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Lactate and lactylation in cancer

Jie Chen'?, Ziyue Huang'?, Ya Chen?, Hao Tian', Peiwei Chai(®'? Yongning Shen', Yiran Yao'?, Shigiong Xu'?*,

1,24 1,204

Shengfang Ge and Renbing Jia

1,2

Accumulated evidence has implicated the diverse and substantial influence of lactate on cellular differentiation and fate regulation
in physiological and pathological settings, particularly in intricate conditions such as cancer. Specifically, lactate has been
demonstrated to be pivotal in molding the tumor microenvironment (TME) through its effects on different cell populations. Within
tumor cells, lactate impacts cell signaling pathways, augments the lactate shuttle process, boosts resistance to oxidative stress, and
contributes to lactylation. In various cellular populations, the interplay between lactate and immune cells governs processes such as
cell differentiation, immune response, immune surveillance, and treatment effectiveness. Furthermore, communication between
lactate and stromal/endothelial cells supports basal membrane (BM) remodeling, epithelial-mesenchymal transitions (EMT),
metabolic reprogramming, angiogenesis, and drug resistance. Focusing on lactate production and transport, specifically through
lactate dehydrogenase (LDH) and monocarboxylate transporters (MCT), has shown promise in the treatment of cancer. Inhibitors
targeting LDH and MCT act as both tumor suppressors and enhancers of immunotherapy, leading to a synergistic therapeutic effect
when combined with immunotherapy. The review underscores the importance of lactate in tumor progression and provides
valuable perspectives on potential therapeutic approaches that target the vulnerability of lactate metabolism, highlighting the Heel

of Achilles for cancer treatment.
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INTRODUCTION
Lactate secretion is widely recognized as a classic metabolic
hallmark of cancer, often referred to as the Warburg effect. This
phenomenon describes the preference of cancer cells to favor
glycolysis for energy production, even in the presence of oxygen,
leading to increased lactate production.'™ Recent studies have
not only confirmed this understanding but have also delved
deeper into the role of lactate in cancer initiation and progression,
highlighting its multifaceted contributions beyond merely being a
byproduct of cellular metabolism.5'°

The traditional view of lactate as a waste product has been
challenged by groundbreaking research employing advanced
imaging techniques such as '®F-fluorodeoxyglucose-positron
emission tomography (FDG-PET). A pivotal study by DeBerardi-
nis et al. demonstrated that lactate serves as a vital nutrient for
tumor regions, which fundamentally alters the perception of its
role in cancer biology."'? In experiments involving non-small
cell lung cancer (NSCLC) xenografts in mice, researchers injected
both '*C-glucose and '*C-lactate. They discovered that meta-
bolites derived from '3C-lactate in the tricarboxylic acid (TCA)
cycle, such as citrate, glutamate, and malate, were found to be
twice as abundant compared to those derived from glucose.'®
This observation underscores the notion that lactate can serve
as a more central and direct substrate in the TCA cycle, a role
that has also been corroborated in healthy tissues as well as
genetically engineered lung and pancreatic cancer models.'*"?
Using isotope tracing techniques, scientists have gained insights
into the transformation of metabolites within tumors, revealing
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that lactate is a direct carbon source for the TCA cycle. This
innovative approach has allowed researchers to visualize how
lactate contributes to the metabolic landscape of tumors,
providing a clearer understanding of its role in cancer
metabolism.

Abnormal lactate-related metabolisms instigate tumor progres-
sion. Lactate metabolism and aberrant glucose and fatty acid
metabolism induced by lactate map the metabolic evolution in
tumor ecosystem, which coordinates tumor progression.

In the context of tumor cells, the lactate shuttle—facilitating the
exchange of lactate between anoxic and aerobic tumor regions—
plays a crucial role in tumor surveillance and adaptation to
changing metabolic conditions.'® Furthermore, lactate impacts
both intracellular and extracellular signaling pathways within
tumor cells, highlighting its influence on cancer cell behavior and
response to therapy.'’

What's more, a significant milestone in lactate research is the
discovery of lactylation, a post-translational modification that
underscores the intersection of metabolism and epigenetics.'®2°
Lactylation is not limited to histone proteins; it extends to non-
histone proteins, thereby influencing a variety of cellular
processes. This modification enhances the interaction between
metabolic states and epigenetic regulation, accelerating tumor
onset, proliferation, metastasis, and the development of drug
resistance. Lactate-induced lactylation operates through multiple
molecular mechanisms and signaling pathways, often intersecting
with other epigenetic modifications to promote a malignant
phenotype.2°~#
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Fig. 1 Lactate/Lactylation-targeted therapy stands for the Heel of Achilles for cancer treatment. Lactate/lactylation-targeted therapy mitigates
the impact of lactate/lactylation on onco-metabolic reprogramming and tumor microenvironment (TME) remodeling, underscoring the Heel
of Achilles for cancer treatment. Generated using Adobe lllustrator (Version 28.2). Abbreviations: BM basal membrane, CAFs cancer-associated
fibroblasts; EMT epithelial-mesenchymal transitions; LDHA lactate dehydrogenase A

There is such a fountain of researches related to lactate, which is
in vital need of further generalization and summarization.?? 2% This
review straightens out the circuit and physical role of lactate, sorts
out the molecular mechanisms of lactate in tumor progression,
and describes lactate-targeted strategies of tumor treatment,
which strengthens and specifies the potent implementations of
lactate in clinical applications and prognosis improvement (Fig. 1).

RESEARCH HISTORY OF LACTATE METABOLISM AND
LACTYLATION
In 1780, the Swedish chemist Carl Wilhelm Scheele was the first to
isolate lactic acid from sour milk. Since then, its metabolic role and
significance in tumors have gradually been clarified (Fig. 2). Soon,
Jons Jacob Berzelius discovered that lactic acid is also produced
by muscles during exercise in 1808. Its structure was established
by Johannes Wislicenus in 1873.% Lactic acid is an organic acid
with the chemical formula CsHgOs. Lactate is the ionized form of
lactic acid. When lactic acid dissolves in water, it can lose a
hydrogen ion (proton), resulting in lactate (C3HsO5).2%>
Lactate, the end product of glycolysis, was once mischaracter-
ized as a waste since then.?**>*> But recently, there are growing
evidence that lactate is a metabolic fuel for skeletal muscle, heart,
brain, and malignant cells, that contributes to cell fate decision-
making processes.3*7 It is also regarded as a metabolic buffer
that bridges oxidative phosphorylation (OXPHOS) and glycolysis.*®
One classic metabolic reprogramming in tumors is the Warburg
effect,**°*" which is associated with lactate production. In 1927,
Warburg found that glycolysis remained the dominant mode of
glucose metabolism under aerobic conditions in both homozygous
mice and human tumor tissues. The Warburg effect was more
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dominant in  malignant tumors compared to benign
tumors.'32427% In 1956, He interpreted the mechanism of this
phenomenon as a suppressed mitochondrial function and pre-
sented the theory that mitochondrial dysfunction underlies tumor
aerobic glycolysis as the core of his metabolic theory regarding the
origin of cancer.**® In 1972, researcher Efraim Racker was the first to
introduce the term “Warburg effect” to describe the increased
glycolytic capacity observed in cancer cells.*® However, some studies
have challenged the validity of this idea, and the emerging view is
that mitochondrial overload leads to an excessive release of
lactate.**”° |In 1980, the adoption of the glucose analogue
'8Ffluorodeoxyglucose (FDG) in positron emission tomography
(PET) could indicate the activity of pyruvate kinase (PK) by tracing
glucose metabolism, thus indirectly reflecting the intensity of lactate
metabolism through the degree of glycolysis and enabling the
quantification of lactate metabolism in vivo.'™° Studies have
shown that the conversion of '>C carbon from glucose to Krebs
cycle intermediates (citrate and succinate) or related metabolites is
increased in lung cancer samples compared to non-cancerous
paraneoplastic tissues.>® Besides, at the single-cell level, it is likely
that tumor cells, immune cells, and stromal cells within the TME,
which encounter more severe oxygen deprivation, tend to
upregulate both glycolysis and mitochondrial OXPHOS.>"® Further-
more, OXPHOS showed a significant correlation with glycolysis in
melanoma and head and neck squamous cell carcinoma (HNSCC) as
well as with the response to hypoxia.”®*° This suggests that the
traditional view of tumor cell metabolism under hypoxia, character-
ized by a switch between glycolysis and mitochondrial respiration,
may be inaccurate.8%¢! Lactate production is not a metabolic driver
of cell proliferation and oxidation is the favored metabolic destiny of
glucose.
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Fig. 2 Milestone events of research on lactate metabolism and lactylation. Since lactate was first discovered in 1780, its metabolic role and
significance in tumors have gradually been clarified. With advances in isotope-tracing systems, single-cell sequencing, and probe -based
metabolic imaging, the biological properties and functions of lactate and lactylation have been extensively explored. Generated using Adobe
lllustrator (Version 28.2). Abbreviations: APOC2 apolipoprotein C-ll, DCs dendritic cells, FDG-PET '®F-fluorodeoxyglucose-positron emission
tomography, FFA free fatty acids, K80-lac lysine 80 lactylation, MCT1 monocarboxylate transporter 1, MCT4 monocarboxylate transporter 4

While warburg effect stood for the hallmark of cancer
metabolism for about 100 years, recent research as mentioned
above have shown that his explanation of the mechanism of
aerobic glycolysis is not fully correct*>6%® |actate can be
produced in significant amounts without impairing aerobic
respiration and serves as a direct carbon source into the TCA
cycle, which will be further described in chapter 3.2."*™

Additional research has shown that lactate can build a bridge
between epigenetics and metabolism through a novel epigenetic
modification known as lactylation.®*”° Histone lactylation was
first documented in 2019 by Zhang et al. the meaning of which
was an addition of a lactyl (La) group to the lysine amino acid
residues located in the tails of histone proteins.?® This study
demonstrates the definition of histone lysine lactylation (Kla), a
novel form of epigenetic modification, that is observed following
the translation of proteins obtained from lactate.

As research on lactate and lactylation in cancer continues to
flourish, strategies targeting lactate/lactylation have attracted sig-
nificant interest as potential anticancer treatments.”'~”> Consequently,
AZD3965, an MCT1 (monocarboxylate transporter 1) inhibitor, has
emerged as the first lactate metabolism-targeting drug currently
undergoing a phase I/Il clinical trial (NCT01791595) for the treatment
of advanced solid tumors and non-Hodgkin lymphoma.”s-%°

LACTATE PRODUCTION AND TRANSPORT
When the rate of demand for energy is high, glucose is
catabolized and oxidized to pyruvate, which is primarily catalyzed

Signal Transduction and Targeted Therapy (2025)10:38

by lactate dehydrogenase (LDH) to produce lactate®' 53 (Fig. 2).
Continuous generation of lactate facilitates the regeneration of
NAD+ from NADH.2*#° During the reduction of pyruvate to lactate
and the oxidation of NADH to NAD+, the NAD+ consumed by the
oxidation of glyceraldehyde-3-phosphate in glycolysis is replen-
ished, thus ensuring sustained glycolytic activity and energy
production.®° To prevent lactate accumulation from leading to
lactic acidosis, pyruvate dehydrogenase (PDH) catalyzes the
production of acetyl coenzyme A from pyruvate, which joins the
TCA cycle and irreversibly removes lactate 2*°%°! Lactate buildup
has the potential to stimulate gluconeogenesis in skeletal muscle
and liver cells, converting lactate into glucose and subsequently
releasing it into the bloodstream.”"%*

Lactate is transported in cells via four reversible monocarboxylate
transporters (MCT; e.g, MCT1, MCT4).>>%® The MCT family achieves
lactate exchange across the plasma membrane via H-/lactate
cotransport, the direction of which is dependent on the concentration
gradient of protons and monocarboxylates.”®'°" The expulsion of
lactate via MCTs removes protons, thereby preserving pH balance
within the cytoplasm and inducing acidification in the extracellular
environment.'®*'%* Among them, MCT1 is induced by c-Myc to be
expressed in all cells and is responsible for the transport of lactate and
pyruvate, whereas MCT4 (monocarboxylate transporter 4) is a highly
efficient lactate transporter protein induced by hypoxia and is highly
expressed in glycolytic tissues (e.g., white muscle fibers) and cancer
cells26381047195 Mot solid tumors rely on glycolysis for energy
production, and upregulation of MCT in cancer contributes to the
formulation of an acidic microenvironment, which has a critical

SPRINGER NATURE
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Fig. 3 The overview of aberrant tumor lactate-related metabolism compared to physical conditions. In TME, cancer cells exhibit increased
tumor glycolysis to meet their high energy demands and metabolic needs. This heightened glycolysis leads to elevated glucose consumption,
resulting in excess lactate production and reduced ATP production in the cytoplasm. In normal cells, glycolysis involves ten steps, with the
end product pyruvate entering the mitochondria for energy production via the TCA cycle. Besides participating in glucose metabolism, about
10% of the pyruvate is involved in other types of metabolism such as protein metabolism. Failure of pyruvate to enter the TCA cycle leads to
decreased energy production compared to glucose molecules through altered glycolysis. Lactate in TME plays a crucial role in regenerating
NAD+ molecules and directly join the TCA cycle under hypoxic conditions to sustain glycolysis and ATP production. In addition to glucose
metabolism, increased glutaminolysis and lipogenic enzymes expression are also observed in TME. Generated using Adobe lIllustrator (Version
28.2). Abbreviations: GLUT1/4 glucose transporter 1/4, TME tumor microenvironment

impact on cancer cell viability by regulating pH allowing for sustained
high rates of glycolysis.'® "' Herein, high expression of MCT1/4 in
various tumors such as melanoma,''® glioblastoma'"" and NSCLC,'"?
is associated with poor prognosis.

