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Abstract: HIV-1 protease (PR) is a viral enzyme that cleaves the Gag and Gag-Pol polyprotein
precursors to convert them into their functional forms, a process which is essential to generate
infectious viral particles. Due to its broad substrate specificity, HIV-1 PR can also cleave certain
host cell proteins. Several studies have identified host cell substrates of HIV-1 PR and described the
potential impact of their cleavage on HIV-1-infected cells. Of particular interest is the interaction
between PR and the caspase recruitment domain-containing protein 8 (CARD8) inflammasome. A
recent study demonstrated that CARD8 can sense HIV-1 PR activity and induce cell death. While
PR typically has low levels of intracellular activity prior to viral budding, premature PR activation
can be achieved using certain non-nucleoside reverse transcriptase inhibitors (NNRTIs), resulting
in CARD8 cleavage and downstream pyroptosis. Used together with latency reversal agents, the
induction of premature PR activation to trigger CARD8-mediated cell killing may help eliminate
latent reservoirs in people living with HIV. This represents a novel strategy of utilizing PR as an
antiviral target through premature activation rather than inhibition. In this review, we discuss the
viral and host substrates of HIV-1 protease and highlight potential applications and advantages of
targeting CARD8 sensing of HIV-1 PR.
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1. Introduction

The acquired immunodeficiency syndrome (AIDS) global pandemic is one of the most
devastating public health challenges in human history, with more than 36 million people
estimated to have died from AIDS-related illnesses since the beginning of the epidemic in
1981 [1]. In the early 1980s, the novel retrovirus human immunodeficiency virus type 1
(HIV-1) was identified as the causative agent of AIDS [2–4]. The HIV-1 genome encodes
capsid proteins (Gag), viral enzymes (Pol), and the envelope glycoprotein (Env), as well
as six regulatory proteins. The viral enzymes encoded by pol are protease (PR), reverse
transcriptase (RT), and integrase (IN), which were targets of some of the first antiviral
inhibitors for treating HIV [5]. The first antiretroviral drug to be approved by the US Food
and Drug Administration (FDA) as a treatment for HIV was zidovudine (AZT, a nucleoside
reverse transcriptase inhibitor (NRTI)), in 1987. This was followed by the approval of
several other NRTIs such as didanosine, zalcitabine, and stavudine. The FDA approval of
the first protease inhibitor (PI) saquinavir (SQV) in 1995 marked a watershed moment in the
development of antiretroviral therapy (ART). ART is a medication regiment consisting of a
combination of several antiretroviral drugs targeting different stages of the HIV life cycle [6].
With the advent of ART, people living with HIV (PLWH) can live longer and healthier
lives [7]. While ART can effectively control viral replication in PLWH, it cannot eradicate
the virus due to the latent reservoir, a pool of latently infected, resting CD4+ T cells. Upon
discontinuation of ART, the latent reservoir can quickly re-establish viral replication [8–11].
Therefore, PLWH must take ART daily for life. According to the World Health Organization,
there were about 38 million people globally living with HIV in 2021 [1].
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During viral maturation, PR sequentially cleaves the Gag and Gag-Pol polyproteins at
nine cleavage sites to convert them into their functional forms [12]. As this step is required
to generate infectious viral particles, PR is an essential viral enzyme and thus an attractive
target for anti-HIV drug design [13]. The currently approved HIV drugs that target PR are
all compounds that mimic the substrate transition site of HIV PR to inhibit its activity [14].
Given the emergence of drug-resistant strains of HIV-1, novel strategies of targeting HIV
PR are urgently needed. Interestingly, HIV PR has been shown to interact with numerous
host cell proteins [15–18]. As the cleavage of certain host substrates by HIV-1 PR has been
linked to cell death, targeting the interactions between PR and the host rather than PR
and viral polyprotein precursors may open promising new avenues for antiviral therapy.
For instance, recent evidence indicates HIV-1-infected cells may be cleared by the targeted
activation of PR, which cleaves and activates the caspase recruitment domain-containing
protein 8 (CARD8) inflammasome to induce cell death [19]. In this review, we discuss the
virus- and host-derived substrates of HIV-1 PR and highlight novel strategies of targeting
PR for an HIV cure.

2. HIV Protease Structure, Function, and Inhibitors

Decades of structural biology and X-ray crystallography research have provided a
thorough understanding of the structure and function of HIV PR. HIV PR exists as a
homodimer consisting of two identical subunits of 99 amino acids. It is a member of the
aspartic protease family, with a conserved catalytic Asp residue at position 25 [20]. The
Asp25 and Asp25′ residues from each monomer meet at the dimer interface and form the
enzyme active site; dimerization is required for PR activation as monomers of HIV PR
are enzymatically inactive [21,22]. The active site is covered by two flexible glycine-dense
β-sheet flaps. Upon substrate binding, these flaps undergo a conformational shift that
causes the flaps to close and cover the active site [23].

In the HIV life cycle, the cleavage of several peptide bonds in viral polyprotein
precursors by PR is necessary to produce mature active enzymes. Interestingly, HIV PR has
broad specificity which is determined by the asymmetric shape of the substrate rather than
a particular amino acid sequence. This allows PR to cleave Gag and Gag-Pol at multiple
sites with different amino acid sequences [24]. However, differences in amino acid side
chains at different cleavage sites may lead to small structural differences that could affect
the rate of cleavage at individual sites and contribute to sequential processing of Gag
and Gag-Pol [25,26]. Importantly, in HIV-1-infected cells, PR exists as a subunit of the
Gag-Pol polyprotein precursor with minimal proteolytic activity and must dimerize to
become catalytically active. The timing of PR activation is tightly regulated, as premature
or delayed PR activation results in dramatically decreased infectivity [27–30]. According to
a recent study on the kinetics of PR activation, HIV-1 PR becomes activated during viral
assembly and budding, just prior to virion release [31].

The elucidation of PR structure through crystallography, NMR, and computational
biochemistry methods led to a monumental effort of structure-based rational drug design
for antivirals to treat HIV in the early to mid 1990s [32]. Most of these drug discovery
approaches were based on the synthesis of peptide substrate analogs designed to mimic the
substrate transition state. The contact points between HIV PR and most substrate analog
inhibitors are quite similar, with a key interaction being the hydrogen bonds between
carbonyl oxygens of PR active site residues Asp25 and Asp25′ and the hydroxyl groups of
the inhibitor [20].

