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Abstract: Despite the confirmed anti-cancer effects of T-cell immune checkpoint inhibitors, in col-
orectal cancer (CRC) they are only effective in a small subset of patients with microsatellite-unstable
tumors. Thus, therapeutics targeting other types of CRCs or tumors refractory to T-cell checkpoint
inhibitors are desired. The binding of aberrantly expressed CD47 on tumor cells to signal regulatory
protein-alpha (SIRPA) on macrophages allows tumor cells to evade immune destruction. Based on
these observations, drugs targeting the macrophage checkpoint have been developed with the expecta-
tion of anti-cancer effects against T-cell immune checkpoint inhibitor-refractory tumors. In the present
study, 269 primary CRCs were evaluated immunohistochemically for CD47, SIRPA, CD68, and CD163
expression to assess their predictive utility and the applicability of CD47–SIRPA axis-modulating
drugs. Thirty-five percent of the lesions (95/269) displayed CD47 expression on the cytomembrane
of CRC cells. CRCs contained various numbers of tumor-associated immune cells (TAIs) with SIRPA,
CD68, or CD163 expression. The log-rank test revealed that patients with CD47-positive CRCs had
significantly worse survival than CD47-negative patients. Multivariate Cox hazards regression analy-
sis identified tubular-forming histology (hazard ratio (R) = 0.23), age < 70 years (HR = 0.48), and high
SIRPA-positive TAI counts (HR = 0.55) as potential favorable factors. High tumor CD47 expression
(HR = 1.75), lymph node metastasis (HR = 2.26), and peritoneal metastasis (HR = 5.80) were cited as
potential independent risk factors. Based on our observations, CD47–SIRPA pathway-modulating
therapies may be effective in patients with CRC.

Keywords: colorectal cancer (CRC); immunohistochemistry; macrophage checkpoint; CD47; signal
regulatory protein-alpha (SIRPA)

1. Introduction

The discovery of T-cell immune checkpoint inhibitors launched a new era in cancer
therapy. Moreover, evidence supporting the anti-cancer effects of these drugs is accumulat-
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ing [1,2]. However, in colorectal cancer (CRC), the application of these therapies is currently
limited to a small subset of patients with microsatellite-unstable tumors [3].

Macrophages are effector cells of the innate immune system that phagocytose bacteria
and secrete mediators for pro-inflammatory and anti-microbial effects. Macrophages eliminate
diseased or damaged cells through programmed cell death and serve as antigen-presenting
cells. Therefore, macrophage checkpoints including CD47–signal regulatory protein-alpha
(SIRPA) signaling are considered to play important roles in cancer surveillance [4,5].

CD47 is a heavily glycosylated, ubiquitously expressed cell surface protein in the im-
munoglobulin superfamily. Its molecular structure includes an extracellular immunoglob-
ulin variable-like domain, a transmembrane spanning domain, and a short, alternatively
spliced cytoplasmic tail [6]. Although CD47 was first identified as a membrane protein
involved in β3 integrin-mediated signaling on leukocytes [7], it is reported to interact
with SIRPA, thrombospondin-1, and other molecules to regulate various cellular functions
including cell migration, axon extension, cytokine production, and T-cell activation [8–12].
In a variety of hematologic and solid malignancies, aberrant expression of CD47 was
reported to independently correlate with poor clinical outcomes [13,14].

SIRPA is a member of the signal-regulatory-protein family, and it was first identified
as a membrane protein present mainly on macrophages and myeloid cells that is associated
with the Src homology region 2 domain-containing phosphatases SHP-1 and SHP-2 [15].
SIRPA contains three immunoglobulin-like domains, a single transmembrane region, and a
cytoplasmic region containing four Tyr residues within immunoreceptor tyrosine-based
inhibitory motifs [15]. CD47 has been identified as a ligand for SIRPA. The binding of
CD47 to SIRPA on macrophages and dendritic cells results in the inhibition of phagocytosis.
Thus, CD47 provides a potent “don’t eat me” signal that allows tumor cells to evade
immune destruction by first-responder phagocytic cells and functions as a dominant
macrophage checkpoint.

Agents that inhibit CD47–SIRPA signaling can induce the phagocytosis of cancer
cells by macrophages, resulting in growth inhibition and regression in xenograft mod-
els [14,16,17]. Based on these observations, targeting CD47 is considered a novel im-
munotherapeutic strategy for several human cancers that are refractory to T-cell immune
checkpoint inhibitors [18–20].