Lactate shuttle is a concept that was introduced in 1985 and has
been continuously developed and refined."’*''® The lactate
shuttle refers to the transport of lactate between cells, tissues,
and organs as a product of glycolysis and a substrate for
respiration, which summarizes the process of lactate transmem-
brane migration and serves as a bridge between anaerobic
glycolysis and aerobic respiration.''”'"® This connection persists
under aerobic conditions***%""? (Fig. 3).

The lactate shuttle performs three physiological functions: 1.
lactate is one of the major energy sources. 2. lactate serves as a
glucose xenobiotic precursor. 3. lactate is a signaling molecule
with  autocrine, paracrine, and endocrine-like  proper-
ties. 2118120121 The procedure in which muscle-generated lactate
is re-transported to the muscle via hepatic glucose isomerization
to glucose is known as the Cori cycle.'**”'%* The significance of
this cycle is to 1. prevent muscle lactic acidosis under anaerobic
conditions, 2. maintain muscle ATP supply, and 3. the Cori cycle
stands for a more essential source of substrate for gluconeogen-
esis than food.'?>'2¢

Other than intracellular lactate metabolism, lactate may be
transported into target cells via nonchannel pathways or MCTs
through intercellular shuttling.””~"?° To date, studies have
uncovered that the lactate shuttle is involved in the TME during
interactions between various cell populations and this aspect of
lactate shuttling is defined as metabolic symbiosis, which is a vital
phenomenon of tumor biology.'3%'3’

Lactate shuttling between variable cell populations in the TME
is a novel finding in oncology, thus revealing the tight association
between lactate transport and the progression of tumors.'3%'32
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Since lactate serves as a precursor for glycolysis and a substrate for
the TCA cycle, the shuttling of this metabolite through TMEs
containing both anoxic and aerobic cell populations is of
paramount significance. There is an interrelationship and meta-
bolic symbiosis across tumor cells in varied parts of a solid tumor.
Because of the rapid growth of tumors, tumor region consist of
anoxic and aerobic parts depending on whether they are located
in the vicinity of blood vessels. In particular, anoxic tumor cells use
lactate dehydrogenase A (LDHA) for lactate anabolism, which
enters intercellular matrix through MCT4 and is taken up through
MCT1 by aerobic tumor cells. Lactate dehydrogenase B (LDHB)
may catalyzes this lactate to pyruvate to generate ATP."** Solid
tumor staining is consistent with this perspective. Immunofluor-
escence staining of pancreatic neuroendocrine tumors showed
that MCT4 was predominantly expressed in hypoxic tumor
compartments and MCT1 was mostly upregulated in MCT4-
negative regions. Metabolic symbiosis invigorates the metabolic
potential of tumor tissues for anaerobic environments and
facilitates tumor proliferation and metastasis.'>%'3*'3 |t happens
in hypoxic regions of tumor regression and increases invasion and
metastasis in mouse models of pancreatic neuroendocrine
carcinoma and glioblastoma (GBM)."*® Studies unveiled that
mMTOR (mammalian target of rapamycin) mediated lactate shuttle
induced by sunitinib/axitinib in PanNET, the inhibition of which
significantly reduced tumor burden and viability.'**

MULTIFACETED FUNCTIONS OF LACTATE IN CANCER CELLS
Lactate has been found to play a crucial role in shaping the TME
recently by influencing various cell populations.”*”~"*% In tumor
cells, lactate amplifies the lactate shuttle, affects cell signaling
pathways, enhances oxidative stress resistance, and contributes to
lactylation (Figs. 3, 4).
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Circulating carbohydrate fuel of TCA cycle
Organisms rely primarily on OXPHOS and glycolysis to obtain
energy from glucose.'**'*? Traditionally, lactate was considered
to be a minor byproduct of glucose utilization in anaerobic
environments, but studies now indicate that lactate is an
irreplaceable and primary fuel for energy and is crucial for the
TCA cycle."**7'% In this study, a mouse 3T3-L1 fibroblast based in
vitro models indicated that, apart from elevated glucose uptake
and lactate release, proliferating fibroblasts showed improve-
ments in mitochondrial respiration as well as coupling effi-
ciency."”” Another study showed that pyruvate could not prevent
glucose deprivation-induced cell death by facilitating glucose
metabolism through gluconeogenesis, suggesting glucose is not
one and only substrate for respiration in proliferating cells.'*®
Moreover, lactate is proven to be the main energy donor for the
brain, which directly supports energy balance of preopiomelano-
cortin (POMC) neurons and excitatory neural activity in the
brain.149—151

Mitochondrial OXPHOS fosters tumorigenesis, development,
metastasis, and drug resistance.'*®'>® Pyruvate migrates into
mitochondria during OXPHOS to engage in the TCA cycle.'?”'%8
While research on the Warburg effect laid the foundation for the
role of lactate in the TME through the glycolytic pathway, recent
studies have revealed that lactate could be utilized as a carbon
origin directly through the TCA cycle in tumor cells (Fig. 3). Isotope
tracing showed that TCA metabolites labeled by '*C-lactate
continued to outcompete that with '*C-glucose label in a mouse
tumor model even in the presence of glucose.'” This reverses
previous perceptions and establishes that lactate is a proximate
fuel for the TCA cycle. Utilization of lactate by TCA cycle even
correlates with the metastatic capacity of the tumor. Isotopic
tracing of xenografts in mice showed that MCT1-mediated lactate
utilization, reflected by TCA metabolites, was elevated in tumors
with high metastatic potential compared with tumors with low
metastatic potential.’® Other articles have also emphasized this
emerging perspective that glucose serves as a specific fuel while
lactate as a universal fuel.”>'%° In a word, these studies illustrate
that lactate is by no means just a useless byproduct of rapid tumor
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energy consumption in anaerobic stress. It is a direct and vital
participant in the TCA cycle and OXPHOS.

Buffer of redox homeostasis

Lactate serves as a vital metabolic substrate and functions as an
intercellular and intertissue redox signaling molecule.’®"'%? First,
lactate production and removal uphold electron flux through a
specific pathway, involving the conversion of NADH to NAD-+ and
H+ alongside LDH-mediated conversion of lactate to pyruvate.'®®
These reduced coenzymes (nicotinamide adenine dinucleotides
(NAD+ or NADP+)) produce electrons as they undergo oxidation
via either mitochondrial respiration or lactate fermentation,
thereby sustaining redox balance.'®® Besides, as a modulator of
OXPHOS, lactate affects intracellular redox homeostasis.'®® Last
but not least, lactate benefits redox condition maintenance.
Downregulation of MCT expression leads to loss-function of LDH,
intracellular accumulation of lactate, cytoplasmic acidification, and
cell death in cancer cells.'®

Regulator of amino acid and fatty acid metabolism
As a specific feature of the process of lactate metabolism in cancer
cells, glutamine provides a carbon source and promotes the
utilization of lactate and TCA cycle intermediates. Regulated by
cellular myelocytomatosis (c-Myc), glutamine is transported across
cell membrane by amino acid transporter type 2 (ASCT2) and
sodium-coupled neutral amino acid transporter 5 (SN2). Glutami-
nase (GLS/GLS2) catalyzes it and transforms it to glutamate. Next,
glutamine enters the TCA cycle as a-ketoglutarate (a-KG). Via this
above-mentioned pathway, glutamine becomes the second-
largest carbon source of lactate in cancer cells.'®” Additionally,
lactate induces the expression of the proto-oncogene c-Myc.
c-Myc transcriptionally binds to the promoter region of glutamine
importers, ASCT2 and SN2, leading to increased glutamine uptake
and tumor progression.'68-17°

Fatty acid metabolism fosters tumorigenesis, progression, and
treatment resistance through enhanced lipid synthesis, storage,
and catabolism.””"72 It is well known that lactate accumulation
can promote intracellular fatty acid synthesis by promoting the
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activity of acetyl coenzyme A carboxylase (ACC), a key enzyme in
fatty acid synthesis, and by supplementing the raw material for
fatty acid synthesis, acetyl coenzyme A (acetyl-CoA).'”3'7*
Accumulation of lipid droplets in the cytoplasm of cancer cells is
correlated with cancer invasiveness and chemotherapy resis-
tance.”>"7® The expression of lipogenic enzymes is upregulated
and their activity is on the rise in most tumors. For instance, citrate
lyase is an indispensable modulator of histone acetylation in
cancer cells.'”” Lactate promotes intracellular fatty acid synthesis
by supplementing acetyl-CoA, a raw material for fatty acid
synthesis, and by increasing the activity of acetyl-CoA carboxylase,
a key enzyme in fatty acid synthesis.'’® Besides, as lactate acts as a
favored energy source for muscle and heart cells through
OXPHOS, it simultaneously inhibits lipolysis and blocks the import
of free fatty acids (FFA) into mitochondria via carnitine palmitoyl-
transferase 1 (CPT1)."”9"8 Nonetheless, through the integration of
multi-omics analysis and validation both in vitro and in vivo in
NSCLC, a recent study disclosed that intracellular lactate drives
extracellular lipolysis and FFA release via non-histone lactylation of
apolipoprotein C-Il (APOC2), bringing about immunotherapy
resistance.'®' These studies show that role of lactate in fatty acid
metabolism differs between the TME and normal tissues,
suggesting a complexity in its function. The particular signaling
pathways by which lactate impacts fatty acid metabolism and
their significance in tumor progression remain to be further
explored.

Intracellular and extracellular signaling of tumor cells

Lactate is a predominant signal transducer of tumor cells (Fig. 4).
Lactate inhibits 2-oxoglutarate-dependent prolyl hydroxylases
(PHDs) (mainly PHD2), which in turn prevents Von Hippel Lindau
tumor suppressor (VHL)-mediated ubiquitination of hypoxia-
inducible factor 1 (HIF-1) and its proteasomal degradation, thus
stabilizing HIF-1. Lactate-mediated PHD2 damage relies on the
oxidation of lactate to pyruvate, which elicits suppression of PHD2
through pyruvate binding, alongside HIF-1-mediated elevation of
VEGF.'®?

In addition, lactate induces angiogenesis and maintains tumor
metabolism in hypoxic environments by inhibiting the PHD2/VHL
system through an HIF-1-independent pathway that cooperates
with the HIF-1 pathway. Lactate directly binds to N-Myc down-
stream-regulated gene family member 3 (NDRG3; NM_032013)
protein and inhibits its binding to PHD2 and its deterioration,
securing prolonged protein stability. Accumulation of NDRG3
leads to activation of Raf/ERK-mediated angiogenesis and
proliferation, bringing about cellular adaptation to long-term
hypoxia. Animal experiments showed that knockdown of NDRG3
inhibited the proliferation of hepatocellular carcinoma (HCC)
subcutaneous tumors and angiogenesis of subcutaneous stromal
plugs. Downregulation of lactate metabolism inhibited the
proliferation of lymphoma cells at the cellular level and in
subcutaneous tumors, and overexpression of NDRG3 reversed the
growth inhibition caused by downregulation of lactate
metabolism.'”