Early clinical trials showed remarkable reductions in morbidity, mortality, and HIV
viral load in PLWH treated with a combination of a PI and NRTIs, demonstrating the
effectiveness of combination therapy in HIV treatment [7,33,34]. There are currently six
PIs approved and recommended for use by the FDA: atazanavir, darunavir, fosampre-
navir, ritonavir, saquinavir, and tipranavir [14]. Some other PIs, such as lopinavir, are
recommended as part of combination HIV medicines such as ritonavir-boosted lopinavir.
Unfortunately, HIV PIs are frequently associated with side effects resulting from drug–drug
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interactions, overdose, or interactions with off-target molecules [20]. The emergence of PI
drug resistance also poses a major problem in the long-term effectiveness of PIs as an anti-
HIV drug [35]. One approach to combat drug resistance has been to boost with ritonavir,
which increases the circulating concentration of other PIs by inhibiting cytochrome P450
3A4 [36]. Another major strategy has been to design PIs that incorporate chemical groups
that promote hydrogen bonding with backbone atoms in the active site of HIV PR [22].

3. Host Cell Substrates of HIV-1 PR

In addition to cleaving viral polyprotein precursors, HIV PR cleaves a wide array of
host cell proteins. Indeed, as many as 123 human proteins were identified as substrates of
HIV PR in a 2012 study that incubated lysates of Jurkat T-cells with HIV PR and utilized
mass spectrometry to identify substrate identity and the cleavage site location [15]. The
cleavage of host proteins by HIV-1 PR may have some impact on the course of HIV infection.
For instance, HIV-1 PR can cleave the cytoskeletal protein vimentin, resulting in the release
of an N-terminal fragment that leads to changes in nuclear architecture [37,38]. These
effects are likely harmful to the cell, although the exact role of vimentin cleavage in HIV
infection is still unclear. Furthermore, eukaryotic translation initiation factor 3d (eIF3d) was
found to be cleaved by HIV PR both in a HEK293 cell transfection system and in vitro using
purified eIF3d incubated with PR [39]. eIF3 is a translational initiation factor involved in
translation initiation, termination, and ribosomal recycling [40]. Knockdown of eIF3d—but
not other subunits of eIF3—resulted in an increase in HIV-1 infectivity, suggesting the
cleavage of eIF3d by HIV-1 PR may be a strategy for HIV to overcome inhibition of viral
replication by eIF3 [39]. eIF4G, another eukaryotic translation initiation factor, was also
found to be cleaved by HIV-1 PR in a study that tested eIF4G cleavage in HIV-1-infected
CD4+ T cells and in vitro using purified eIF4G [16]. The cleavage of eIF4G by HIV-1 PR
was shown to inhibit cap-dependent cellular translation, providing a potential mechanism
by which HIV-1 may modulate host protein synthesis [16].

The cleavage of certain host proteins by HIV-1 PR has been linked to cell death.
A 1996 study reported that the transfection of various cell lines with a plasmid coding
for HIV-1 PR resulted in increased apoptosis which was associated with the cleavage of
endogenous BCL-2 by PR [17]. BCL-2 family proteins are known to mediate cell death, with
the overexpression of BCL-2 linked to the inhibition of apoptosis [41]. Correspondingly,
co-transfection of BCL-2 with HIV-1 PR in COS-7 cells protected against apoptosis and
reduced HIV infectivity, p24 and gp120 levels, and tumor necrosis factor alpha (TNFα)
release [17]. The authors speculate that BCL-2 may suppress the production of reactive
oxygen species (ROS) and the cleavage of BCL-2 by HIV-1 PR could therefore lead to
accumulation of ROS, activation of nuclear factor kappa B (NF-κB), and increased HIV-1
transcription. However, as this study only utilized an overexpression model in cell lines,
its relevance to in vivo HIV-1 infection is unclear, especially considering the lower level of
PR activity in naturally infected cells.

In a cell-free system using cytoplasmic extracts from Jurkat T cells, HIV-1 PR was
shown to cleave and activate pro-caspase-8, an initiator caspase of extrinsic apoptosis [18].
The cleavage of pro-caspase-8 in cell extracts was associated with the cleavage of BID, a
member of the BCL-2 family that is known to be cleaved by caspase-8 [42]. Pro-caspase-8
cleavage was also associated with mitochondrial cytochrome c release, consistent with
previous data showing that truncated BID (tBID) translocates into the mitochondria and
induces cytochrome c release into the cytosol [43]. Notably, the HIV-1 PR cleavage site
of pro-caspase-8 differs from the typical cleavage site, as a mutation of the normal pro-
caspase-8 cleavage site did not affect cleavage patterns by HIV-1 PR [18]. A follow-up
study showed that transfection of the novel fragment produced by HIV-1 PR cleavage of
pro-caspase-8 (termed casp8p41) into both HeLa cells and primary CD4+ T cells caused
apoptosis [44]. Further, casp8p41 expression was detected in HIV-1-infected Jurkat T cells,
but not mock-infected cells, and the proportion of cells expressing casp8p41 was positively
correlated with the proportion of cells expressing p24 and with cell death. In vivo, casp8p41
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was not detected in peripheral blood mononuclear cells from people without HIV but was
detected in CD4+ T cells from PLWH [44]. While the cleavage of pro-caspase-8 by HIV-1
PR represents a potential mechanism by which HIV-1 induces apoptosis in infected cells,
the importance of this mechanism in natural HIV-1 infection remains inconclusive.

Host cell protein cleavage by viral PR may represent a strategy for the virus to coun-
teract host immune mechanisms. For instance, HIV RNA transcripts contain numerous
post-translational modifications, including N6-methyladenosine (m6A). Reader proteins
recognize these post-translational modifications and fulfill their functional outcomes. A
recent study showed that YTHDF3, a reader protein for m6A, is incorporated into HIV
particles [45]. YTHDF3-deficient cells were more susceptible to HIV infection, suggesting an
antiviral function of YTHDF3. HIV-1 PR was found to cleave virion-incorporated YTHDF3,
representing a potential mechanism by which HIV may counter the antiviral activity of
YTHDF3. Interestingly, YTHDF3 has also been described to be targeted by enterovirus 2A
proteases [46]. Another example is the receptor interacting protein kinase (RIPK) family,
which play important roles in responses to a wide array of viral infections [47]. Several
viruses have evolved strategies to disrupt RIPK function and evade RIP-dependent cell
death [48–50]. In the context of HIV infection, one study demonstrated that infection of pri-
mary CD4+ T cells with replication-competent HIV-1 results in the cleavage of endogenous
RIPK1 and RIPK2 by the viral PR [48]. This cleavage may disrupt the function of RIPK1,
as a co-overexpression of RIPK1 and HIV-1 PR in HEK293T cells resulted in a diminished
ability of RIPK1 to activate NF-κB; however, the disruption of RIPK1 function during viral
infection was not tested [48]. The physiological role of RIPK1 and RIPK2 cleavage by HIV-1
PR remains unclear, as no RIPK family proteins have been linked to protection against
HIV-1 infection [48].