The present study examined the expression status of CD47 in CRCs. In addition,
the expression of SIRPA and macrophage markers (CD68 and CD163) in tumor-associated
immune cells (TAIs) was analyzed. The association of the expression of these proteins with
clinicopathological features and clinical outcomes were analyzed to assess their potential
for clinical use.

2. Results
2.1. Expression of CD47, SIRPA, CD68, and CD163 in Non-Neoplastic Colonic Mucosae
and CRCs

Representative images for immunohistochemistry are presented in Figure 1 and
Supplementary Materials, Figure S1. In non-neoplastic colonic mucosae, CD47 was weakly
expressed on the cytomembrane of colonic epithelial cells. In addition, CD47-positive
inflammatory cells were observed in the stroma. In total, 35% of the CRCs (95/269)
exhibited CD47 expression on the cytomembrane of tumor cells. In non-neoplastic colonic
mucosae as well as colon cancer stroma, TAIs positive for SIRPA, CD68, or CD163 were
variably observed.
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Figure 1. Representative images of CD47, SIRPA, CD68, and CD163 immunostaining in non-neoplastic colonic mucosae 
and colorectal cancer (CRC) tissues. CD47 was weakly expressed on the cytomembrane of non-neoplastic colonic epithelial 
cells. CRC cells expressed CD47 on the cytomembrane. Non-neoplastic colonic mucosae and colon cancer stroma con-
tained immune cells positive for signal regulatory protein-alpha (SIRPA), CD68, or CD163. Bar, 100 μm. 

Representative images for fluorescent immunohistochemistry are presented in Fig-
ure 2. In non-neoplastic colonic mucosae, SIRPA was expressed in a subset of CD68-posi-
tive cells. In contrast, SIRPA was expressed in a subset of both CD68- and CD163-positive 
TAIs in CRC stroma. 

Figure 1. Representative images of CD47, SIRPA, CD68, and CD163 immunostaining in non-neoplastic colonic mucosae
and colorectal cancer (CRC) tissues. CD47 was weakly expressed on the cytomembrane of non-neoplastic colonic epithelial
cells. CRC cells expressed CD47 on the cytomembrane. Non-neoplastic colonic mucosae and colon cancer stroma contained
immune cells positive for signal regulatory protein-alpha (SIRPA), CD68, or CD163. Bar, 100 µm.

Representative images for fluorescent immunohistochemistry are presented in Figure 2.
In non-neoplastic colonic mucosae, SIRPA was expressed in a subset of CD68-positive cells.
In contrast, SIRPA was expressed in a subset of both CD68- and CD163-positive TAIs in
CRC stroma.

The clinical, pathological, and immunohistochemical features of the analyzed tumors
are summarized in Tables 1 and 2 according to CD47 and SIRPA expression, respectively.
CD47 positivity showed a tendency to associate with histological differentiation (p = 0.032),
mucus production (p = 0.040) and lymph node metastasis (p = 0.049). In contrast, SIRPA-
high tumors showed a tendency to be larger (p = 0.037) and have mismatch-repair system
deficient phenotype (p = 0.0072). CD47-positive tumors contained significantly higher
numbers of SIRPA- (p = 0.044) and CD163-positive TAIs (p < 0.0001, Figure 3).
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Figure 2. SIRPA was expressed in the subpopulation of CD68- and CD163-positive cells. SIRPA 
was expressed in the subset of CD68-positive cells in non-neoplastic colonic mucosae (upper pan-
els). In colon cancer stroma, SIRPA expression was observed in both CD68- and CD163-positive 
tumor-associated immune cells (TAIs) (lower panels). Bar, 20 μm. 

The clinical, pathological, and immunohistochemical features of the analyzed tumors 
are summarized in Tables 1 and 2 according to CD47 and SIRPA expression, respectively. 
CD47 positivity showed a tendency to associate with histological differentiation (p = 
0.032), mucus production (p = 0.040) and lymph node metastasis (p = 0.049). In contrast, 
SIRPA-high tumors showed a tendency to be larger (p = 0.037) and have mismatch-repair 
system deficient phenotype (p = 0.0072). CD47-positive tumors contained significantly 
higher numbers of SIRPA- (p = 0.044) and CD163-positive TAIs (p < 0.0001, Figure 3). 