Nevertheless, lactate, as a redox homeostasis regulator, can act
as an antioxidant to resist excessive oxidative stress in tumor cells
and reverse cellular DNA/RNA damage caused by massive reactive
oxygen species (ROS) production, thus mediating treatment
resistance and metastasis.'®*'®* Dou et al. unearthed that lactate
enhanced the production of ROS through nicotinamide adenine
dinucleotide phosphate oxidase 1 (NOX1), which induced the
senescence-associated secretory phenotype (SASP). In contrast,
inhibiting pyruvate dehydrogenase kinase 4 (PDK4) mitigates
lactate-induced DNA damage and curbs the SASP.'®*'%’ |n
addition, Hu et al. confirmed that in 4T1 and Hela cells, LDHA
mediated hydrogen peroxide production under oxidative stimuli
in vivo and in vitro."®® Concerning cervical tumor, nuclear LDHA
acquired a non-canonical enzymatic activity to produce o-
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hydroxybutyrate (a-HB), which facilitated interaction between
disruptor of telomeric silencing 1-like (DOT1L) and LDHA, which
mediated hypermethylation of histone H3K79. This process led to
the activation of antioxidant genes and enhanced Wnt signaling
pathway, thus promoting tumor growth.'®® In patients with
NSCLC, elevated LDHA expression is a negative prognostic factor
linked to radiation resistance. Inhibition of LDHA by oxamate
significantly boosted radiosensitivity and enhanced apoptosis,
autophagy and cell cycle turbulence triggered by ionizing
radiation (IR) in A549 and H1975 cancer cells.'®® Response to
fractionated irradiation correlates with lactate concentration of
tumor regions in 10 xenografted human HNSCC tumor lines.'’
Besides, disturbances in oxidative homeostasis due to lactate are
also associated with metastasis. Studies elucidated that the
heterogeneity of the metastatic process in melanoma depends
on the differences in the expression levels of MCT1, and revealed
that the molecular mechanism involved lies in the fact that
melanomas with high expression of MCT1 can utilize lactate to
resist oxidative stress, and thus obtain a stronger metastatic
capability.'*'®

Apart from its character as a signaling mediator intracellu-
larly, meanwhile, lactate functions as an extracellular
ligand.'”>7'¢  G-protein-coupled receptor 81 (GPR81), a G
protein-coupled receptor for lactate, exists in colon, breast,
lung, hepatocellular, salivary gland, cervical, and pancreatic
cancer cell lines."®72% Lactate supports energy metabolism in
tumor cells through binding to GPR81. In pancreatic cancer
samples, 94% (148/158) of patients expressed high levels of
GPR81. Functionally, knockdown of GPR81 in lactate-containing
low-glucose culture conditions resulted in decreased mitochon-
drial activity and massive death of pancreatic cancer cells. The
addition of lactate to the culture medium induced the
expression of genes involved in lactate uptake and metabolism,
but not in GPR81-silenced cells. Under conditions that
mimicked the TME (low glucose, glutamine, and pyruvate), the
levels of MCT1, MCT4, cluster of differentiation 147 (CD147),
peroxisome proliferator-activated receptor y coactivator 1 a
(PGC-1a) and other mRNAs were increased after 6 h of lactic
acid treatment in parental pancreatic cancer cells expressing
GPR81. In contrast, lactate treatment had no effect on the
mRNA levels of these molecules mentioned above after
GPR81 silencing. In addition to altering mitochondrial activity,
mouse in situ pancreatic tumor models constructed by shGPR81
cell line had slower tumor growth, longer overall survival, and
slower lung metastasis. In conclusion, GPR81-lactate transport is
an important cancer cell transporter mechanism, which
promotes energy consumption, proliferation and metastasis of
pancreatic cancer.?®’ In TME, this pathway induces immuno-
suppression. In lung cancer cells, activation of GPR81 decreases
intracellular cyclic adenosine monophosphate (cAMP) levels
and inhibits protein kinase A (PKA) activity, leading to activation
of Transcriptional co-activator with PDZ-binding motif (TAZ),
which further activates the programmed cell death protein 1/
programmed death-ligand 1 (PD-L1/PD-1) immune checkpoint
pathway and impairs T-cell function.?°*2% |n addition to GPR81,
G-protein coupled receptor G2A (GPR132) is an essential
transmembrane lactate receptor which leads to immune
suppression and metastasis as well.2°*2°° Lactate activated
Gpr132 on macrophage, which facilitates M2 polarization and
promoted adhesion, migration, and invasion of breast cancer
and lung cancer.?°®2°” In vivo and in vitro experiment of
colorectal cancer (CRC) clarified platelet reactive protein 2
(THBS2) induced HIF-1a/lactate/GPR132 pathway promoted M2
polarization of macrophages, resulting in inhibition of T-cell
proliferation and cytotoxicity.?°® In conclusion, lactate acts as an
extracellular ligand and an intracellular signal transduction
factor to facilitate the energy uptake, proliferation, migration,
and immune escape processes of tumor cells.
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Fig. 5 Histone/non-histone lactylation sites and their downstream genes following modification. Histone and non-histone lactylation sites
and their downstream genes after modification are presented in the form of lactylation sites (downstream genes), with histone lactylation
shown in brown and non-histone lactylation shown in green. Generated using Adobe lllustrator (Version 28.2). Abbreviations: AARS1, alanyl-
tRNA synthetase 1; AK2 adenylate kinase 2, BCL2 B-cell lymphoma 2, CASP8 caspase 8, CBX3 chromobox 3, CD133 cluster of differentiation
133, CTGF connective tissue growth factor, CYR61 cysteine-rich protein 61, eEF1A2 elongation factor 1 alpha 2, FDX1 ferredoxin 1, GPI glucose-
6-phosphate isomerase, HK1 hexokinase 1, HK2 hexokinase 2, IDH3G isocitrate dehydrogenase (NAD-+) 3 gamma, LDHA lactate
dehydrogenase A, METTL16 methyltransferase Like 16, MRE11 meiotic recombination 11, p21 p21ACIP1/WAF1, PDGFRp platelet-derived
growth factor receptor f3, PKM pyruvate kinase M, PUMA p53 upregulated modulator of apoptosis, RUBCNL rubicon like autophagy enhancer,
TEAD TEA domain transcription factor, XRCC1 X-ray repair cross-complementing 1, YTHDF2 YTH N (6)-methyladenosine RNA binding protein 2

LACTYLATION SERVES AS THE BRIDGE BETWEEN METABOLISM
AND EPIGENETICS

Lactate intensifies the crosstalk between metabolism and
epigenetics'820299210 (Fig, 5), Recentlg, there have been histone
157,211-21

and nonhistone aspects of Kla. * Interestingly, numerous
research have demonstrated the buildup of histone Kla on the
genome in cytoplasm triggered by hypoxia, interferon-y (IFNy),
lipopolysaccharide (LPS), or bacterial infection, bringing about
lactate production.?%*'*

Besides, Kla epigenetically regulates gene expression.
Supplementation of exogenous sodium lactate (NalLa) to B-cell
adapter for PI3K (BCAP)-deficient bone marrow-derived macro-
phages (BMDM) reverses the downregulated Arginase-1 (ARGT)
and Krippel-like factor 4 (KLF4) expression caused by BCAP
deficiency.’> ChIP assay of lactate-treated BMDM reveals sig-
nificant up-regulation of histone Kla in the promoter region of the
ARG1, platelet-derived growth factor A (PDGFA), thrombospondin-1
(THBS1), and vascular endothelial growth factor A (VEGFA).*%° 1t

216-219
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follows that Kla regulates gene expression of immune cells and
plays an essential physiological role.

Histone Kla has been sequentially reported in a variety of
cancers,*2'™2?* especially histone H3 lysine 18 lactylation
(H3K18la). H3K18la has been reported to play a part in multi-
tudinous biological processes such as oncogenesis,??'22>7227
progression,*?®2?° tumor immune escape®® and cancer cellular
metabolism reprogramming?’ (Figs. 4, 5). Yang et al. revealed that
inactivated VHL upregulated H3K18la, which promoted the
expression of platelet-derived growth factor receptor 8 (PDGFR{3)
and formed a positive feedback loop, thereby promoting the
proliferation and metastasis of clear cell renal cell carcinoma
(ccRCQ). Li et al. lately revealed that in CRC cells, high H3K18la
level promoted the transcription of Rubicon-like autophagy
enhancer (RUBCNL/Pacer), which enhanced autophagy through
promoting autophagosome maturation, and contributed to CRC
tumorigenesis and progression.”*° Yu et al. elucidated histone Kla
levels were greater in ocular melanoma than in normal tissue and
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were positively correlated with poor prognosis in patients.
Additional exploration of potential mechanisms indicates a
facilitated expression of YTH N (6)-methyladenosine RNA binding
protein 2 (YTHDF2) in ocular melanoma cells, resulting from
elevated Kla of its promoter. In addition, YTHDF2, as an N6-m6A
reader, recognizes m6A-modified period circadian regulator 1
(PER1) and tumor protein p53 (TP53) mRNAs and promotes their
degradation,  thereby  accelerating ocular melanoma
tumorigenesis.??'

In addition to promoting tumor proliferation, metastasis, and
invasion by modulating the expression of epigenetically related
genes in tumor cells, Kla is also capable of inducing the expression
of TCA cycle-related enzymes.?*"**? A global lactylome profiling of
cancer and paracarcinoma tissues from patients with hepatitis B
virus-related HCC (HCC) successfully identified lactylation mod-
ification sites located on both non-histone and histone proteins. It
suggests that lactylation modification may be involved in a
broader biological function besides transcriptional regulation.
More importantly, Kla preferably affects enzymes involved in
metabolic pathways, including glucose metabolism, TCA cycle,
amino acid metabolism, fatty acid metabolism, and nucleotide
metabolism, and that elevated Kla levels on metastasis-related
substrate are strongly correlated with aggressive clinical features
and driver mutations of HCC.2' Studies of NSCLC have shown that
histone Kla leads to downregulated level of the glycolysis-related
enzymes and concurrently elevated that of the TCA cycle-related
enzymes.®*? In summary, Kla improves glucose uptake by tumor
cells by modifying the expression of metabolism-related genes
and adds up to metabolic disorders of NSCLC.

Besides, Kla incorporates target therapy resistance.
Scientists demonstrated downregulation of histone Kla enhanced
the sensitivity of CRC cells to bevacizumab treatment in cell-based
xenografts, patient-derived xenografts and patient-derived orga-
noids models, which further broadens the role of Kla in
antiangiogenic therapy.?*°

Regarding non-histone lactylation, other research also validated
its effect on prompting tumor progression.>>>*® Zong et al.
uncovered that alanyl-tRNA synthetase 1 (AARS1) detected lactate
and facilitated the site-specific lactylation of p53, which weakened
its ability to bind DNA and underwent liquid-liquid phase
separation (LLPS). As a result, tumor-suppressing functions of
p53 were diminished in a CRC mouse model.?*? Lysine acetyl-
transferase 8 (KAT8), a lysine acetyltransferase known for its pan-
Kla writing capabilities, catalyzes the lactylation of elongation
factor 1 alpha 2 (eEF1A2) at lysine (K)-408 in CRC, which promoted
tumorigenesis.?*®  Besides, lactate leads to the Kla of
methyltransferase-like 16 (METTL16)-K229, which further induces
m6A modification of ferredoxin 1 (FDX1) mRNA, increases FDX1
mRNA expression, and ultimately leads to the death of gastric
cancer cells via cuproptosis.**’ Yang et al. discovered adenylate
kinase 2 (AK2) K28 lactylation enhanced proliferation and
metastasis of HCC cells.?' Furthermore, global lactylome profiling
of gastrointestinal (Gl) cancers, including liver, pancreatic, color-
ectal, and gastric cancers, further demonstrated that non-histone
lactylation exhibits cross-talk with various forms of epigenetic
regulation.?’ Lactylation of chromobox 3 (CBX3) at K10 facilitates
its binding to H3K9me3, which in turn drives the invasiveness of Gl
cancers.>*?