4. HIV-1 PR and the CARD8 Inflammasome

Of particular interest is the recent discovery that the caspase recruitment domain-
containing the protein 8 (CARD8) inflammasome can be cleaved and activated by HIV-1
PR [19]. Inflammasomes are multiprotein complexes that function as innate sensors of
pathogenic microorganisms and tissue damage [51]. They are assembled by pattern-
recognition receptors (PRRs), which become activated upon detection of pathogen-associated
molecular patterns (PAMPs) or cytosolic danger signals. Activated receptors undergo
oligomerization and recruit apoptosis-associated speck-like protein containing a CARD
(ASC), an adaptor protein which consists of a pyrin domain (PYD) and a caspase recruitment
domain (CARD). ASC helps bridge the sensor molecule to pro-caspase-1 (pro-CASP1), where
proximity-induced autoprocessing generates the catalytically active caspase-1 (CASP1). In-
terestingly, some CARD-containing PRRs can directly recruit pro-CASP1 without the need
for ASC [52–54]. Activation of CASP1 initiates pyroptosis, an inflammatory form of pro-
grammed cell death.

In the canonical pyroptotic cell death pathway, activated CASP1 processes the inactive
precursors of the inflammatory cytokines interleukin-1β (IL-1β) and IL-18 into their mature
forms [55]. CASP1 also cleaves the protein gasdermin D, which then forms 10–20 nm
diameter pores in the plasma membrane [56,57]. These pores facilitate secretion of IL-1β
and IL-18 and dissipate cellular ionic gradients, resulting in water influx, cell swelling,
and osmotic lysis [58]. DNA damage occurs during pyroptosis as CASP1 stimulates an
unidentified nuclease which causes DNA fragmentation [57]. Unlike in apoptosis, however,
the nucleus remains intact in cells undergoing pyroptosis [59].

In 2002, a study reported a new CARD family member called CARD8 which could
interact physically with CASP1, regulate CASP1 activation, and cause apoptosis when
overexpressed [60]. A later cancer study showed that dipeptidyl peptidase 8/9 (DPP8/9)
inhibitor-induced pro-CASP1-dependent pyroptosis is mediated by CARD8, implicating it
for the first time as an inflammasome sensor, though its natural ligands, function, and mech-
anism of activation were still unclear [61]. CARD8 consists of a function-to-find (FIIND)
domain followed by a CARD domain and is one of only two proteins in the human genome
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containing FIIND-CARD, the other being NACHT, LRR, and PYD domains-containing
protein 1 (NLRP1). The FIINDs of CARD8 and NLRP1 consist of ZU5 and UPA subdomains;
following translation, CARD8 and NLRP1 undergo intramolecular autoproteolysis after
their ZU5 domains, resulting in two non-covalently associated polypeptide chains [62]. This
autoprocessing is required for both NLRP1 and CARD8 inflammasome activation [19,63].
The human NLRP1 inflammasome can sense and be activated by enteroviral protease
and double-stranded RNA, but its interaction with HIV-1 remains unclear [64,65]. It was
recently shown that HIV-1 PR directly cleaves the N-terminus of CARD8 [19]. This cleav-
age causes the release of an unstable neo-N-terminus which is targeted for proteasomal
degradation. If the CARD8 molecule has undergone FIIND autoprocessing, the break in
the polypeptide chain causes the C-terminal UPA-CARD fragment to be liberated from the
proteosome. The bioactive UPA-CARD fragment directly recruits and activates pro-CASP1,
which leads to the secretion of inflammatory cytokines and ultimately pyroptotic cell death
(Figure 1).
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Figure 1. The shock and kill scheme using targeted CARD8 activation. Latency reversal agents
(LRAs) are used to reactivate viral gene transcription in latently infected resting memory CD4+ T
cells, leading to production of HIV Gag-Pol polyprotein and other viral proteins. The treatment
with non-nucleoside reverse transcriptase inhibitors (NNRTIs) leads to Gag-Pol dimerization and
premature PR activation (1). The activated PR cleaves the N-terminus of CARD8 (2), which causes the
neo-N-terminus to be targeted for proteasomal degradation (3). Due to the break in the polypeptide
chain between the ZU5 and UPA domains of CARD8 caused by autoproteolysis, the bioactive UPA-
CARD fragment is released from the proteasome (4). The UPA-CARD fragment recruits and activates
pro-caspase-1 (4), leading to downstream inflammasome assembly (5) and pyroptosis (6).
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HIV-1 PR cleavage of CARD8 is physiologically relevant because CARD8 is expressed
in cells targeted by HIV-1, including primary CD4+ T cells and macrophages [19]. However,
as PR has low catalytic activity prior to virion release [31], HIV-1-infected cells can evade
CARD8 sensing and cell death; thus, premature activation of PR is needed to induce CARD8-
mediated CASP1 activation and pyroptosis of infected cells. Premature PR activation
can be achieved either through PR overexpression or the use of certain non-nucleoside
reverse transcriptase inhibitors (NNRTIs) which have been shown to bind to HIV-1 Pol and
enhance Gag-Pol dimerization [66]. Indeed, the treatment of HIV-1-infected macrophages
and primary CD4+ T cells with the NNRTIs efavirenz (EFV) or rilpivirine (RPV) results
in profound and rapid pyroptosis of infected cells, which is abrogated in CARD8-KO
cells [19]. Moreover, treatment with EFV and RPV was found to reduce the size of viral
reservoirs in a quantitative viral outgrowth assay using blood CD4+ T cells from PLWH
under ART [19]. Importantly, CARD8 was shown to sense all subtypes of HIV-1 despite
significant viral diversity, demonstrating that CARD8 senses PR function rather than any
specific sequence [19]. This offers a distinct advantage over other immune-based strategies
of targeting HIV-1, such as antibody or T-cell treatment, which rely on recognition of
highly variable viral epitopes [67–69]. Together, these data suggest targeted activation
of the CARD8 inflammasome may be a promising strategy to eliminate HIV-1-infected
cells. Combined with the use of latency reversal agents (LRAs) to reactivate HIV-1 viral
gene expression in latently infected cells, HIV-1 PR activation and subsequent sensing and
downstream cell death by CARD8 may help clear residual viral reservoirs in PLWH, the
major obstacle to an HIV cure (Figure 1).