Table 1. Characteristics of colorectal carcinomas with or without CD47 expression. a, p-values were calculated by the Chi-
square test for CD47 expression. b, t-test or c, Cochran–Armitage trend test was used to calculate p-values. The Bonferroni-
corrected p-value for significance was p ≈ 0.0042 (0.05/12). 

 
Total No. CD47 Positive CD47 Negative p-Value  

269(100%) 95(35%) 174(65%) 
 

Sex  a 
 Male 143(53%) 56(59%) 87(50%) 0.20  
 Female 126(47%) 39(41%) 87(50%)   

Age, years (mean ± S.D.) 68.6 ± 12.6 67.1 ± 14.6 69.4 ± 11.3 0.15 b 
Size, cm (mean ± S.D.) 5.0 ± 2.6 4.8 ± 2.4 5.1 ± 2.6 0.32 b 
Tumor location  a 

Figure 2. SIRPA was expressed in the subpopulation of CD68- and CD163-positive cells. SIRPA was
expressed in the subset of CD68-positive cells in non-neoplastic colonic mucosae (upper panels).
In colon cancer stroma, SIRPA expression was observed in both CD68- and CD163-positive tumor-
associated immune cells (TAIs) (lower panels). Bar, 20 µm.

Table 1. Characteristics of colorectal carcinomas with or without CD47 expression. a, p-values were calculated by the Chi-
square test for CD47 expression. b, t-test or c, Cochran–Armitage trend test was used to calculate p-values. The Bonferroni-
corrected p-value for significance was p ≈ 0.0042 (0.05/12).

Total No. CD47 Positive CD47 Negative p-Value

269 (100%) 95 (35%) 174 (65%)
Sex a

Male 143 (53%) 56 (59%) 87 (50%) 0.20
Female 126 (47%) 39 (41%) 87 (50%)

Age, years (mean ± S.D.) 68.6 ± 12.6 67.1 ± 14.6 69.4 ± 11.3 0.15 b
Size, cm (mean ± S.D.) 5.0 ± 2.6 4.8 ± 2.4 5.1 ± 2.6 0.32 b
Tumor location a

Right-sided colon 124 (46%) 42 (44%) 82 (47%) 0.89
Left-sided colon 86 (32%) 31 (33%) 55 (32%)
Rectum 59 (22%) 22 (23%) 37 (21%)

pT stage c
pT2 36 (13%) 17 (18%) 19 (11%) 0.50
pT3 189 (70%) 61 (64%) 128 (74%)
pT4 44 (16%) 17 (18%) 27 (15%)

Histological
differentiation a

Well to moderately 242 (90%) 80 (84%) 162 (93%) 0.032
Poorly 27 (10%) 15 (16%) 12 (7%)
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Table 1. Cont.

Total No. CD47 Positive CD47 Negative p-Value

Mucus production a
Positive 14 (5%) 9 (9%) 5 (3%) 0.040
Negative 255 (95%) 86 (91%) 163 (97%)

Lymph node metastasis a
Positive 124 (49%) 52 (58%) 72 (44%) 0.049
Negative 129 (51%) 38 (42%) 91 (56%)

Peritoneal metastasis a
Positive 50 (19%) 18 (19%) 32 (18%) 1
Negative 219 (81%) 77 (81%) 142 (82%)

Distant organ metastasis a
Positive 44 (16%) 17 (18%) 27 (16%) 0.61
Negative 225 (84%) 78 (82%) 147 (84%)

Operation status a
Complete resection 237 (88%) 85 (89%) 152 (87%) 0.70
Incomplete
resection 32 (12%) 10 (11%) 22 (13%)

MMR system status a
Deficient 31 (12%) 14 (15%) 17 (10%) 0.24
Preserved 238 (88%) 81 (85%) 157 (90%)

Table 2. Characteristics of colorectal carcinomas with high or low SIRPA expression. a, p-values were calculated by
the Chi-square test for CD47 expression. b, t-test or c, Cochran–Armitage trend test was used to calculate p-values.
The Bonferroni-corrected p-value for significance was p ≈ 0.0042 (0.05/12).