Moreover, similar to histone lactylation, non-histone lactylation
modifications play a role in tumor treatment resistance. Chen et al.
found that non-histone lactylation of meiotic recombination 11
(MRE11) boosted homologous recombination (HR) and chemore-
sistance in CRC.>** Li demonstrated that the interaction between
aldehyde dehydrogenase (ALDH) 1 family member A3 (ALDHA3)
and pyruvate kinase M2 (PKM2) increased lactate production,
which in turn induced lactylation of XRCC1 at K247. This enhanced
DNA damage repair and resulted in resistance to both radio-
therapy and temozolomide (TMZ)-based chemotherapy.>**

233,234
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Nevertheless, recent reports have revealed the potential ther-
apeutic effect of histone/non-histone lactylation in tumors, which
will be further depicted in “Other lactate-targeted strategies”.*** In
addition to lactylation, lactate is involved in regulating other
epigenetic modifications that foster tumor progression. The
Warburg effect results in a dramatic increase in intracellular levels
of acetyl coenzyme A (Ac-CoA), which induces general control
non-derepressible 5 protein/Spt-Ada  Gcn5-acetyltransferase
(Gen5p/SAGA)-catalyzed acetylation of histone proteins, which
induces downstream gene transcription and promotes cell
growth.2*?*”  Apart from acetylation, lactate alters the
anaphase-promoting complex (APC/C) by directly blocking the
Small Ubiquitin-like Modifier protease (SUMO protease) sentrin/
SUMO-specific protease 1 (SENP1) and stabilizing SUMOylation at
two specific residues on APC4. The stabilization of SUMOylation
induced by lactate accelerates the degradation of cell cycle
proteins and ensures effective mitotic exit in actively dividing
human cells.**®

Previous studies have explored whether lactylation and
acetylation have functional overlap.>*® Their similarity lied in the
fact that lactate and acetyl-CoA both were primarily derived from
the glycolytic end product, pyruvate and had similar molecular
structures.*'?*° Besides, from the perspective of modification
mechanisms, both lactylation and acetylation preferred targeting
lysine (Lys) residues for epigenetic modulation, which utilized
p300 as the “writer” for Lys catalysis and class I-lll histone
deacetylases (HDAC1-3) as “eraser”.>' 2> However, recent studies
have firmly established that lactylation functioned differently from
acetylation. In 2019, Utilizing M1 macrophages exposed to
bacteria as a model system, Zhang et al. reveal that histone
lactylation follows a different temporal pattern compared to
acetylation.”® Then, it was elucidated that lactylation exhibited
slower kinetics at lysine compared to acetylation, and intracellular
concentrations of lactyl-CoA were lower than those of acetyl-
CoA.'® Recently, Zong et al. utilized a clustered regularly
interspaced short palindromic repeat (CRISPR) screen, which
identified AARST as an intracellular sensor for lactate and a
transferase of lactyl to lysine residues. AARS1 binds directly to
lactate, catalyzes the adenosine triphosphate (ATP)-dependent
synthesis of lactate-AMP and mediates widespread lysine lactyla-
tion, including that of p53.*° AARS1 was also uncovered to
lactylate and activate the Yes-associated protein-TEA domain
transcription factor (YAP-TEAD) complex in gastric cancer. As a
Hippo target gene that creates a positive-feedback loop with YAP-
TEAD complex, AARS1 promotes proliferation of gastric can-
cer.2>5237 pdditionally, alanyl-tRNA synthetase 2 (AARS2) has been
shown to act as a mitochondrial lactyltransferase as well,
catalyzing the lactylation of K336 in pyruvate dehydrogenase
complex 1 (PDHAT) and K457/8 in carnitine palmitoyltransferase 2
(CPT2) under hypoxic conditions. This lactylation process mediates
mitochondrial proteins to regulate OXPHOS in muscle cells.?*®
Moreover, recent studies have provided deeper insights into the
role of AARS1/2 in the transferase-catalyzed lactylation process,
revealing that lactate is directly modified onto proteins via
catalysis, eliminating the need for lactoyl-CoA formation.>° As
AARS1/2 is not a pan-Kla writer, to summarize, these results
unearth that lactylation and acetylation involve different enzy-
matic toolkits.

LACTATE AND LACTYLATION IN DIVERSE CELL POPULATIONS
Deep-in-depth investigation of the TME complexity and collabora-
tions between the abundant cell types within this niche stands for
a stepping stone to precision cancer therapy.?®°-2% According to
the fascinating and challenging features of TME, it consists of
multiple populations of fibroblasts, an underdeveloped vascular
system, and a varied and predominantly suppressive array of
immune cells.?®>72% The invasiveness, resistance to therapy, and
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activation and proliferation of CD8 + T cells, natural killer (NK) cells, and dendritic cells, while promoting the immunosuppressive function of
CD4 + CD25+ regulatory T (Treg) cells. Lactate also aids the polarization of macrophages towards an anti-inflammatory (M2-like) phenotype,
supporting angiogenesis, tissue remodeling, and tumor progression. In cancer associated fibroblasts (CAFs), lactate production, driven by
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(ROS), stabilizing HIF-1, and activating NF-kB signaling, which increases IL-8 and VEGF transcription. Thus, lactate significantly favors tumor
progression, though detailed mechanisms remain unclear. Generated using Adobe lllustrator (Version 28.2). Abbreviations: bFGF, basic
fibroblast growth factor; ERK1/2, extracellular signal eegulated kinase 1/2; GPR81, G-protein-coupled receptor 81; PHD, prolyl hydroxylases;
PKA, protein kinase A; RUBCNL, Rubicon like autophagy enhancer; TAZ, transcriptional co-activator with PDZ-binding motif; VHL, Von Hippel
Lindau tumor suppressor

heterogeneity of the tumors are therefore influenced to a
significant extent by the non-malignant parts of the tumor, in
addition to tumor cells themselves.?5¢-2%8

In other cell populations, on the one hand, interaction
between lactate and immune cells exerts an effect on impaired
cell differentiation, reduced immune response, evasion of

Signal Transduction and Targeted Therapy (2025)10:38

immune monitoring, and defective sensitivity upon treat-
ment.2927% On the other hand, lactate/lactylation crosstalk
with stromal/endothelial cells reinforces basal membrane (BM)
remodeling, epithelial-mesenchymal transitions (EMT), meta-
bolism reprogramming, angiogenesis, and drug resistance
(Fig. 6).

SPRINGER NATURE



Lactate and lactylation in cancer

Chen et al.

10

slIs> L +8dD

org 4O SSRUWILS BY) pue sNdO| JedueyUS-13dNns £4D] 3Y3 18 DBLTHEH ddueyud Bl'D) L4D1 ‘Z4D1 ws|jogeidw ajede| NIE=NE
S|192 1 JO A1IDIX0303Ad Jowni-ipue Bulley|de) pue ssauUIRlS
Buiaissal ‘uonienualayip bundaye Agaiay) ‘ssusb parejpi-Aiowsw

sle JO uonisodap €aw/ZHEH 9SBAIIBP ‘WISI|OqeIdW UO0gIed-dUO XD0|q TAD ‘ewouediy 1401 wisijoqeldw ajelde| |92 L
9suodsal sunwwii

Los 9yl apeAs 01 uoissaldxa 00zdl4 1gIyul pue s|[93-] aaleu Bunsbiey J95Ued UeLIBAQ 00zdI4 wisijogelaw a1e1e| NIE=NE

ble  JUBWIUOIIAUROIDIW Bunww dAIssaiddns e 3jowoid pue sOSAW 433s]0q J192UeDd djjealdued VHA1 ‘2Wdid wsijogeldw a3eye| SOSAW

o0¢ ‘UOISI9ARI pUB J9SUO dleIpaWW JO Jduuew e u 1) ssaiddns DY ged ‘unf-d “YNF wisijogelaw 21e1e| i)
Adesayy [-ad-nue jo 129s dninadesay)

06 9y} sadueyud pue uonenyul sayowold YHJT paienbal-umop ewoued|\ g swAzueib ‘A-N4| wisjjogeisw a1ee| S92 1 ,8dD ‘S| )N

(04X TD0dY)

008 aouelsisal Adessylounwiwii 32113 pue s[j9d Hai] unudal ‘y44 dnpoid JT1DOSN 7004V suolledYIpOW SU0ISIY-uou s||9> Baiy
uonpuny
aAIssaiddnsounwwi pue uonesdjijoid J19y3 bunowoud snyi ‘sjjed Hai)

ooe  SP4EMO] suonipuod 3s03n(B-ybiy jo 1edwi buiziigeissp sy 1>e193UN0d JDSNH ‘ewouediy LV9LD1S ‘YHA1 wisijoqelaw 21e3e| s||92 Bauy

S[|92 1 4012943 Aq uoissaldxa TAY “edued

67’867 1-dd Bulusdwep seassym ‘s||2d 624 ul uoissaidxa |-gd dowoid ouIseb “H1ISN ‘ewowepw ‘OYd 1-ad wisijogelaw ajelde| s[|192> BauL
uojieiniew >1uaboia|o} Jo

ogz OMeEIsOdWwoy ybnoiyy sogbaiw +£9aD 0ul SOJ [BUOHUSAUOD WIOJSURI} ewoued|\ 7d934s ws|jogeldw aeye| sOd

ewouied ajeysoid 9LadD

erz uo1aJ33s 7 |-7| 419yl dNpal pue DAVYL JO UohelUSIBMIP BY1 3D0|q  ‘ewouedw ‘ewoulnied [eljlayloin  ‘9gdd ‘08dAD ‘eldd wsijogelaw ajele| sOa

62 S|[92 631] JUBWIINIDAI BY) DNPAJ PUB UOIIPNPUI DNH| UdYeam J95UeD 1sealg 0-N4| wsijogeldw ajeye| sOd
OAIA Ul
siown} ulyum asuodsas sunwwi ue bunenul woiy wayl bunuasaid

- ‘s|192 1 + 8@D Buneande pue susabpue bupuasaid woiy sHQ HgIyu| o1 A-N41 O-N4I wisijoqelaw 21e3e| sOa
S|]22 Jowin} Ul €£]V1S paleAide yoiym ‘uondnpoud 9-7| bupnpul

ez pue uoissaidxa Adyy Buniqiyoid ybnoayr sissusbowny adueyus bS] Advy  (8LYEH) suonedyipow suolsiy sabeydoidew

€91dD '90zAD

06z uonezuejod ejjboidiw Z AP Wgo ‘LOYY ‘9dg94DI wisijogelaw ajelde| ejjbonjw

o8z Juswdo|aAdp Jowny pue uonewwepul ajowoid avni €z wisljogelaw a3elde| sabeydoidew
uollesayljoid Yy 1oy 24N0S |0IIISAXO

6gz /10491 pue 2le1de| e se uolduNy O3 SWVL SM3Xs gHAT J0 uonenbaiumog J95UeD 1Isealg 7d934s wisijoqelaw 21e1e| sabeydoidew

o8z uonezuejod abeydoioew g\ AP Jadued jsealg €1VIS ‘z/1)43 wisijogelaw a3elde| sabeydoidew

ez UIMOIB pue uoneziie|ndseA Jowny pasnpul vg-4|H dowoid o1 0Z-4IH ‘TPOA9dLY wisijoqelaw 91e3e| sabeydoioew
SS9UIAISEAU] pue siselseldw bun|

o0z Pupueyud Agaiay3 ‘ze 14dD ybnouyy uonezuejod abeydoidew g\ dALP Jadued jsealg 90zAD ‘zeLidn wisijogelaw a3elde| sabeydoidew

ez ymoub Jowny ajowoid pue uoneziejod abeydoioew g\ SALP 77 ‘ewoueRy ejbap ‘LBiy wsijoqelaw a1e3e| sabeydoioew
'sauab II-zIN

ez 30 UoIssaidxa sy bunenbaidn A9y} ey eH 1uapuadap-A1DY aonpul oM LBay wis|jogelaw a3elde| sabeydoidew

oz uonezuejod sbeydoidew z| AP J95Ued 1sealg eybap ‘LBIY  (8LYEH) SuonedyIpOWw 3Uolsly sabeydoioew

(SPEN ‘18T €T1LLIN)
oz UOISBAD SUNWW| Jown) pue uojssaiddnsounwwi adnpui bl'h) IVl SUOI1eDYIPOW SUOISIY-Uou SINILL
JEN| uonoun4 adAy Jadue) auab parenbay wisiueyds 2dA1 |90 sunww|

Ajlunwwi Jowny ul uonejAide| pue a3eide| Jo suondung  °L dqel

Signal Transduction and Targeted Therapy (2025)10:38

SPRINGERNATURE



Ref
315

reduce tumor growth, with the effect being dependent on T cells
stimulate the production of antitumor cytokines and reduce tumor

growth, with the effect being dependent on T cells
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lactate metabolism
lactate metabolism

Mechanism

continued
differentiation 16, CD163 cluster of differentiation 163, CD1a cluster of differentiation 1a, CD206 c-type lectin domain family 10 member A, CD63 cluster of differentiation 63, CD80 cluster of differentiation 80,

CD86 cluster of differentiation 86, c-JUN Jun proto-oncogene, CML chronic myeloid leukemia, CRC colorectal cancer, DCs dendritic cells, ERK1/2 extracellular signal regulated kinase 1/2, FFA free fatty acids, FIP200

FAK family kinase-interacting protein of 200 kDa, Gpr132 G-protein coupled receptor G2A, H3K18 histone H3 lysine 18, HNSCC head and neck squamous cell carcinoma, IGFBP6 insulin-like growth factor-binding
regulatory element-binding protein 2, STAT3 signal transducer and activator of transcription 3, TADC tumor-associated dendritic cells, TCF1 T cell factor 1, TCF7 T cell factor 7, TIMs tumor-infiltrating myeloid cells

protein 6, LDHA lactate dehydrogenase A, LDHB lactate dehydrogenase B, LLC Lewis lung carcinoma, LUAD lung adenocarcinoma, MDSC myeloid-derived suppressor immune cells, METTL3 methyltransferase like
3, mregDCs mature regulatory DCs, NSCLC non-small cell lung cancer, PKM2 pyruvate kinase M2, RARy retinoic acid receptor y, RCC renal cell carcinoma, SLC16A1 solute carrier family 16 member 1, SREBP2 sterol

Abbreviations: ACLY adenosine triphosphate-citrate lyase, AML acute myeloid leukemia, APOC2 apolipoprotein C-ll, Argl arginase-1, ATP6V0d2 ATPase H+ transporting VO subunit d2, CD16 cluster of

Table 1.