It should be noted that excessive pyroptosis has the potential to induce pathological
inflammation that may fuel HIV disease progression or contribute to the development
of other chronic diseases [55,70]. Pyroptosis of residual infected CD4+ T cells in PLWH
is unlikely to result in substantial inflammation because CD4+ T cells generally do not
produce IL-1β or IL-18 [71]. Moreover, the frequency of latently infected CD4+ T cells is
very low, with approximately 1 in 105 to 108 latently infected cells in most PLWH [72].
However, recent evidence points to the potential for long-lived tissue macrophages to
be an HIV reservoir [73]. Macrophages can reside in virtually every tissue and release
IL-1β and IL-18 upon CASP1 activation. Therefore, inducing pyroptosis of latently infected
macrophages could result in local inflammation depending on the size of macrophage
reservoirs in PLWH. Further studies on macrophage reservoirs are needed to predict the
safety and potential side effects of inducing pyroptosis through CARD8 activation.

5. Conclusions and Future Perspectives

HIV-1 PR is a valuable target for antiviral strategies because of its indispensable
function in the HIV life cycle. The development of the first HIV PIs led to a revolution in
HIV treatment, with ART allowing HIV to be a manageable health condition. However,
ART must be taken daily for life due to the persistence of the latent reservoir which can
quickly rekindle infection if ART is stopped. Recent evidence showing that HIV-1 PR can
be sensed by the CARD8 inflammasome and trigger cell death opens new possibilities
for targeting PR to eliminate the latent reservoir and move toward an HIV cure. For
example, the awakening of latently infected cells using LRAs followed by treatment with
an NNRTI to cause premature PR activation should lead to CARD8-mediated clearance of
viral reservoirs.

Some obstacles toward implementation of this strategy include the high concentrations
of NNRTIs required for CARD8 inflammasome activation in HIV-1-infected cells and the
fact that NNRTIs bind human serum proteins, reducing their bioavailability in vivo [74]. A
recent preprint suggests that CARD8 sensitization through inhibition of DPP9, a negative
regulator of CARD8, can overcome these obstacles and enhance NNRTI-triggered killing of
HIV-1-infected cells [75]. Furthermore, drug screening for compounds that more efficiently
trigger Gag-Pol dimerization and premature PR activation is a promising strategy to
identify novel antivirals that can efficiently induce CARD8 inflammasome-dependent
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killing of HIV-1-infected cells with few side effects. Finally, it is possible that the strategy
to induce CARD8 activation and cell killing through premature PR activation could be
applied to other viruses. As HIV-1 PR shares high sequence homology with PR from
other retroviruses such as HIV-2 and Human T-lymphotropic virus (HTLV), future studies
should investigate whether these viral proteases have the ability to cleave and activate the
CARD8 inflammasome.

Funding: This work was supported by NIH grants R01AI162203.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors thank Qiankun Wang for comments and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Word Health Organization. HIV/AIDS. Available online: https://www.who.int/news-room/fact-sheets/detail/hiv-aids

(accessed on 24 March 2022).
2. Barre-Sinoussi, F.; Chermann, J.C.; Rey, F.; Nugeyre, M.T.; Chamaret, S.; Gruest, J.; Dauguet, C.; Axler-Blin, C.; Vezinet-Brun, F.;

Rouzioux, C.; et al. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome
(AIDS). Science 1983, 220, 868–871. [CrossRef] [PubMed]

3. Gallo, R.C.; Salahuddin, S.Z.; Popovic, M.; Shearer, G.M.; Kaplan, M.; Haynes, B.F.; Palker, T.J.; Redfield, R.; Oleske, J.; Safai, B.;
et al. Frequent detection and isolation of cytopathic retroviruses (HTLV-III) from patients with AIDS and at risk for AIDS. Science
1984, 224, 500–503. [CrossRef] [PubMed]

4. Levy, J.A.; Hoffman, A.D.; Kramer, S.M.; Landis, J.A.; Shimabukuro, J.M.; Oshiro, L.S. Isolation of lymphocytopathic retroviruses
from San Francisco patients with AIDS. Science 1984, 225, 840–842. [CrossRef] [PubMed]

5. Engelman, A.; Cherepanov, P. The structural biology of HIV-1: Mechanistic and therapeutic insights. Nat. Rev. Microbiol. 2012, 10,
279–290. [CrossRef] [PubMed]

6. Ho, D.D.; Neumann, A.U.; Perelson, A.S.; Chen, W.; Leonard, J.M.; Markowitz, M. Rapid turnover of plasma virions and CD4
lymphocytes in HIV-1 infection. Nature 1995, 373, 123–126. [CrossRef] [PubMed]

7. Palella, F.J., Jr.; Delaney, K.M.; Moorman, A.C.; Loveless, M.O.; Fuhrer, J.; Satten, G.A.; Aschman, D.J.; Holmberg, S.D. Declining
morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV Outpatient Study
Investigators. N. Engl. J. Med. 1998, 338, 853–860. [CrossRef] [PubMed]

8. Chun, T.W.; Fauci, A.S. Latent reservoirs of HIV: Obstacles to the eradication of virus. Proc. Natl. Acad. Sci. USA 1999, 96,
10958–10961. [CrossRef]

9. Chun, T.W.; Stuyver, L.; Mizell, S.B.; Ehler, L.A.; Mican, J.A.; Baseler, M.; Lloyd, A.L.; Nowak, M.A.; Fauci, A.S. Presence of an
inducible HIV-1 latent reservoir during highly active antiretroviral therapy. Proc. Natl. Acad. Sci. USA 1997, 94, 13193–13197.
[CrossRef]

10. Wong, J.K.; Hezareh, M.; Gunthard, H.F.; Havlir, D.V.; Ignacio, C.C.; Spina, C.A.; Richman, D.D. Recovery of replication-competent
HIV despite prolonged suppression of plasma viremia. Science 1997, 278, 1291–1295. [CrossRef]