Total No. SIRPA High SIRPA Low p-Value

269 (100%) 143 (35%) 126 (65%)
Sex a

Male 143 (53%) 73 (51%) 70 (56%) 0.50
Female 126 (47%) 70 (49%) 56 (44%)

Age, years (mean ± S.D.) 68.6 ± 12.6 67.9 ± 12.6 69.4 ± 12.6 0.37 b
Size, cm (mean ± S.D.) 5.0 ± 2.6 5.3 ± 2.8 4.7 ± 2.4 0.037 b
Tumor location a

Right-sided colon 124 (46%) 67 (47%) 57 (45%) 0.78
Left-sided colon 86 (32%) 47 (33%) 39 (31%)
Rectum 59 (22%) 29 (20%) 30 (24%)

pT stage c
pT2 36 (13%) 22 (15%) 14 (11%) 0.37
pT3 189 (70%) 100 (70%) 89 (71%)
pT4 44 (16%) 21 (15%) 23 (18%)

Histological
differentiation a

Well to moderately 242 (90%) 128 (90%) 114 (90%) 0.95
Poorly 27 (10%) 15 (10%) 12 (10%)

Mucus production a
Positive 14 (5%) 4 (3%) 10 (8%) 0.11
Negative 255 (95%) 139 (97%) 116 (92%)

Lymph node metastasis a
Positive 124 (49%) 64 (47%) 60 (51%) 0.59
Negative 129 (51%) 72 (53%) 57 (49%)

Peritoneal metastasis a
Positive 50 (19%) 25 (17%) 25 (20%) 0.71
Negative 219 (81%) 118 (83%) 101 (80%)

Distant organ metastasis a
Positive 44 (16%) 22 (15%) 22 (17%) 0.77
Negative 225 (84%) 121 (85%) 104 (83%)
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Table 2. Cont.

Total No. SIRPA High SIRPA Low p-Value

Operation status a
Complete resection 237 (88%) 121 (85%) 116 (92%) 0.090
Incomplete
resection 32 (12%) 22 (15%) 10 (8%)

MMR system status a
Deficient 31 (12%) 24 (17%) 7 (6%) 0.0072
Preserved 238 (88%) 119 (83%) 119 (94%)

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 6 of 13 
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tively, Figure 4). Multivariate Cox hazards regression analysis identified tubular-forming 
histology (hazard ratio (HR) = 0.23, 95% confidence interval (CI) = 0.12–0.42, p < 0.0001), 
younger age (<70 years old, HR = 0.48, 95% CI = 0.27–0.83, p = 0.0087), and high SIRPA TAI 
counts (HR = 0.55, 95% CI = 0.32–0.93, p = 0.0027) as potential favorable factors. The anal-
ysis also revealed the presence of high tumor CD47 expression (HR = 1.75, 95% CI = 1.03–
2.98, p = 0.038), lymph node metastasis (HR = 2.26, 95% CI = 1.31–3.91, p = 0.0036), and 
peritoneal metastasis (HR = 5.80; 95% CI = 3.23–10.43, p < 0.0001) as potential independent 
risk factors for patients with CRC (Table 3). 

Figure 3. CD47-positive tumors contained significantly more SIRPA- or CD163-positive TAIs. (a) CD47-positive tumors
contained significantly more SIRPA-positive TAIs (p = 0.044). (b) CD47-positive tumors tended to contain more CD68-
positive TAIs (p = 0.080). (c) CD47-positive tumors contained significantly more CD163-positive TAIs (p < 0.0001). This is a
figure. Schemes follow another format.

2.2. Survival Analyses of Patients with CRC

Patients with CD47-positive CRC had a significantly worse 5-year survival rate (64.0%
vs. 79.0%; p = 0.0268). Patients with higher SIRPA-positive TAIs tended to exhibit a better
5-year survival rate (76.8% vs. 70.4%; p = 0.167). Overall survival was not associated
with the presence of CD68- or CD163-positive TAIs (p = 0.923 and p = 0.518, respectively,
Figure 4). Multivariate Cox hazards regression analysis identified tubular-forming his-
tology (hazard ratio (HR) = 0.23, 95% confidence interval (CI) = 0.12–0.42, p < 0.0001),
younger age (<70 years old, HR = 0.48, 95% CI = 0.27–0.83, p = 0.0087), and high SIRPA TAI
counts (HR = 0.55, 95% CI = 0.32–0.93, p = 0.0027) as potential favorable factors. The analysis
also revealed the presence of high tumor CD47 expression (HR = 1.75, 95% CI = 1.03–2.98,
p = 0.038), lymph node metastasis (HR = 2.26, 95% CI = 1.31–3.91, p = 0.0036), and peri-
toneal metastasis (HR = 5.80; 95% CI = 3.23–10.43, p < 0.0001) as potential independent risk
factors for patients with CRC (Table 3).
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variables in the final model. TAIs, tumor-associated inflammatory cells. 