Immune cell type
CD8 + T cells
CD4+/8 + T cells
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Immune cells

Lactate/lactylation induces the generation of immunosuppressive
TME in diverse types of tumors?”'~2’> (Table 1). Xiong et al.
elucidated that lactylation of methyltransferase like 3 (METTL3)
was upregulated in tumor- mﬁltratlng myeI0|d cells (TIMs), thus
inducing immunosuppression CRC.%®

Lactate represses differentiation and antigen presentation of
dendritic cells (DCs)."'”2”7 Previous study discovered that
cocultures of melanoma and prostate carcinoma multicellular
tumor spheroids (MCTSs) produced low levels of macrophage
colony-stimulating factor (MF-CSF) and interleukin-6 (IL-6), while
generating significant amounts of lactic acid. Furthermore,
introducing lactic acid in the process of DCs differentiation in
vitro led to a phenotype similar to that of tumor-associated
dendritic cells (TADCs) formed within melanoma and prostate
carcinoma MCTSs, marked by inhibited differentiation and
reduced IL-12 secretion.’®?”® Plebanek et al. discovered that
lactate from melanoma stimulates sterol regulatory element-
binding protein 2 (SREBP2) in tumor DCs, leading to the
transformation of conventional DCs into cluster of differentiation
63 (CD63)+ mature regulatory DCs (mregDCs) through homeo-
static or tolerogenic maturation. Targeted genetic silencing of
SREBP2 in DCs, as well as its pharmacologic inhibition, enhanced
antitumor CD8 + T cell activation and inhibited melanoma
progression.”®® Moreover, Caronni revealed that lactate inhibited
DCs from presenting antigens and activating CD8 + T cells when
co-cultured with Lewis lung carcinoma (LLC) cells, thus prevent-
ing them from initiating an immune response within LLC models
in vivo.®" Furthermore, Nasi et al. uncovered that the lactate-
induced changes in DCs might be density-dependent. In dense
cultures, disrupting lactate production revealed its key role in
reshaping DC functions, leading to increased production of
interleukin-12 (IL-12) and decreased interleukin-10 (IL-10). How-
ever, in sparse cultures, the effects were reversed.?®?

Pertaining to microglia/macrophages, lactate and histone
lactylation promote the conversion of macrophages to M2-type
tumor-associated macrophages (TAM), while TAM enhances the
transcription of M2-like %enes hypoxia-inducible factor 2a (HIF-2a),
ARG1, and VEGF.2%2%6283-285 Thjs polarization-inducing function
may be mediated through extracellular signal-regulated kinase
(ERK)/signal transducer and activator of transcription 3 (STAT3)
pathway.?®® Crosstalk with other epigenetic regulatory mechan-
isms may also occur during the lactate-induced M2 polarization.
As a carbon source for the TCA cycle, lactate induces adenosine
triphosphate—citrate lyase (ACLY)-dependent histone H3 lysine 9
acetylation (H3K9ac) in BMDM, thereby upregulating the expres-
sion of M2-like genes®” Besides, lactate promotes tumor
progression by reprogramming phenotype of microglia and
monocyte/macrophages. Lactate is a pro-inflammatory mediator
which encourages interleukin-23 (IL-23) transcription in Toll-like
receptor (TLR)-stimulated monocytes and macrophages, thereby
sustaining IL-23-dependent interleukin-17 (IL-17) secretion and
polarizing the immune response against T17 cells.®® Down-
regulation of LDHB skews TAMs to function as a lactate and
sterol/oxysterol source for the proliferation of breast tumor
cells.?® Additionally, as sentinel cells in the central nervous
system, microglia upregulate the expression of insulin-like growth
factor-binding protein 6 (IGFBP6) in response to lactate, thereby
promoting M2 polarization and recruitment of microglia in the
zebrafish GBM model.?*°~2°2 Then, H3K18la of TAM prohibited
expression of retinoic acid receptor y (RARy), elevated IL-6 levels
in the TME and activated STAT3 signaling in CRC cells, which in
turn empowered macrophages to promote tumorigenesis.¥>2%*

When it comes to Treg cells, the lactate-rich environment
which is rich in lactate permits proliferation and immunosup-
pressive effect of Treg cells.?®"?°>2% Raychaudhuri et al. found
that lactate weakened interferon-a (IFNa) induction and
enhanced the recruitment of FoxP3 4+ CD4+ regulatory T (Treg)
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cells by plasmacytoid dendritic cells (pDCs) in a mouse breast
cancer model. This impairment boosted the expansion of a
specific group of Treg cells and promoted an immunosuppressive
TME.2*” Moreover, lactate fosters programmed death-ligand 1 (PD-
1) level in Treg cells in rich—glycolysis TME, giving rise to treatment
failure of immunotherapy.”®®**° As the tumor-infiltrating Tregs
require lactate uptake to sustain their immunosuppressive
function, Treg-specific deletion of MCT1 demonstrates that while
lactate blockage is not necessary for the functioning of peripheral
Treg cells, it is essential within TME and leads to an impaired
tumor growth and enhanced sensitivity to immunotherapy.3°%3°"
To add up, Chen et al. manifested that lactate facilitates the
lactylation of APOC2 at K-70, which stabilizes the protein and
subsequently leads to the accumulation of Treg cells, immu-
notherapy resistance, and tumor metastasis of NSCLC.'®'

Furthermore, with respect to T cells and natural killer (NK) cells,
Daneshmandi et al. observed elevated infiltration of NK cells and
CD8+ cytotoxic T cells in melanoma cells deficient in LDHA.3%?
Additionally, Liu et al. found that lactate produced by KRAS-
mutant colorectal cancer cells diminishes the sensitivity to anti-
PD-1 therapy by inactivating nuclear factor-kappa B (NF-kB) and
sensitizing CD8 + T cells to activation-induced cell death (AICD).3*
Furthermore, during this process, circular RNA CircATXN7 may play
a crucial role in inducing NF-kB inactivation and regulating T cell
sensitivity to AICD. It has been identified as a potential target for
enhancing anti-PD-1 therapy in mouse models of colorectal
cancer, pancreatic cancer, and melanoma.®* Apart from that,
Chang et al. demonstrated that prostate cancer released 1-
Pyrroline-5-carboxylate (P5C) which inhibited T cell glycolysis
through enhancing the activity of LDHB3% With regard to
mechanisms, lactate hinders IFN-y production by downregulating
T cell receptor (TCR)-triggered phosphorylation of JNK, c-Jun, and
p38 in Cytotoxic T lymphocyte (CTL).3% Research also revealed
that tumor-produced lactate inhibited focal adhesion kinase
interacting protein (FIP) expression by downregulating nicotina-
mide adenine dinucleotide levels and simultaneously sensitizing
the inhibitory effect of the adenylglycine uridylic acid-rich element
in the untranslated region of the Fip200 mRNA, targeting naive
T-cells to evade the immune response.>*” Besides, lactate and H+
ions exported to the TME impair immune surveillance of effector
T cells and NK cells by respectively inhibiting glycolytic flux,
granzyme B and IFN-y secretion.?3302308

More to the point, lactate-modulated immunosuppression
hinders treatment sensitivity.3°°'® Lin et al. uncovered that
radiotherapy enhanced glycolysis and lactate secretion in
pancreatic cancer, which bolstered myeloid-derived suppressor
immune cells (MDSCs) and promoted a suppressive immune
microenvironment, which in turn led to pancreatic cancer
progression and recurrence.®' In brief, lactate modulates immune
cells in TME, resulting in impaired differentiation, decreased
immune response, evasion of immune surveillance, and treatment
resistance.

Nonetheless, the latest research has revealed divergent view-
points. Lactate stimulates the production of antitumor cytokines,
such as IFNy, IL-2, and TNFaq, in T cells and boosts the proliferative
and cytotoxic capabilities of CD8+T cells3' Furthermore,
administering sodium lactate intraperitoneally (2 g/kg) results in
reduced subcutaneous tumor growth of breast cancer, cutaneous
melanoma, LLC and colon adenocarcinoma, with the effect being
dependent on T cells.3'® Besides, it is reported that lactate hinders
the differentiation and promotes stemness of T cells, thus
enhancing anti-tumor immunity. Feng et al. recently discovered
that high sodium lactate concentrations boosted histone H3 lysine
27 acetylation (H3K27ac) levels at the T cell factor 7 (TCF7) super-
enhancer locus by inhibiting histone deacetylase activity. This, in
turn, led to higher T cell factor 1 (TCF1) expression and enhanced
the stemness of CD8 + T cells.>'®3'® Lactate-induced extracellular
acidosis blocks one-carbon metabolism that short-lived effector
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T cells are highly dependent on, subsequently bringing about
decreased histone 3 lysine 27 trimethylation (H3K27me3) deposi-
tion of memory-related genes, thereby affecting differentiation,
reserving sternness and facilitating anti-tumor cytotoxicity of
T cells. 38320 |t implies that lactate metabolism reprogramming
towards T cells may be a double-edged sword which elicits a
sophisticated effect on its antitumor immunity, which waits to be
further investigated.