11. Finzi, D.; Hermankova, M.; Pierson, T.; Carruth, L.M.; Buck, C.; Chaisson, R.E.; Quinn, T.C.; Chadwick, K.; Margolick, J.;
Brookmeyer, R.; et al. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science 1997, 278,
1295–1300. [CrossRef]

12. Konvalinka, J.; Krausslich, H.G.; Muller, B. Retroviral proteases and their roles in virion maturation. Virology 2015, 479–480,
403–417. [CrossRef] [PubMed]

13. Kohl, N.E.; Emini, E.A.; Schleif, W.A.; Davis, L.J.; Heimbach, J.C.; Dixon, R.A.; Scolnick, E.M.; Sigal, I.S. Active human
immunodeficiency virus protease is required for viral infectivity. Proc. Natl. Acad. Sci. USA 1988, 85, 4686–4690. [CrossRef]
[PubMed]

14. Word Health Organization. FDA-Approved HIV Medicines. Available online: https://hivinfo.nih.gov/understanding-hiv/fact-
sheets/fda-approved-hiv-medicines (accessed on 26 March 2022).

15. Impens, F.; Timmerman, E.; Staes, A.; Moens, K.; Arien, K.K.; Verhasselt, B.; Vandekerckhove, J.; Gevaert, K. A catalogue of
putative HIV-1 protease host cell substrates. Biol. Chem. 2012, 393, 915–931. [CrossRef] [PubMed]

16. Ventoso, I.; Blanco, R.; Perales, C.; Carrasco, L. HIV-1 protease cleaves eukaryotic initiation factor 4G and inhibits cap-dependent
translation. Proc. Natl. Acad. Sci. USA 2001, 98, 12966–12971. [CrossRef]

17. Strack, P.R.; Frey, M.W.; Rizzo, C.J.; Cordova, B.; George, H.J.; Meade, R.; Ho, S.P.; Corman, J.; Tritch, R.; Korant, B.D. Apoptosis
mediated by HIV protease is preceded by cleavage of Bcl-2. Proc. Natl. Acad. Sci. USA 1996, 93, 9571–9576. [CrossRef]

https://www.who.int/news-room/fact-sheets/detail/hiv-aids
http://doi.org/10.1126/science.6189183
http://www.ncbi.nlm.nih.gov/pubmed/6189183
http://doi.org/10.1126/science.6200936
http://www.ncbi.nlm.nih.gov/pubmed/6200936
http://doi.org/10.1126/science.6206563
http://www.ncbi.nlm.nih.gov/pubmed/6206563
http://doi.org/10.1038/nrmicro2747
http://www.ncbi.nlm.nih.gov/pubmed/22421880
http://doi.org/10.1038/373123a0
http://www.ncbi.nlm.nih.gov/pubmed/7816094
http://doi.org/10.1056/NEJM199803263381301
http://www.ncbi.nlm.nih.gov/pubmed/9516219
http://doi.org/10.1073/pnas.96.20.10958
http://doi.org/10.1073/pnas.94.24.13193
http://doi.org/10.1126/science.278.5341.1291
http://doi.org/10.1126/science.278.5341.1295
http://doi.org/10.1016/j.virol.2015.03.021
http://www.ncbi.nlm.nih.gov/pubmed/25816761
http://doi.org/10.1073/pnas.85.13.4686
http://www.ncbi.nlm.nih.gov/pubmed/3290901
https://hivinfo.nih.gov/understanding-hiv/fact-sheets/fda-approved-hiv-medicines
https://hivinfo.nih.gov/understanding-hiv/fact-sheets/fda-approved-hiv-medicines
http://doi.org/10.1515/hsz-2012-0168
http://www.ncbi.nlm.nih.gov/pubmed/22944692
http://doi.org/10.1073/pnas.231343498
http://doi.org/10.1073/pnas.93.18.9571


Viruses 2022, 14, 1179 8 of 10

18. Nie, Z.; Phenix, B.N.; Lum, J.J.; Alam, A.; Lynch, D.H.; Beckett, B.; Krammer, P.H.; Sekaly, R.P.; Badley, A.D. HIV-1 protease
processes procaspase 8 to cause mitochondrial release of cytochrome c, caspase cleavage and nuclear fragmentation. Cell Death
Differ. 2002, 9, 1172–1184. [CrossRef]

19. Wang, Q.; Gao, H.; Clark, K.M.; Mugisha, C.S.; Davis, K.; Tang, J.P.; Harlan, G.H.; DeSelm, C.J.; Presti, R.M.; Kutluay, S.B.; et al.
CARD8 is an inflammasome sensor for HIV-1 protease activity. Science 2021, 371, eabe1707. [CrossRef]

20. Lv, Z.; Chu, Y.; Wang, Y. HIV protease inhibitors: A review of molecular selectivity and toxicity. HIV AIDS 2015, 7, 95–104.
[CrossRef]

21. Pearl, L.H.; Taylor, W.R. A structural model for the retroviral proteases. Nature 1987, 329, 351–354. [CrossRef]
22. Ghosh, A.K.; Osswald, H.L.; Prato, G. Recent Progress in the Development of HIV-1 Protease Inhibitors for the Treatment of

HIV/AIDS. J. Med. Chem. 2016, 59, 5172–5208. [CrossRef]
23. Nicholson, L.K.; Yamazaki, T.; Torchia, D.A.; Grzesiek, S.; Bax, A.; Stahl, S.J.; Kaufman, J.D.; Wingfield, P.T.; Lam, P.Y.; Jadhav, P.K.;

et al. Flexibility and function in HIV-1 protease. Nat. Struct. Biol. 1995, 2, 274–280. [CrossRef] [PubMed]
24. Prabu-Jeyabalan, M.; Nalivaika, E.; Schiffer, C.A. Substrate shape determines specificity of recognition for HIV-1 protease:

Analysis of crystal structures of six substrate complexes. Structure 2002, 10, 369–381. [CrossRef]
25. Wensing, A.M.; van Maarseveen, N.M.; Nijhuis, M. Fifteen years of HIV Protease Inhibitors: Raising the barrier to resistance.

