1371/journal.pone.0201173
https://doi.org/10.1093/bioinformatics/btw052
https://doi.org/10.1371/journal.pcbi.1004219
https://doi.org/10.1038/nature13835
https://doi.org/10.1038/ng.3173
https://doi.org/10.1016/j.jaci.2013.10.030
https://doi.org/10.1038/ng.3985
https://doi.org/10.1038/ng.3367
https://doi.org/10.1038/ng.3367
https://doi.org/10.1038/nature24277
https://doi.org/10.1016/j.jad.2018.07.046
https://doi.org/10.1093/hmg/ddz175
https://doi.org/10.1016/j.ajhg.2018.11.008
https://doi.org/10.1016/j.ajhg.2018.11.008
https://doi.org/10.1016/j.jaci.2016.10.055
https://doi.org/10.1016/j.jaci.2016.10.055
https://doi.org/10.1093/nar/gkw377
https://doi.org/10.1067/mai.2000.110151
https://doi.org/10.1016/j.jaci.2009.11.018
https://doi.org/10.1016/j.jaci.2011.09.040
https://doi.org/10.1093/nar/gkw1133
https://doi.org/10.1093/nar/gkw1133
https://doi.org/10.1097/ACI.0b013e328364e8f7
https://doi.org/10.1097/ACI.0b013e328364e8f7
https://doi.org/10.1056/NEJMoa0906312
https://doi.org/10.1056/NEJMoa0906312
https://doi.org/10.1111/j.1600-065X.2011.01029.x
https://doi.org/10.1111/j.1600-065X.2011.01029.x
https://doi.org/10.1038/ng.3424
https://doi.org/10.1016/S2213-2600(19)30055-4
https://doi.org/10.1086/519795
https://doi.org/10.1086/519795
https://doi.org/10.1016/j.jaci.2011.08.030
https://doi.org/10.1016/j.jaci.2011.08.030
https://doi.org/10.1016/j.iac.2010.06.003
https://doi.org/10.1016/j.iac.2010.06.003
https://doi.org/10.1371/journal.pmed.1001779
https://doi.org/10.1038/ng.851
https://doi.org/10.1093/nar/gku1003
https://doi.org/10.1093/nar/gku1003
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00270 April 15, 2020 Time: 16:11 # 11

Guo et al. Identifying Shared Genes by MTMAA

The 1000 Genomes Project Consortium. (2015). A global reference for human
genetic variation. Nature 526, 68–74. doi: 10.1038/nature15393

Verbanck, M., Chen, C.-Y., Neale, B., and Do, R. (2018). Detection of widespread
horizontal pleiotropy in causal relationships inferred from Mendelian
randomization between complex traits and diseases. Nature Genetics 50, 693–
698. doi: 10.1038/s41588-018-0099-7

Vicente, C. T., Revez, J. A., and Ferreira, M. A. R. (2017). Lessons from ten
years of genome-wide association studies of asthma. Clinical & Translational
Immunology 6, e165. doi: 10.1038/cti.2017.54

Waage, J., Standl, M., Curtin, J. A., Jessen, L. E., Thorsen, J., Tian, C., et al. (2018).
Genome-wide association and HLA fine-mapping studies identify risk loci and
genetic pathways underlying allergic rhinitis. Nature Genetics 50, 1072–1080.
doi: 10.1038/s41588-018-0157-1

Weidinger, S., Willis-Owen, S. A., Kamatani, Y., Baurecht, H., Morar, N., Liang, L.,
et al. (2013). A genome-wide association study of atopic dermatitis identifies
loci with overlapping effects on asthma and psoriasis. Human Molecular
Genetics 22, 4841–4856. doi: 10.1093/hmg/ddt317

Willer, C. J., Li, Y., and Abecasis, G. R. (2010). METAL: fast and efficient meta-
analysis of genomewide association scans. Bioinformatics 26, 2190–2191. doi:
10.1093/bioinformatics/btq340

Zhu, Z., Lee, P. H., Chaffin, M. D., Chung, W., Loh, P.-R., Lu, Q.,
et al. (2018). A genome-wide cross-trait analysis from UK Biobank
highlights the shared genetic architecture of asthma and allergic
diseases. Nature Genetics 50, 857–864. doi: 10.1038/s41588-018-
0121-0

Zhu, Z., Lin, Y., Li, X., Driver, J. A., and Liang, L. (2019). Shared genetic architecture
between metabolic traits and alzheimers disease: a large-scale genome-wide
cross-trait analysis. Human Genetics 138, 271–285. doi: 10.1007/s00439-019-
01988-9

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Guo, An and Yu. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org 11 April 2020 | Volume 11 | Article 270

https://doi.org/10.1038/nature15393
https://doi.org/10.1038/s41588-018-0099-7
https://doi.org/10.1038/cti.2017.54
https://doi.org/10.1038/s41588-018-0157-1
https://doi.org/10.1093/hmg/ddt317
https://doi.org/10.1093/bioinformatics/btq340
https://doi.org/10.1093/bioinformatics/btq340
https://doi.org/10.1038/s41588-018-0121-0
https://doi.org/10.1038/s41588-018-0121-0
https://doi.org/10.1007/s00439-019-01988-9
https://doi.org/10.1007/s00439-019-01988-9
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

	Identifying Shared Risk Genes for Asthma, Hay Fever, and Eczema by Multi-Trait and Multiomic Association Analyses
	Introduction
	Materials and Methods
	GWAS Result Datasets
	Methods
	LD Score Regression Analysis
	Multi-Trait Association Analysis
	Genome-Wide Gene-Based Analysis
	Transcriptome-Wide Gene-Based Analysis
	GWAS-Catalog Analysis, Enrichment Analysis and PPI Network Analysis


	Results
	Genetic Correlation Between Asthma, Hay Fever and Eczema
	Pleiotropic Genes Identified by Multi-Trait Association Study
	Genes Identified by Genome-Wide and Transcriptome-Wide Studies
	Shared Risk Genes for Asthma, Hay Fever, and Eczema
	GWAS-Catalog Analysis, Enrichment Analysis and PPI Network Analysis

	Discussion
	Limitations

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References