Stromal cells

Cancer-associated fibroblasts (CAFs) are essential components
of the TME with multiple roles, encompassing stromal remodel-
ing and deposition, extensive bidirectional signaling interactions
with cancer cells, and communication with immune cells.3?'~32*
Basal membrane (BM) remodeling is the process by which cells
regulate cell-BM interactions by changing the structure and
composition of BM.3?°73% EMT describes the transformation
from epithelial cells to mesenchymal cells.3>?3733" CAFs synthe-
size type | collagen and intensify tumor invasiveness by
promoting BM remodeling and EMT.*32333 |n CAFs coupled with
prostate carcinoma cells models, contact between tumors and
the stroma-activated CAFs through stabilization of HIF-1 that
rely on sirtuin 3 or succinate, initiating mitochondrial oxidative
stress, promoting mitophagy, upregulating expression of GLUT1
and glycolytic enzymes, and facilitating lactate biosynthesis.
Meanwhile, CAFs metabolically reprogramed tumor cells so that
prostate carcinoma cells tended to metabolize CAFs-sourced
lactate rather than glucose through glycolysis.??! In parallel to
promoting malignant phenotypes by facilitating BM remodeling,
EMT, and metabolic reprogramming, CAFs have also been
associated with treatment resistance. Apicella et al. revealed
that the metabolic shift in tumor cells induced by tyrosine
kinase inhibitors (TKls) targeting mesenchymal-epithelial transi-
tion factor or epidermal growth factor receptor (EGFR), which
results in increased lactate production, prompts CAFs to
excessively produce HGF. This process ultimately reinforces
drug resistance and promotes tumor progression.>>*

Endothelial cells

In addition to enhancing tumor invasion and metastasis via tumor
cell lactate autocrine as mentioned above, paracrine secretion of
lactate can directly modulate endothelial cell phenotype, thereby
altering tumor vascular morphogenesis and perfusion.33>7338 As
for non-malignant endothelial cells at regular oxygen concentra-
tions, lactate activates hypoxia-inducible factor 1a (HIF-1a) that
enhances basic fibroblast growth factor (bFGF) and vascular
endothelial growth factor receptor 2 (VEGFR2) expression, which
synergizes with lactate-induced VEGF secretion.>*® Lactate from
tumor cells and stromal cells can enter endothelial cells via MCT1,
promoting 2-oxoglutarate-dependent prolyl hydroxylase (PHD2)
and ROS-dependent NF-kB activation in endothelial cells3*°
Subsequently, endothelial cells produce IL-8, which mediates
angiogenesis via autocrine.'*® In addition to triggering the MCT1/
NF-kB/IL-8 pathway, it was also found that lactate promotes
angiogenesis by stimulating the phosphoinositide 3-kinase/
protein kinase B signaling (PI3K/Akt) pathway. This activation
developed through the engagement of three receptor tyrosine
kinases—AXL receptor tyrosine kinase (Axl), TEK receptor tyrosine
kinase 2 (Tie2), and VEGFR2 in endothelial cells**' A-cyano-4-
hydroxy-cinnamate (CHC) is an inhibitor of MCT1, which inhibits
lactate metabolism.3*273** MCT1 inhibition downregulates VEGF
expression, blocking lactate-induced endothelial cell migration,
vascular outgrowth, and human umbilical vein endothelial cell
(HUVECQ) tube formation. The results of mouse experiments were
consistent with cytological experiments that subcutaneous lactate
matrix plugs promoted angiogenesis and that inhibitors of MCT1
inhibited angiogenesis in mouse HCC subcutaneous tumor
model.>*°
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CLINICAL APPLICATION AND INTERVENTIONS

Disruption of lactate homeostasis is one of the major mechanisms
of tumor-targeted therapy.>**3*’ The major targets for lactate
production and transport are LDH and MCTs**® (Table 2). LDH
transforms pyruvate to lactate, and inhibition of its activity
reduces lactate production. Besides, MCTs promote lactate
transport. Targeting them disrupts lactate from release. On top
of that, altered lactate levels may result in a therapeutic effect
single-handedly or synergize with other conventional adjunctive
anti-tumor treatments such as immunotherapy, chemotherapy,
and thermotherapy for sensitizing effects.

Novel detection methods for lactate

Advanced molecular and imaging techniques are providing new
insights into the mechanisms and functional importance of the
fluctuation in tissue lactate/lactylation levels that occur during
tumor progression. 373"

As for chemical probe for lactate detection, a fluorescently
tagged analogue of L-lactate was employed as an L-lactate mimic
to explore its transportation and metabolic processing within live
cells.>>? Aside from lactate-detecting probes, single-cell technique-
based metabolomics analysis introduces a computational frame-
work for profiling lactate metabolism and outlines key principles
of the TME.>*3>737 For instance, metabolite set enrichment analysis
revealed that metabolic pathways associated with the Warburg
effect are linked to the metastatic potential of CRC cell lines.>*®
Subsequently, using a custom-built single-cell quantitative mass
spectrometry platform, researchers monitored 14 identified
metabolites in individual circulating tumor cells from CRC patients
and developed a 4-metabolite fingerprint classifier, which includes
lactate, to efficiently predict metastasis risk.>>> Moreover, using
isotope-tracing-based metabolic flux analysis, researchers can
trace the path of each isotopic carbon atom, thereby assisting in
gaining deeper insights into the particular intermediates and
detailed metabolic processes caused by lactate.3'® For example,
with the assistance of isotope-tracing analysis, researchers proved
that '*C-glucose labeled TCA intermediates were superior to that
with "3C-lactate label in the brain, TCA labeling from lactate was
significantly higher than infused '*C-glucose in other tissues.'*®
Besides, using '>C-labeled metabolic flux assays, researchers found
that the preference for glycolysis and OXPHOS varies across
variant stages of the cell cycle in breast cancer cell lines. Cells in
the G1 phase primarily prefer OXPHOS, while cells in the S phase
predominantly prefer glycolysis.**>*¢! To add up, by intravenously
administering primed [U-">Cllactate (completely labeled with
carbon-13 at three positions) and utilizing imaging mass spectro-
metry (IMS), Bartman et al. mapped TCA cycle flux across various
tumor models.'**%23%3 Their findings revealed that TCA flux in
primary solid tumors, such as pancreatic cancer, NSCLC, and CRC,
was lower than in corresponding normal tissues, while in
hematological malignancies like NOTCH1-driven T cell acute
lymphocytic leukemia, TCA flux in the spleen was elevated
compared to normal spleen tissue’393%*3%> Additionally, in a
breast cancer lung metastasis model, metastatic sites exhibited
higher TCA flux compared to primary sites. These results suggest
that despite an increase in glycolytic flux in tumors relative to
normal tissues, the rate of ATP production is reduced.>*¢3¢” In
addition, as for metabolic imaging, Li et al. reported a high-
performance imaging technique for monitoring lactate, named
FiLa, which achieves in situ, real-time, and quantitative dynamic
tracking of lactate metabolism in live cells, subcellular structures,
and in vivo.*®® This method has made significant advances in
understanding lactate spatial distribution, regulatory networks,
drug screening, and clinical diagnostics. The FiLa probe, used for
detecting lactate levels in subcellular organelles, showed that
lactate concentrations in the nucleus are comparable to those in
the cytoplasm, while mitochondrial lactate levels are markedly
higher than those in the cytoplasm and nucleus.3%°
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Since lactylation is a relatively new discovery, its presence on
non-histone proteins and its subsequent functional impacts are
not yet well unearthed, which proposes urgentexpectations for
accurate detection methods of lactylation. Wan et al. presented a
cyclic immonium (Cyclm) ion of lactyllysine (Klac) that formed
during tandem mass spectrometry, which allowed for precise
assignment of protein lactylation. The sensitivity and specificity of
this lactylation detecting method were confirmed through affinity-
enriched lactylproteome analysis and extensive informatic evalua-
tion of non-lactylated spectral libraries.>”® Sun et al. also invented
a chemical lactylation probe named sodium (S)-2-hydroxypent-4-
ynoate (YnLac) which metabolically integrated into lactylated
proteins, allowing them to be directly tagged with fluorescent or
affinity markers for fluorescence visualization or proteomic
analysis.>”' Moreover, single-cell technologies play a crucial
supportive role in studies related to tumor lactylation. It enables
detailed correlation analyses based on cell type and the lactylation
level, revealing genes associated with lactylation of specific cell
population. It provides multi-dimensional indicators for evaluating
tumor metabolic phenotypes and predicting tumor prognosis and
has been applied in CRC.3%*”® In summary, advancements in
detection technologies are pressingly required to offer fresh
insights into whether and how lactate/lactylation influences a
plethora range of biological processes in different cell populations
and plays a role in oncology.

Targeting LDHs
LDH is a tetrameric enzyme that mediates bidirectional transfor-
mation between pyruvate and lactate. LDHA is the prevailing
isoform utilized by cancer cells to bypass OXPHOS. This diverts
metabolic precursors of pyruvate into the pentose phosphate
pathway, which supports cancer cell proliferation.”*'9374375 p
high level of LDHA indicates poor prognosis in several human
malignancies.'®>376377 Meanwhile, overexpression of LDHB has
been found in plenty of different cancers, including breast,
thyroid, lung, and pancreatic cancer, which is significantly
associated with unfavorable prognosis.>’3%° Current efforts are
focused on development of LDH inhibitors with better cellular
potency, PK properties, and selective compounds and remain in
preclinical state. AT-101 (gossypol), as an EGFR mutation targeted
therapy, has been used in phase I/l randomized clinical trials of
advanced non-small cell radiation-induced lung cancer, head and
neck cancer and metastatic castration-resistant prostate cancer.
Thus, standard chemotherapy with AT-101 has achieved potential
benefits in high-risk patients or some patients with prolonged
progression-free survival or overall survival (NCT01003769,
NCT00988169, NCT00286780, NCT00540722).>%" Nonetheless, AT-
101 and its derivative FX-11, galloflavin, and N-hydroxyindole-
based compounds are promising cell-active LDHA inhibitors,
which pharmaceutic effect hasn't been applied in clinical
practice.”®382383 |ntravenous injection of LDHA/B inhibitor NCI-
006 inhibits LDH activity and its growth in pancreatic cancer
mouse models, so as oral administration of LDHA inhibitor GNE-
14038438  Moreover, LDH PROteolysis TArgeting Chimeras
(PROTAC) degrader, MS6105, time and ubiquitin-proteasome
system-dependently degrades LDHA/B and inhibits the prolifera-
tion in multiple pancreatic cancer cell lines®” The efficacy of
LDHA inhibitors is limited due to LDH between different tumors
and metabolic reprogramming-mediated LDH isoform transforma-
tion.>4>388 Furthermore, a combination of LDHA inhibitor oxamate
and respiratory complex | inhibitor metformin retards tumor
progression in melanoma mice models.**°

LDH-targeted therapy also achieves curative effect when
combined with adjuvant treatments. Regardless of its effect as a
tumor suppressor, emerging evidence validates the role of LDH
inhibitors as an immunotherapy sensitizer.3*° Using oxamate and
PD-1 blockade pembrolizumab stimulated CD8 + T cell infiltration
and hindered tumor proliferation in humanized mouse NSCLC
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model, thereby sensitizing immunotherapy.®®' In preclinical

melanoma mouse model, LDHA inhibitor GSK2837808A increased
therapeutic effect of adoptive T cell therapy (ACT).3*? Likewise,
LDH inhibitors contribute to photothermal therapy (PTT). Zhao
et al. Constructed a Zinc-enriched nanosystem which contained
both glycolysis inhibitor LND and LDHA inhibitor Zinc for
combined glycolysis modulation and photothermal therapy. In
addition, LDHA inhibition induced by oxamate led to the
accumulation of ROS and depletion of cellular ATP, leading to
DNA damage, DNA repair activity impairment and boosted
radiotherapy efficiency in NSCLC.'"”® Moreover, LDHA inhibitor
restores sensitivity towards radioiodine (RAI) in papillary thyroid
cancer (PTC). Shi unvealed that long noncoding RNAs (IncRNAs)
glycine-rich long non-coding transcript (GLTC) hindered the
succinylation of LDHA at K-155 by impeding the competitive
inhibition of GLTC against the binding of sirtuin 5 (SIRT5) to LDHA.
This restraint of LDHA enzymatic activity inhibited tumor
progression and resistance to RAl in PTC3

Results demonstrated that the presence of free zinc ions led to a
concentration-dependent inhibition of LDHA activity and an
elevation in LDH efflux, invigorating PTT treatment and synergis-
tically suppressed primary melanoma and lung metastasis.***

Targeting MCTs

Targeting MCTs exerts significant effects on metabolic symbio-
sis.*? There are a variety of MCT inhibitors, including
CHC, 3427344395 grganomercurial compounds,®*® photothialdehyde
benzenesulfonate,>*® as well as second-generation pharmaceuti-
cals of more acceptable selectivity, such as AR-C155858 for MCT1/
2%%73% and BAY8002, SR13800 for MCT1.>°°*% In addition,
AstraZenec's compound AZ3965, which targets MCT1/2, has
shown promising results in preclinical studies in small cell lung
cancer (SCLC).”® Surely, AZ3965 is also therapeutically effective in
models of MCT1-positive Burkit's lymphoma, breast and gastric
cancers.”33%° AZD3965 has already finished a Phase I/1l clinical trial
(NCT01791595) in patients with solid tumors diffuse large B-cell
lymphoma,’®”? which reveals its pharmacokinetic characteristics
and adverse effects and suggests that AZD3965 is tolerated at
doses that produce target engagement. Dose-limiting toxicities
were on-target and primarily dose-dependent, asymptomatic,
reversible ocular changes. Preclinical evidence and retrospective
analyses suggest MCT4 may serve as a compensatory option for
MCT1 activity as long as MCT1 is downregulated. This study
suggests the complexity of targeting MCT and potential resistance
mechanisms.”® Moreover, targeting MCT1 boosts tumor reactivity
of CD8 + T cells by exerting influence on lactate catabolism.