Antiviral Res. 2010, 85, 59–74. [CrossRef] [PubMed]
26. Wiegers, K.; Rutter, G.; Kottler, H.; Tessmer, U.; Hohenberg, H.; Krausslich, H.G. Sequential steps in human immunodeficiency

virus particle maturation revealed by alterations of individual Gag polyprotein cleavage sites. J. Virol. 1998, 72, 2846–2854.
[CrossRef]

27. Krausslich, H.G. Human immunodeficiency virus proteinase dimer as component of the viral polyprotein prevents particle
assembly and viral infectivity. Proc. Natl. Acad. Sci. USA 1991, 88, 3213–3217. [CrossRef]

28. Wyma, D.J.; Jiang, J.; Shi, J.; Zhou, J.; Lineberger, J.E.; Miller, M.D.; Aiken, C. Coupling of human immunodeficiency virus type 1
fusion to virion maturation: A novel role of the gp41 cytoplasmic tail. J. Virol. 2004, 78, 3429–3435. [CrossRef]

29. Murakami, T.; Ablan, S.; Freed, E.O.; Tanaka, Y. Regulation of human immunodeficiency virus type 1 Env-mediated membrane
fusion by viral protease activity. J. Virol. 2004, 78, 1026–1031. [CrossRef]

30. Louis, J.M.; Clore, G.M.; Gronenborn, A.M. Autoprocessing of HIV-1 protease is tightly coupled to protein folding. Nat. Struct.
Biol. 1999, 6, 868–875. [CrossRef]

31. Tabler, C.O.; Wegman, S.J.; Chen, J.; Shroff, H.; Alhusaini, N.; Tilton, J.C. The HIV-1 Viral Protease Is Activated during Assembly
and Budding Prior to Particle Release. J. Virol. 2022, 96, e0219821. [CrossRef]

32. Wlodawer, A.; Erickson, J.W. Structure-based inhibitors of HIV-1 protease. Annu. Rev. Biochem. 1993, 62, 543–585. [CrossRef]
33. Hammer, S.M.; Squires, K.E.; Hughes, M.D.; Grimes, J.M.; Demeter, L.M.; Currier, J.S.; Eron, J.J., Jr.; Feinberg, J.E.; Balfour, H.H.,

Jr.; Deyton, L.R.; et al. A controlled trial of two nucleoside analogues plus indinavir in persons with human immunodeficiency
virus infection and CD4 cell counts of 200 per cubic millimeter or less. AIDS Clinical Trials Group 320 Study Team. N. Engl. J.
Med. 1997, 337, 725–733. [CrossRef] [PubMed]

34. Gulick, R.M.; Mellors, J.W.; Havlir, D.; Eron, J.J.; Gonzalez, C.; McMahon, D.; Richman, D.D.; Valentine, F.T.; Jonas, L.; Meibohm,
A.; et al. Treatment with indinavir, zidovudine, and lamivudine in adults with human immunodeficiency virus infection and
prior antiretroviral therapy. N. Engl. J. Med. 1997, 337, 734–739. [CrossRef] [PubMed]

35. Weber, I.T.; Wang, Y.F.; Harrison, R.W. HIV Protease: Historical Perspective and Current Research. Viruses 2021, 13, 839. [CrossRef]
[PubMed]

36. Kempf, D.J.; Marsh, K.C.; Kumar, G.; Rodrigues, A.D.; Denissen, J.F.; McDonald, E.; Kukulka, M.J.; Hsu, A.; Granneman,
G.R.; Baroldi, P.A.; et al. Pharmacokinetic enhancement of inhibitors of the human immunodeficiency virus protease by
coadministration with ritonavir. Antimicrob. Agents Chemother. 1997, 41, 654–660. [CrossRef] [PubMed]

37. Shoeman, R.L.; Huttermann, C.; Hartig, R.; Traub, P. Amino-terminal polypeptides of vimentin are responsible for the changes in
nuclear architecture associated with human immunodeficiency virus type 1 protease activity in tissue culture cells. Mol. Biol. Cell
2001, 12, 143–154. [CrossRef]

38. Shoeman, R.L.; Honer, B.; Stoller, T.J.; Kesselmeier, C.; Miedel, M.C.; Traub, P.; Graves, M.C. Human immunodeficiency virus type
1 protease cleaves the intermediate filament proteins vimentin, desmin, and glial fibrillary acidic protein. Proc. Natl. Acad. Sci.
USA 1990, 87, 6336–6340. [CrossRef]

39. Jager, S.; Cimermancic, P.; Gulbahce, N.; Johnson, J.R.; McGovern, K.E.; Clarke, S.C.; Shales, M.; Mercenne, G.; Pache, L.; Li, K.;
et al. Global landscape of HIV-human protein complexes. Nature 2011, 481, 365–370. [CrossRef]

40. Gomes-Duarte, A.; Lacerda, R.; Menezes, J.; Romao, L. eIF3: A factor for human health and disease. RNA Biol. 2018, 15, 26–34.
[CrossRef]

41. Vaux, D.L.; Cory, S.; Adams, J.M. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B
cells. Nature 1988, 335, 440–442. [CrossRef]

42. Li, H.; Zhu, H.; Xu, C.J.; Yuan, J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of
apoptosis. Cell 1998, 94, 491–501. [CrossRef]

43. Wei, M.C.; Lindsten, T.; Mootha, V.K.; Weiler, S.; Gross, A.; Ashiya, M.; Thompson, C.B.; Korsmeyer, S.J. tBID, a membrane-targeted
death ligand, oligomerizes BAK to release cytochrome c. Genes Dev. 2000, 14, 2060–2071. [CrossRef] [PubMed]

http://doi.org/10.1038/sj.cdd.4401094
http://doi.org/10.1126/science.abe1707
http://doi.org/10.2147/HIV.S79956
http://doi.org/10.1038/329351a0
http://doi.org/10.1021/acs.jmedchem.5b01697
http://doi.org/10.1038/nsb0495-274
http://www.ncbi.nlm.nih.gov/pubmed/7796263
http://doi.org/10.1016/S0969-2126(02)00720-7
http://doi.org/10.1016/j.antiviral.2009.10.003
http://www.ncbi.nlm.nih.gov/pubmed/19853627
http://doi.org/10.1128/JVI.72.4.2846-2854.1998
http://doi.org/10.1073/pnas.88.8.3213
http://doi.org/10.1128/JVI.78.7.3429-3435.2004
http://doi.org/10.1128/JVI.78.2.1026-1031.2004
http://doi.org/10.1038/12327
http://doi.org/10.1128/jvi.02198-21
http://doi.org/10.1146/annurev.bi.62.070193.002551
http://doi.org/10.1056/NEJM199709113371101
http://www.ncbi.nlm.nih.gov/pubmed/9287227
http://doi.org/10.1056/NEJM199709113371102
http://www.ncbi.nlm.nih.gov/pubmed/9287228
http://doi.org/10.3390/v13050839
http://www.ncbi.nlm.nih.gov/pubmed/34066370
http://doi.org/10.1128/AAC.41.3.654
http://www.ncbi.nlm.nih.gov/pubmed/9056009
http://doi.org/10.1091/mbc.12.1.143
http://doi.org/10.1073/pnas.87.16.6336
http://doi.org/10.1038/nature10719
http://doi.org/10.1080/15476286.2017.1391437
http://doi.org/10.1038/335440a0
http://doi.org/10.1016/S0092-8674(00)81590-1
http://doi.org/10.1101/gad.14.16.2060
http://www.ncbi.nlm.nih.gov/pubmed/10950869