  95% CI  

HR Min Max p-Value 
Well to moderately differentiated his-
tology 0.23 0.12 0.42 <0.0001 

Age (<70) 0.48 0.27 0.82 0.0087 
TAIs SIRPA High 0.55 0.32 0.93 0.027 
Tumor CD47 High 1.75 1.03 2.98 0.038 
Lymph node metastasis 2.26 1.31 3.91 0.0036 
Peritoneal metastasis 5.80 3.23 10.43 <0.0001 

3. Discussion 

Figure 4. Overall survival of patients with colorectal cancer classified according to CD47, SIRPA, CD68, and CD163
expression. Kaplan–Meier curves for patients classified by CD47 (a), SIRPA (b), CD68 (c), and CD163 (d) expression.
(a) Patients with CD47-positive CRC had significantly worse overall survival (p = 0.0268). (b–d) Overall survival was not
correlated with the presence of SIRPA- (b), CD68- (c), or CD163-positive TAIs.

Table 3. Multivariable Cox hazards analysis of colorectal cancer patients. The multivariable Cox hazards analysis model initially
included sex, age, tumor size, primary tumor location, pT stage, tumor histology, mucus production, lymph node metastasis,
peritoneal metastasis, distant organ metastasis, operation status, mismatch-repair system status, and immunohistochemistry for
CD47, SIRPA, CD68, and CD163. A backward elimination with a threshold of p = 0.05 was used to select variables in the final
model. TAIs, tumor-associated inflammatory cells.

95% CI
HR Min Max p-Value

Well to moderately
differentiated histology 0.23 0.12 0.42 <0.0001

Age (<70) 0.48 0.27 0.82 0.0087
TAIs SIRPA High 0.55 0.32 0.93 0.027
Tumor CD47 High 1.75 1.03 2.98 0.038
Lymph node metastasis 2.26 1.31 3.91 0.0036
Peritoneal metastasis 5.80 3.23 10.43 <0.0001
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3. Discussion

Aberrant expression of CD47, a key molecule for the macrophage checkpoint, has been
documented in hematological and solid malignancies with poor clinical outcomes [13,14].
Tumor CD47 expression has been suggested to contribute to immune evasion by tumor
cells through the CD47–SIRPA axis. In the present study, 269 advanced CRC lesions were
immunohistochemically evaluated for CD47, SIRPA, CD68, and CD163 expression in tumor
cells and TAIs. Moreover, the association of their expression with clinicopathological
parameters or clinical outcomes was analyzed to assess their potential for prognostication
and the application of CD47–SIRPA-modulating therapy.

CD47 regulates physiological functions, including cell growth, cell migration,
axon extension, cytokine production, and T-cell activation [8–12], as well as cancer
cell proliferation, motility, and invasiveness [17,21]. Furthermore, CD47 has been re-
ported to regulate epithelial–mesenchymal transition (EMT) and cancer stemness [22].
In the present study, CD47 expression on CRC cells was observed in 35% of lesions
(95/269), and it was significantly associated with poor clinical outcomes. However,
no significant association was found between CD47 expression and pT stage or histolog-
ical differentiation, both of which are indicative of invasiveness and EMT phenotypes
(Table 1). In addition, there was no correlation of CD47 expression and cellular prolif-
eration (Figure S2). Furthermore, CD47-positive tumors contained significantly higher
numbers of SIRPA-positive TAIs (p = 0.044, Figure 3a). These observations suggest
that limitedly-expressed CD47-dependent activation of the CD47–SIRPA signaling in
the CRC microenvironment has a significant impact on the clinical outcome of CRC,
as similarly observed for other malignancies [13,14].