In addition to MCT1 inhibitors, MCT4 inhibitors have shown
promising applications. In hypoxic TME, MCT4 expression is
induced by HIF1a3%'® Knocking down MCT4 reverses the
changes in sensitivity of lung adenocarcinoma cell lines to
glycolysis inhibitors and OXPHOS inhibitors under hypoxic
conditions, indicating the vital role of MCT4 in lactate-targeted
therapy.”®' MCT4i is a promising therapeutic choice for gastric
cancer,*®? colorectal cancer,*®® breast cancer,***4%° prostate
cancer,*®® lung adenocarcinoma (LUAD),*” and GBM.*%®4% The
combination of MCT1i (AZ3965) and MCT4i (AZ93) significantly
inhibited proliferation in colorectal cancer cell lines.*™°
7-Aminocarboxycoumarins (7ACCs) compounds prevented MCT1
compensation resulting from MCT4 inhibition by simultaneously
suppressing both MCT1 and MCT4, down-regulating mitochon-
drial pyruvate transport leading to intracellular pyruvate accumu-
lation, and blocking lactate inward compensation.'”? The
assistance of the chaperone molecular chaperones CD147 or
basigin (BSG) assures expression of MCT1 and MCT4 at the plasma
membrane.*'#'? Preclinical models of prostate cancer show that
inhibition of CD147/BSG achieves modulation of lactate transport
through MCT1/MCT4 activity, reducing lactate efflux and tumor
growth.>*” The CD147 dimerization inhibitor AC-73,%"® the human/
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mouse chimeric IgG1 mAb of CD147 named metuzumab,*'* the
organomercurial reagent p-chloromercuribenzene sulfonate
(PCMBS),*'> which blocks MCT1/MCT4-CD147 binding 118 are
available CD147-targeted anticancer drugs. Nonetheless, on a
cautionary note, CD147 is ubiquitously expressed and interacts
with other proteins at the cell surface. Thus, strategies selectively
targeting CD147-MCT interactions ought to minimize drug toxicity
and establish a therapeutic window.?

There is evidence that integration of MCT-targeted and other
therapies fulfill a better therapeutic role. Li et al. revealed that in
breast cancer mouse model, MCT inhibitor Syrosingopine down-
regulated the number of Treg cell and upregulated that of NK cells
and M1 phenotype of TAM, suggesting reversal of the immuno-
suppressive TME.*'® Meanwhile, Ma et al. found that in vivo and
in vitro, Lithium carbonate (LC) assisted MCT1 localization to
mitochondrial membranes and lactate influx into mitochondria.
Revitalization of tumor-reactive CD8 + T cells induced by above-
mentioned extra energy support sensitized immunotherapy
towards CRC, melanoma and breast cancer.*'’ It sheds insight
on the aspect that MCT targeted therapy may fulfill a role in
synergy with immunotherapy.

Other lactate-targeted strategies

While development of LDH and MCT inhibitors is in full swing, there is
emerging concern that they can disrupt the metabolism of healthy
cells and cause severe non-specific toxicity. As for solution to
overcoming these shortcomings, researchers put forward the opinion
that lactate oxidase (LOx) was a therapeutic option which reduced
lactate concentrations, released H,0, and recruited immune cells,
overcoming immunosuppression and sensitizing immunother-
apy.'®*1? Moreover, the drug delivery system of LOx evolves
gradually from polymer nanocarriers into self-assembled nanoparti-
cles, the update refinement of which empowers its application
towards chemotherapy and sonodynamic therapy (SDT) sensitiza-
tion.”>*** The depletion of lactate catalyzed by LOx generates
pyruvate, which in turn activates clustered regularly interspaced short
palindromic repeat-associated protein 9 (CRISPR/Cas9)-mediated
signal-regulatory protein alpha (SIRPa) genome-editing plasmids.
When combined with a metal-organic framework (MOF), LOx and
these plasmids are utilized to form nanoparticle named LPZ (LOx,
Cas9/sgSIRPa plasmids, mannose-modified PEG loaded-ZIF-67) and
facilitate the conversion of M2 macrophages to M1 macrophages,
thereby inhibiting the growth of in situ breast cancer models.**> This
approach offers a method for LOx-induced-CRISPR/Cas9-mediated
macrophage gene editing directly within the tumor site and presents
a potential strategy for enhancing immunotherapy.*?***” For instance,
Luo et al. utilized nano-ZIF-8 as the carrier to construct the Hb-LOx-
DOX-ZIF8@platelet membrane nanosystem (HLDZ@PM NPs) and
effectively enhance the tumor sensitivity to DOX-induced chemother-
apy.*® Anchor LOx onto the surface of lactobacillus (LA) also
increased lesion targeting and delivery efficiency, enabled LOx to fully
catalyze lactate oxidation and depletion of intra-tumor oxygen, thus
activating the chemotoxicity drug to induce apoptosis.*****°® Zhang
et al. developed a metal-phenolic network-based nanocomplex,
incorporating LOx and the mitochondrial respiration inhibitor
atovaquone (ATO) to reconstruct the immunosuppressive TME. This
nanocomplex demonstrated superior pharmacological effects com-
pared to single-agent therapy in breast cancer SDT.**’

Besides, the newly-reported targeting strategy also aims to
block AARS1, which serves as a bridge linking tumor cell
metabolism with proteomic changes. B-Alanine blocked the
interaction between AARS1 and lactate, preventing subsequent
lactyl transfer. As a result, the tumor suppressor gene p53 was not
lactylated at K120 and K139, which inhibited tumor progression in
a CRC mouse model.?** Downregulation of pan-Kla writer KAT8 by
the histone deacetylase (HDAC) inhibitor MG149 blocks the KAT8-
eEF1A2 Kla axis and suppresses CRC tumor growth, particularly in
a high-lactic TME.>*°
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Likewise, there are other elucidated strategies of dual regulation
of metabolism and immunity. Li et al. invented an in-situ injection
of a thermogel loaded with glucose transporter 1 (GLUT1)
inhibitor-sensitized GBM immunotherapy of PD-1/PD-L1 blocker
BMS-1 through alleviating lactate-driven Treg cells.**? Additionally,
Niu et al. invented a novel single-atom nanozyme pyroptosis
initiator: UK5099 and pyruvate oxidase (POx)-co-loaded Cu-NS
single-atom nanozyme (Cu-NS@UK@POx), offering a dual-pronged
approach that effectively enhanced the immunotherapeutic anti-
tumor effects by inducing ROS storms and lactate/ATP deple-
tion.*** Aside from the oxidative catabolism of lactate, neutralizing
it with a basic salt is another potential strategy for targeted
therapy. Inhibiting spontaneous metastases in mouse models of
metastatic breast cancer was shown to be effective by neutralizing
lactate in the tumor using a basic salt such as NaHCO;.*** Besides,
acid-neutralizing CaCO3 nanoparticles were used to maintain the
pH within the normal physiological range in breast cancer cells,
which inhibited the proliferation and migration.*** To sum up, as
other intervention in tumor lactate metabolism shows great
potential to of chemotherapy and immunotherapy sensitization.
The optimal scheme of organically combining lactate metabolic
regulation with other therapies, which includes screening the
most effective lactate regulation target, determining the best
treatment time window, and identifying the most appropriate
action site to maximize antitumor efficacy, remains to be further
explored. Further exploration is needed to determine the optimal
approach for effectively integrating lactate metabolic regulation
with other therapies. This includes identifying efficient target,
determining the optimal treatment time window, and pinpointing
the most suitable action site to maximize the anti-tumor efficacy.

By inhibiting H3 histone lactylation (H3K9la and H3KS56la),
demethylzeylasteral decreased the tumorigenesis driven by liver
cancer stem cells (LCSCs) both in vivo and in vitro. This indicated
that lactylation inhibition served as a potential candidate for
adjunctive tumor therapy.”* Besides, Xu et al. also found that by
downregulating lactylation at H3K9la and H3K14la, lactate
production was reduced by royal jelly acid (RJA), thereby
inhibiting tumor invasion, migration, proliferation, and apoptosis
of HCC.>*

Inhibition of non-histone lactylation at the MRE11 K673 site
through K673-peptide-3# (K673-pe) suppressed HR in CRC,
thereby restoring its sensitivity to chemotherapy and poly ADP-
ribose polymerase inhibitor (PARPi). Hearin, K673-pe exhibited a
synergistic tumor-suppressive effect when combined with che-
motherapy.®*® D34-919 blocked the interaction between
ALDH1A3 and PKM2 in GBM cells, thereby suppressing the
downstream lactylation of XRCC1, which restored the sensitivity of
GBM to TMZ-based chemotherapy and radiotherapy in GBM
organoid models.244+43¢

Potential targeted therapeutic approaches may be possible by
targeting lactate production and transport, particularly through
LDH and MCTs. However, because these molecules are involved in
complex interactions that control multiple signaling and meta-
bolic events, it is challenging to determine the quantitative
contribution of modulated lactate balance to therapeutic effi-
cacy.*”*38 |n addition, metabolic targeting depends on specific
metabolic requirements, by way of example, lactate metabolism-
targeting drugs are ineffective against glutamine-dependent cells.
The metabolic heterogeneity of diverse tumor types, varied clinical
stages, distinct cell populations within the TME may be one of the
factors contributing to the poor efficacy of metabolic-targeted
drugs.***7**! To elaborate, in the study by Liu et al,, it was shown
that when the metabolic pathway of HCC, the most common type
of primary liver cancer, shifted from glycolysis to OXPHOS, the
proliferation of HCC cells and tumor growth were inhibited.**?
However, for cholangiocarcinoma (CCA), the second most
common type of primary liver cancer, mitochondrial OXPHOS
metabolism helps maintain stem-like characteristics in CCA,
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thereby conferring tumorigenic potential and chemotherapy
resistance in vivo.'*®*** Apart from primary liver cancer, PD-1
resistant NSCLC cells were characterized by a markedly lower
glycolytic reserve and exhibited a significantly higher reliance on
OXPHOS compared to PD-1 sensitive NSCLC cells, which implies
that tumor progression leads to complex changes in lactate
metabolism flux.>?**" As well as primary liver cancer and NSCLC,
CRC exhibits different lactate metabolism across various histolo-
gical and molecular subtypes.*****> Based on global genomic
profiling, CRC can be classified into microsatellite stable (MSS) CRC
and microsatellite unstable (MSI) CRC, with differences observed in
mitochondrial DNA (mtDNA) copy numbers between these two
types.**® Sun et al. found that MSS cancer cells with higher mtDNA
copy numbers tended to rely on OXPHOS, which promoted
malignant tumor development.**” Conversely, MSI cancer cells
with lower mtDNA copy numbers depended on glycolysis, which
contributed to tumorigenesis and cisplatin chemoresis-
tance.'®%**¢48 |n various cancers such as gastric cancer, breast
cancer, HCC, NSCLC, endometrial cancers (EC) and renal cell
carcinoma (RCC), mtDNA levels are decreased.***™**' Conversely,
mtDNA copy numbers are elevated in other cancer types,
including CRC, esophageal squamous cell carcinoma, acute
lymphoblastic leukemia, head and HNSCC, and ovarian can-
cer.*2™%7 This suggests both complexity and potential common-
alities in lactate metabolism characteristics across tumor types.
Meanwhile, when applied to tumors characterized with unlock-
ing phenotype plasticity, lactate inhibitors are characterized with a
high off-target rate and low specificity to lactate metabolism,
which obscures their true pharmacological mechanisms and
therapeutic effects 383384458459 | this situation, targeting the
metabolic symbiosis between cancer and stromal cells by
inducing metabolic switching in the tumor TME leads to
sensitization of targeted therapies. For instance, anti-angiogenic
drugs may elicit a more hypoxic TME, thereby reducing the
metabolic heterogeneity of the TME and enhancing the efficacy of
targeted therapies. However, metabolic malleability in invasive
tumors results in recurrence as well as drug-resistant clones with
more complex metabolic profiles. Last but not least, changes in
the non-cancerous cells during treatment are another being issue
that metabolic targeting may confront. Lactate not only provides
energy to neurons but also spreads beyond the active zone,
influencing the function of neurons and astrocytes in nearby
regions.'”? Playing a role in processes ranging from neurovascular
coupling to learning and memory, lactate serves a dual purpose as
both a metabolic fuel and an intercellular signaling mole-
cule.*%41 On the one hand, in relation to normal cells which
lactate/lactylation exerts a pivotal effect on its physiological
functions, lactate/lactylation targeted therapy may inflict a fatal
blow to their structure and operation.*®2~*%* For example, playing
a role in processes ranging from neurovascular coupling to
learning and memory, lactate serves a dual purpose as both a
metabolic fuel and an intercellular signaling molecule.”'3*° Also,
current research demonstrated the critical role of lactate and
lactate transport enzymes, such as LDHA, in biogenesis and
function of phototransduction system.*®>*%® Lactate stimulated
by insulin from the retinal pigment epithelium (RPE), supports the
crucial visual functions of photoreceptors by enhancing glucose
absorption in the retina.*®® Last but not least, notably, the
interplay between epigenetic mechanisms complicates the
selective targeting of histone lactylation without influencing
acetylation.?'****’% On the other hand, immune system activation
is accompanied by changes in immune cell metabolism.*”" As an
illustration, the activation of lymphocytes during the anti-tumor
process of the immune system is dependent on the Warburg
effect. Moreover, lactate, through arrestin -2 (ARRB2) and GPR81,
inhibits Toll-like receptor (TLR)-induced activation of the NOD-like
receptor family pyrin domain containing 3 (NLRP3) inflammasome
and the production of interleukin-1 beta (IL-18)."%° Thus, if an
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antimetabolic compound impairs tumor cell growth, it can also
inhibit the anti-tumor immune response and anti-inflammasome-
mediated inflammation immunomodulation.*’%473