Viruses 2022, 14, 1179 9 of 10

44. Nie, Z.; Bren, G.D.; Vlahakis, S.R.; Schimnich, A.A.; Brenchley, J.M.; Trushin, S.A.; Warren, S.; Schnepple, D.J.; Kovacs, C.M.;
Loutfy, M.R.; et al. Human immunodeficiency virus type 1 protease cleaves procaspase 8 in vivo. J. Virol. 2007, 81, 6947–6956.
[CrossRef] [PubMed]

45. Jurczyszak, D.; Zhang, W.; Terry, S.N.; Kehrer, T.; Bermudez Gonzalez, M.C.; McGregor, E.; Mulder, L.C.F.; Eckwahl, M.J.; Pan, T.;
Simon, V. HIV protease cleaves the antiviral m6A reader protein YTHDF3 in the viral particle. PLoS Pathog. 2020, 16, e1008305.
[CrossRef] [PubMed]

46. Kastan, J.P.; Tremblay, M.W.; Brown, M.C.; Trimarco, J.D.; Dobrikova, E.Y.; Dobrikov, M.I.; Gromeier, M. Enterovirus 2A(pro)
Cleavage of the YTHDF m(6)A Readers Implicates YTHDF3 as a Mediator of Type I Interferon-Driven JAK/STAT Signaling. mBio
2021, 12, e00116-21. [CrossRef] [PubMed]

47. Eng, V.V.; Wemyss, M.A.; Pearson, J.S. The diverse roles of RIP kinases in host-pathogen interactions. Semin. Cell Dev. Biol. 2021,
109, 125–143. [CrossRef]

48. Wagner, R.N.; Reed, J.C.; Chanda, S.K. HIV-1 protease cleaves the serine-threonine kinases RIPK1 and RIPK2. Retrovirology 2015,
12, 74. [CrossRef]

49. Kaiser, W.J.; Upton, J.W.; Mocarski, E.S. Viral modulation of programmed necrosis. Curr. Opin. Virol. 2013, 3, 296–306. [CrossRef]
50. Upton, J.W.; Kaiser, W.J.; Mocarski, E.S. DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis

that is targeted by murine cytomegalovirus vIRA. Cell Host Microbe 2012, 11, 290–297. [CrossRef]
51. Broz, P.; Dixit, V.M. Inflammasomes: Mechanism of assembly, regulation and signalling. Nat. Rev. Immunol. 2016, 16, 407–420.

[CrossRef]
52. Taabazuing, C.Y.; Griswold, A.R.; Bachovchin, D.A. The NLRP1 and CARD8 inflammasomes. Immunol. Rev. 2020, 297, 13–25.

[CrossRef]
53. Broz, P.; von Moltke, J.; Jones, J.W.; Vance, R.E.; Monack, D.M. Differential requirement for Caspase-1 autoproteolysis in

pathogen-induced cell death and cytokine processing. Cell Host Microbe 2010, 8, 471–483. [CrossRef] [PubMed]
54. Poyet, J.L.; Srinivasula, S.M.; Tnani, M.; Razmara, M.; Fernandes-Alnemri, T.; Alnemri, E.S. Identification of Ipaf, a human

caspase-1-activating protein related to Apaf-1. J. Biol. Chem. 2001, 276, 28309–28313. [CrossRef] [PubMed]
55. Bergsbaken, T.; Fink, S.L.; Cookson, B.T. Pyroptosis: Host cell death and inflammation. Nat. Rev. Microbiol. 2009, 7, 99–109.

[CrossRef] [PubMed]
56. Broz, P.; Pelegrin, P.; Shao, F. The gasdermins, a protein family executing cell death and inflammation. Nat. Rev. Immunol. 2020,

20, 143–157. [CrossRef]
57. Yu, P.; Zhang, X.; Liu, N.; Tang, L.; Peng, C.; Chen, X. Pyroptosis: Mechanisms and diseases. Signal Transduct. Target. Ther. 2021,

6, 128. [CrossRef]
58. Fink, S.L.; Cookson, B.T. Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host

macrophages. Cell Microbiol. 2006, 8, 1812–1825. [CrossRef]
59. Jorgensen, I.; Miao, E.A. Pyroptotic cell death defends against intracellular pathogens. Immunol. Rev. 2015, 265, 130–142.

[CrossRef]
60. Razmara, M.; Srinivasula, S.M.; Wang, L.; Poyet, J.L.; Geddes, B.J.; DiStefano, P.S.; Bertin, J.; Alnemri, E.S. CARD-8 protein, a new

CARD family member that regulates caspase-1 activation and apoptosis. J. Biol. Chem. 2002, 277, 13952–13958. [CrossRef]
61. Johnson, D.C.; Taabazuing, C.Y.; Okondo, M.C.; Chui, A.J.; Rao, S.D.; Brown, F.C.; Reed, C.; Peguero, E.; de Stanchina, E.; Kentsis,

A.; et al. DPP8/DPP9 inhibitor-induced pyroptosis for treatment of acute myeloid leukemia. Nat. Med. 2018, 24, 1151–1156.
[CrossRef]

62. D’Osualdo, A.; Weichenberger, C.X.; Wagner, R.N.; Godzik, A.; Wooley, J.; Reed, J.C. CARD8 and NLRP1 undergo autoproteolytic
processing through a ZU5-like domain. PLoS ONE 2011, 6, e27396. [CrossRef]

63. Finger, J.N.; Lich, J.D.; Dare, L.C.; Cook, M.N.; Brown, K.K.; Duraiswami, C.; Bertin, J.; Gough, P.J. Autolytic proteolysis within the
function to find domain (FIIND) is required for NLRP1 inflammasome activity. J. Biol. Chem. 2012, 287, 25030–25037. [CrossRef]
[PubMed]