SIRPA is expressed on phagocytes such as monocytes, macrophages, and granulocytes,
and it plays a key role in the macrophage checkpoint [15]. Evidence of the prognostic
significance of SIRPA in malignancies is accumulating [23–25]; however, the expression
and prognostic significance of SIRPA have never been reported in CRC. It is intriguing that
SIRPA-high tumors showed a tendency to have mismatch-repair system deficient pheno-
type (p = 0.0072) in the present study. This might indicate the higher immunogenic potential
of the mismatch-repair system deficient tumors. Differing from past reports indicating poor
prognoses in patients with hematological malignancy containing SIRPA-high TAIs [23–25],
the present study demonstrated that high SIRPA TAI counts (HR = 0.55, p = 0.0027) are a
potential favorable factor. The discrepancies in these findings might have resulted from
differences in the tumor types or the variability of TAIs. Specifically, granulocytes with
SIRPA-expression are more abundant in CRC stroma (Figure S3) than those observed in
hematological malignancies. A larger cohort with a longer follow-up or studies using
multiple immunofluorescence staining may optimize the prognostication models.

Macrophages comprise a heterogeneous immune cell population with diverse origins
and functions. Macrophages are classified into M1 and M2 macrophages. M1 macrophages
are activated pro-inflammatory cells that promote inflammation and/or type 1/Th1/Th17
immune responses, whereas M2 macrophages are alternatively activated anti-inflammatory
cells that prevent or antagonize inflammation and/or promote type 2/Th2 immune re-
sponses [4]. Tumor-associated macrophages (TAMs) are often found in the tumor mi-
croenvironment, and their prognostic significance has been reported in many types of
cancers [26–30]. However, their significance regarding the survival of patients with CRC is
controversial [31,32]. In the present study, no correlation was found between patient sur-
vival and the presence of CD68-positive or CD163-positive TAMs. By contrast, high SIRPA
expressed in the TAIs in the tumor microenvironment was identified as a potential in-
dependent favorable factor (HR = 0.55, p = 0.027). These observations indicate that the
subpopulations of CD68- and CD163-positive macrophages or granulocytes with SIRPA
expression have uniquely important roles in modulating the clinical outcome of patients
with CRC. Further investigation is needed to uncover its mechanism.

CD47–SIRPA axis-targeting agents can induce the phagocytosis of cancer cells by
macrophages, which results in growth inhibition and regression of cancers in experimen-
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tal conditions [14,16,17]. Recently, Hu5F9-G4, a humanized IgG4 monoclonal antibody
against human CD47, was examined in phase I studies, and it displayed anti-tumor effects
against both hematological and solid malignancies [18,20]. Pro-phagocytic signals such as
calreticulin and phosphatidylserine on cancer cells were considered to accelerate cancer
cell-specific phagocytosis [33,34]. Furthermore, the anti-tumor effects of T-cell responses
was expected by the cross-presentation of tumor antigens by phagocytes to T-cells [35,36].
When Hu5F9-G4 was applied to patients with malignant lymphoma who received ritux-
imab, an anti-CD20 antibody, Hu5F9-G4–mediated phagocytosis was augmented [13,18].
Rituximab induces complement and natural killer cell-mediated, antibody-dependent
cellular cytotoxic effects via its active Fc effector function. In addition, the Fc region of rit-
uximab provides a potent pro-phagocytic signal for macrophages by stimulating antibody-
dependent cellular phagocytosis [13,18]. Based on these observations, both monotherapy
with CD47–SIRPA axis-targeting drugs and combination therapy with other anti-cancer
antibodies may be applied to patients with CRC.

4. Materials and Methods
4.1. Tissue Samples

The Institutional Ethical Review Board of Aichi Medical University Hospital approved
this project could be performed without collecting patient consent by giving them the op-
portunity for opt-out. Two hundred sixty-nine formalin-fixed, paraffin-embedded (FFPE)
samples of primary colorectal tumors resected at the Aichi Medical University Hospital
from 2009 to 2012 were collected depending on the availability of tissue samples and clinical
information. After surgery, patients were followed up for up to 90 months. All tumors were
diagnosed as invasive and naïve to chemotherapy or radiotherapy. Staging of tumors was
performed according to the TNM Classification of Malignant Tumors, Eighth Edition [37].
Tumors with glandular formation (>50%) or mucus production (>50% of the area) were
defined to have a differentiated or mucus-producing histology. A single 4.5-mm core tumor
tissue sample derived from an FFPE specimen was assembled into multitumor blocks con-
taining up to 30 samples. All cores were obtained from invasive areas, and approximately
20% of cores contained an invasive front. The size of tumor tissue samples was estimated
to exceed the size of a single 0.6-mm2 core by a factor of 8–9.

Non-neoplastic colonic mucosae adjacent to the tumor were also immunohistochemi-
cally analyzed.