To overcome the heterogeneity and adaptability of tumor
metabolism, enhance the specificity of targeted drugs, minimize
adverse effects, and hinder the occrurence of treatment resis-
tance, novel investigations in targeted therapy focus on devising
novel small-molecule inhibitors, developing robust delivery
systems that adhere to the 3 R delivery principle (right site, right
timing and right dose) and exploring rational and effective drug
combination strategies.*’+ 76

Regarding novel lactate/lactylation inhibitors, PROTAC are novel
small-molecule inhibitors that downregulate or even eliminate
their target proteins via the ubiquitin-proteasome pathway.*’” As
PROTAC effectively degrade target proteins even under conditions
of low affinity, they avoid several drawbacks associated with
traditional small-molecule inhibitors, such as the need for high
specificity to protein binding pockets, the development of
resistance due to mutations at binding sites after prolonged use,
and the cumulative toxicity from sustained high concentra-
tions.*’$*%% Furthermore, PROTAC have successfully achieved
dual targeting of LDHA/LDHB and proliferation inhibition in
pancreatic cancer cell lines. Following intraperitoneal injection,
the plasma of mice also indicated favorable drug bioavailability.>®”
This suggests that PROTAC could serve as a useful molecular tool
for in-depth research to target lactate metabolism.

Considering delivery systems to effectively restore aberrant
lactate and lactylation levels, catalytically active nanomaterials and
gene-editing techniques have shown the therapeutic potential in
previous studies.*®®*®" Catalytically active nanomaterials, often
known as “nanozymes,” have emerged as promising alternatives.
They present numerous benefits, such as improved catalytic
efficiency, resistance to harsh environments, prolonged effective-
ness, and precise targeting.*?'*82%83 These benefits grant
nanozymes diverse and potent therapeutic potential in delivering
small molecule lactate/lactylation inhibitors.”’® Apart from nano-
zymes, gene editing techniques have also demonstrated possible
functions in steamlinedly regulating lactate and lactylation.
Adeno-associated virus (AAV) is viewed as among the leading
viral vectors for gene delivery due to its capacity to infect diverse
tissue types and its reputation as a comparatively low-risk option
for gene transfer.*®** 88 AAV8-packaged vectors have been
utilized for sclera-specific gene editing, which was employed to
investigate how enhanced lactate/lactylation levels in the sclera
promote myopia.*®’ This indicates the possible function of the
AAV delivery system in targeted gene editing and its subsequent
application in epigenetic therapy. Furthermore, LOx-catalyzed
lactate depletion activates CRISPR/Cas9-mediated SIRPa genome-
editing plasmids, which, when combined with a MOF, are used to
promote the conversion of M2 macrophages to M1 macrophages
in the breast cancer TME, thereby hinting the therapeutic effect of
CRISPR/Cas9-mediated genome-editing.*>*****" In a word,
extensive breakthrough upon lactate targeted therapy requires
further research into lactate/lactylation biology, related molecular
pathways, and associated interactions between consonants of
TME to provide foundational support.

Lactate assisted therapy

While lactate has long been considered a productive substrate for
energy metabolism of tumors, recent studies have uncovered
conflicting perspectives. Extracellular acidosis impedes one-
carbon metabolism crucial for short-lived effector T cells, promot-
ing their differentiation, resilience, and anti-tumor cytotoxi-
city>'®42  Concerning immune checkpoint blockade (ICB)
therapy, it was demonstrated that inhibiting LDHA in melanoma
mouse model significantly boosted the efficacy of anti-PD-1
therapy. This combined approach effectively disrupted the PD-1/
PD-L1 pathway, leading to enhanced pro-inflammatory anti-tumor
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responses, including heightened infiltration and activity of NK cells
and CD8+ cytotoxic T cells, and a decreased frequency of Treg
cells.>2 Additionally, extended study validated the immunother-
apy sensitization effect of lactate in vivo. Subcutaneous admin-
istration of sodium lactate solution promotes antitumor immunity
through CM8 4T cells and sensitizes immunotherapy in CRC,
NSCLC and melanoma mouse models.'® This suggests that the
reprogramming of lactate metabolism in T cells may have a
nuanced impact on antitumor immunity, posing a potential dual
effect that warrants further exploration. Besides, AlkB homolog 5
(ALKBHS5) inhibitor ALK-04 enhances the sensitivity of anti-PD-1
immunotherapy and immune cell recruitment by downregulating
MCT4 levels and lactate production in melanoma.**?> Moreover,
anti-APOC27%"¢  antibody interferes with K70 lactylaton of
APOC2, thus thwarting FFA release, blocking the accumulation
of Treg cells and sensitizing anti-tumor response of
immunotherapy.'®'

Regarding lactate-targeted strategies for radiotherapy sensitiza-
tion, Yao et al. developed a novel CoMnFe-layered double oxides
(LDO) nanosheet with multienzyme activities, which not only
enhanced ROS production during radiotherapy but also catalyzed
lactate into pyruvate. This innovation offers a therapeutic strategy
to eliminate lactate from the TME and improving radiotherapy
efficacy for uveal melanoma (UM).**3

In terms of chemotherapy sensitization, lactate has been found
to confer chemoresistance by increasing the expression of
multidrug resistance-associated protein 1 (MRP1, encoded by
ATP-binding cassette sub-family C member 1 (ABCC1)), which
induces drug efflux from cells. Nevertheless, the use of NaHCO3 to
neutralize lactate may reverse this resistance, making NSCLC cells
more susceptible to the chemotherapeutic drug etoposide.*** To
add up, leveraging the acidity and high levels of lactate in the
TME, the engineered LOx-immobilized Ce-benzenetricarboxylic
acid (Ce-BTC) MOF facilitates the intratumoral production of
hydroxyl radicals (-OH) through a cascade process. This strategy
allows for pH-dependent, sensitized and targeted chemotherapy
in HCC mouse model.**

In addition to immunotherapy, radiotherapy and chemotherapy,
lactate-targeted therapy can also have a synergistic effect when
combined with targeted therapies. It is demonstrated that lactate
stabilized NF-kB within CAFs, prompting the secretion of tumor-
promoting HGF, which induced TKls resistance in tumor cells. When
targeted therapies are used in combination with MCT1/2 inhibitor
AZD3965 or LDHA inhibitor NHI-Glc-2, the sensitivity is restired in
SLCLC and gastric cancer and they achieve more favorable efficacy.3**
Lactate also induces resistance to pan-Akt inhibitor uprosertib in CRC.
Notably, combining uprosertib with MCT1/2 inhibitor AZD3965

reversed this resistance through the inhibition of lactate uptake.**®

CONCLUSION AND FUTURE DIRECTIONS
Lactate is proven to be a key source of circulating carbohydrates
that fuels the TCA cycle and promotes energy production in
tumors. Changes in lactate metabolism impact tumor progression,
as lactate can enter cells through various pathways, such as
intercellular transport via MCT. This process, known as metabolic
symbiosis, plays a crucial role in tumor biology by facilitating
interactions between different cell populations in the TME. In
tumor cells, lactate enhances the lactate shuttle as well as
affecting cell signaling pathways, promoting resistance to
oxidative stress, and leading to lactylation. In other cell popula-
tions, interaction between lactate and immune cells influences cell
differentiation, immune response, immune surveillance, and
sensitivity to treatment. Additionally, communication between
lactate and stromal/endothelial cells reinforces invasiveness and
progression of tumors.

Given lactate’s extensive role in cancer metabolism and its
influence on both tumor and immune cells, targeting lactate
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metabolism has emerged as a promising strategy for cancer
treatment. When it comes to detection of lactate/lactylation,
advanced molecular and imaging techniques are shedding new
light on the mechanisms and functional significance of fluctua-
tions in tissue lactate and lactylation levels throughout tumor
progression. In addition, researchers have explored various
approaches to inhibit lactate production or block its transport
within tumors, with the goal of disrupting the metabolic symbiosis
that sustains tumor growth. Despite the potential of targeting
lactate, most lactate-targeted therapies remain in the preclinical
stage, with only a few advancing to clinical trials. One notable
example is AZD3965, an inhibitor of MCT1/2, which has under-
gone a phase | clinical trial (NCTO1791595) in patients with
advanced cancer. This trial has provided insights into the
pharmacokinetics and adverse effects of AZD3965, but further
clinical trials are needed to assess its efficacy and therapeutic
potential in a broader range of cancers.

However, significant challenges remain in the development of
effective lactate/lactylation-targeted therapies. One major obsta-
cle is that determining the quantitative contribution of modulat-
ing lactate balance to therapeutic efficacy remains challenging.
Besides, according to the metabolic heterogeneity across different
tumor types, clinical stages, and distinct cell populations within
the TME, the heterogeneity and complexity of the TME make it
difficult to achieve effective drug concentrations at the tumor site
and complicate the effectiveness of metabolic-targeted drugs.
Additionally, when lactate inhibitors are applied to tumors
characterized by phenotypic plasticity, they often exhibit high
off-target effects and low specificity to lactate metabolism, making
it difficult to pinpoint their true pharmacological mechanisms and
therapeutic benefits. Moreover, changes in non-cancerous cells
during treatment introduce further complexities, as these indis-
criminate alterations may undermine the effectiveness of immune
response, confront normal physiological functions and lead to
unintended side effects.

To tackle the challenges associated with lactate/lactylation-
targeted cancer therapies, recent investigations have increasingly
focused on several key areas of innovation that hold significant
promise for improving treatment outcomes. One major area of
focus is the design and optimization of novel small-molecule
inhibitors that exhibit enhanced specificity and efficacy against
tumor cells. These inhibitors aim to selectively disrupt lactate-
related pathways, thereby reducing the cancer cells’ metabolic
adaptability. In tandem with this, researchers are developing
advanced drug delivery systems that are both robust and efficient,
enhancing bioavailability and precision targeting of therapeutic
agents. Such innovations are crucial for ensuring that drugs reach
their intended sites of action in sufficient concentrations to exert
their effects while minimizing side effects on healthy tissues.
Furthermore, the exploration of rational, synergistic drug combi-
nation strategies is gaining traction. These combination therapies
are designed to target multiple pathways simultaneously, thereby
minimizing the potential for drug resistance and improving overall
therapeutic efficacy. By employing a multi-faceted approach,
these strategies aim to overcome the limitations of current
therapies, ultimately leading to more favorable treatment out-
comes and improved prognoses for cancer patients.*”

In conclusion, although lactate-targeted therapies show consider-
able promise in the realm of cancer treatment, they are still in the
early stages of development, and substantial efforts are required to
unlock their full potential. A comprehensive understanding of how
lactate interacts with various metabolic and epigenetic processes in
cancer is crucial for creating more effective therapeutic strategies. By
elucidating these complex relationships, researchers can develop
novel cancer therapies that leverage the unique properties of lactate
and lactylation. Such advancements in lactate/lactylation-targeted
therapy are urgently needed to effectively suppress tumor growth,
overcome drug resistance, and ultimately improve patient outcomes,
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paving the way for more personalized and successful treatment
approaches in oncology.
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