64. Robinson, K.S.; Teo, D.E.T.; Tan, K.S.; Toh, G.A.; Ong, H.H.; Lim, C.K.; Lay, K.; Au, B.V.; Lew, T.S.; Chu, J.J.H.; et al. Enteroviral 3C
protease activates the human NLRP1 inflammasome in airway epithelia. Science 2020, 370, eaay2002. [CrossRef] [PubMed]

65. Bauernfried, S.; Scherr, M.J.; Pichlmair, A.; Duderstadt, K.E.; Hornung, V. Human NLRP1 is a sensor for double-stranded RNA.
Science 2021, 371, eabd0811. [CrossRef] [PubMed]

66. Figueiredo, A.; Moore, K.L.; Mak, J.; Sluis-Cremer, N.; de Bethune, M.P.; Tachedjian, G. Potent nonnucleoside reverse transcriptase
inhibitors target HIV-1 Gag-Pol. PLoS Pathog. 2006, 2, e119. [CrossRef]

67. Phillips, R.E.; Rowland-Jones, S.; Nixon, D.F.; Gotch, F.M.; Edwards, J.P.; Ogunlesi, A.O.; Elvin, J.G.; Rothbard, J.A.; Bangham,
C.R.; Rizza, C.R.; et al. Human immunodeficiency virus genetic variation that can escape cytotoxic T cell recognition. Nature 1991,
354, 453–459. [CrossRef]

68. Caskey, M.; Klein, F.; Lorenzi, J.C.; Seaman, M.S.; West, A.P., Jr.; Buckley, N.; Kremer, G.; Nogueira, L.; Braunschweig, M.; Scheid,
J.F.; et al. Viraemia suppressed in HIV-1-infected humans by broadly neutralizing antibody 3BNC117. Nature 2015, 522, 487–491.
[CrossRef]

69. Kwong, P.D.; Doyle, M.L.; Casper, D.J.; Cicala, C.; Leavitt, S.A.; Majeed, S.; Steenbeke, T.D.; Venturi, M.; Chaiken, I.; Fung, M.;
et al. HIV-1 evades antibody-mediated neutralization through conformational masking of receptor-binding sites. Nature 2002,
420, 678–682. [CrossRef]

http://doi.org/10.1128/JVI.02798-06
http://www.ncbi.nlm.nih.gov/pubmed/17442709
http://doi.org/10.1371/journal.ppat.1008305
http://www.ncbi.nlm.nih.gov/pubmed/32053707
http://doi.org/10.1128/mBio.00116-21
http://www.ncbi.nlm.nih.gov/pubmed/33849973
http://doi.org/10.1016/j.semcdb.2020.08.005
http://doi.org/10.1186/s12977-015-0200-6
http://doi.org/10.1016/j.coviro.2013.05.019
http://doi.org/10.1016/j.chom.2012.01.016
http://doi.org/10.1038/nri.2016.58
http://doi.org/10.1111/imr.12884
http://doi.org/10.1016/j.chom.2010.11.007
http://www.ncbi.nlm.nih.gov/pubmed/21147462
http://doi.org/10.1074/jbc.C100250200
http://www.ncbi.nlm.nih.gov/pubmed/11390368
http://doi.org/10.1038/nrmicro2070
http://www.ncbi.nlm.nih.gov/pubmed/19148178
http://doi.org/10.1038/s41577-019-0228-2
http://doi.org/10.1038/s41392-021-00507-5
http://doi.org/10.1111/j.1462-5822.2006.00751.x
http://doi.org/10.1111/imr.12287
http://doi.org/10.1074/jbc.M107811200
http://doi.org/10.1038/s41591-018-0082-y
http://doi.org/10.1371/journal.pone.0027396
http://doi.org/10.1074/jbc.M112.378323
http://www.ncbi.nlm.nih.gov/pubmed/22665479
http://doi.org/10.1126/science.aay2002
http://www.ncbi.nlm.nih.gov/pubmed/33093214
http://doi.org/10.1126/science.abd0811
http://www.ncbi.nlm.nih.gov/pubmed/33243852
http://doi.org/10.1371/journal.ppat.0020119
http://doi.org/10.1038/354453a0
http://doi.org/10.1038/nature14411
http://doi.org/10.1038/nature01188


Viruses 2022, 14, 1179 10 of 10

70. Dinarello, C.A. A clinical perspective of IL-1beta as the gatekeeper of inflammation. Eur. J. Immunol. 2011, 41, 1203–1217.
[CrossRef]

71. Johnson, D.C.; Okondo, M.C.; Orth, E.L.; Rao, S.D.; Huang, H.C.; Ball, D.P.; Bachovchin, D.A. DPP8/9 inhibitors activate the
CARD8 inflammasome in resting lymphocytes. Cell Death Dis. 2020, 11, 628. [CrossRef]

72. Massanella, M.; Richman, D.D. Measuring the latent reservoir in vivo. J. Clin. Investig. 2016, 126, 464–472. [CrossRef]
73. Wong, M.E.; Jaworowski, A.; Hearps, A.C. The HIV Reservoir in Monocytes and Macrophages. Front. Immunol. 2019, 10, 1435.

[CrossRef] [PubMed]
74. Boffito, M.; Back, D.J.; Blaschke, T.F.; Rowland, M.; Bertz, R.J.; Gerber, J.G.; Miller, V. Protein binding in antiretroviral therapies.

AIDS Res. Hum. Retrovir. 2003, 19, 825–835. [CrossRef] [PubMed]
75. Clark, K.; Wang, Q.; Shan, L. CARD8 inflammasome sensitization through DPP9 inhibition enhances NNRTI-triggered killing of

HIV-1-infected cells. bioRxiv 2021, Preprint. [CrossRef]

http://doi.org/10.1002/eji.201141550
http://doi.org/10.1038/s41419-020-02865-4
http://doi.org/10.1172/JCI80567
http://doi.org/10.3389/fimmu.2019.01435
http://www.ncbi.nlm.nih.gov/pubmed/31297114
http://doi.org/10.1089/088922203769232629
http://www.ncbi.nlm.nih.gov/pubmed/14585213
http://doi.org/10.1101/2021.09.01.458624

	Introduction 
	HIV Protease Structure, Function, and Inhibitors 
	Host Cell Substrates of HIV-1 PR 
	HIV-1 PR and the CARD8 Inflammasome 
	Conclusions and Future Perspectives 
	References