4.2. Immunohistochemistry

The antibodies used in the present study are summarized in Table S1. Immunohisto-
chemistry was performed using a Leica Bond-Max (Leica Biosystems, Bannockburn, IL,
USA) or Ventana BenchMark XT automated immunostainer (Roche Diagnostics, Basel,
Switzerland). In the Leica Bond-Max, antigen retrieval was performed using high pH
buffer for 20 min and antibodies were applied as follows: first antibody (15 min at RT),
second antibody (8 min at RT). In the Ventana BenchMark XT, antigen retrieval was per-
formed using high pH buffer for 60 min and antibodies were applied as follows: first
antibody (20 min at 37 ◦C), second antibody (8 min at 37 ◦C), Signals were visualized
using 3,3′-diaminobenzidine. Following the manufacturer’s protocol, human placenta
was used as a positive control for CD47 immunostaining. For SIRPA, CD68, and CD163
immunostaining, granulocytes and/or macrophages within the tissue samples were used
as internal positive controls. CD47 expression on the cytomembrane of tumor cells was
independently evaluated by two researchers (AS-N and ShI). The concordance rates of the
initial immunohistochemical evaluation are presented in Table S2. For the discordant cases,
the results were confirmed via discussion. SIRPA-, CD68-, and CD163-positive TAIs were
evaluated using ImageJ software (NIH, Bethesda, MD, USA; Figure S4). Ki-67 labeling
indices were determined by counting over 500 tumor cells per case in a high-power field
(HPF, ×400).
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4.3. Fluorescent Immunohistochemistry

Antigen retrieval was performed using HISTOFINE deparaffinization and antigen
retrieval buffer pH 9 (Nichirei Biosciences, Tokyo, Japan) according to the manufacturer’s
protocol. After blocking, primary antibodies were applied at room temperature for 1 h.
The dilution of antibodies is summarized in Table S1. Signals were visualized using sec-
ondary antibodies labeled with fluorescein or tetramethylrhodamine applied at a dilution
of 1:500 (Molecular Probes®, Thermo Fisher Scientific K. K., Tokyo, Japan). Autofluores-
cence was attenuated using Vector TrueVIEW Autofluorescence Quenching Kit (Vector
Laboratories, INC, Burlingame, CA, USA).

4.4. Statistical Analyses

Statistical analyses were performed using EZR software version 1.41 [38]. The cutoffs
for immunohistochemistry were defined as the value closest to the upper-left corner in the
receiver operating characteristic curves for patient survival as follows: CD47, 5%; SIRPA,
226 pixels; CD68, 1743 pixels; CD163, 1027 pixels (Figure S5). The chi-squared test, Fisher’s
exact test, the Cochran–Armitage trend test, Mann–Whitney’s U test, or the Kruskal–
Wallis test was performed to analyze the statistical correlation between categorical data.
Simple Bonferroni correction for multiple hypothesis testing was applied for adjustment at
a two-sided alpha level at 0.0042 (=0.05/12).

For survival analyses, Kaplan–Meier survival estimates were calculated together with
the log-rank test. Cox proportional hazards regression analysis was used to analyze the
associations of survival with other factors. The initial model included variables as follows:
sex (male vs. female), age (<70 years old vs. ≥70 years old), tumor size (<5 cm vs. ≥5 cm),
primary tumor location (right-sided colon vs. left-sided colon vs. rectum), pT stage
(pT2 vs. pT3 vs. pT4), tumor histology (moderately to well-differentiated vs. poorly
differentiated), mucus production (positive vs. negative), lymph node metastasis (positive
vs. negative), peritoneal metastasis (positive vs. negative), distant organ metastasis
(positive vs. negative), operation status (complete vs. incomplete resection), mismatch-
repair system status (deficient vs. preserved), immunohistochemical data (CD47-positive
vs. CD47-negative, SIRPA-high vs. SIRPA-low, CD68-high vs. CD68-low, and CD163-high
vs. CD163-low). A backward elimination with a threshold of p < 0.05 was used to select
variables in the final model.

5. Conclusions

The present study demonstrated the significantly higher expression of CD47 and
SIRPA in patients with CRC. Immunohistochemistry for CD47 and SIRPA could be used
for the prognostication of patients with CRC. CD47–SIRPA axis-modulating therapies may
be candidate treatments for patients with CRC.
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