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Herpes zoster (HZ) is a localized, painful cutaneous eruption that occurs

upon reactivation of the herpes virus. Postherpetic neuralgia (PHN) is the

most common chronic complication of HZ. In this study, we examined the

metabolomic and proteomic signatures of disease progression in patients

with HZ and PHN. We identified differentially expressed metabolites (DEMs),

differentially expressed proteins (DEPs), and key signaling pathways that

transition from healthy volunteers to the acute or/and chronic phases of

herpetic neuralgia. Moreover, some specific metabolites correlated with pain

scores, disease duration, age, and pain in sex dimorphism. In addition, we

developed and validated three optimal predictive models (AUC > 0.9) for

classifying HZ and PHN from healthy individuals based on metabolic patterns

and machine learning. These findings may reveal the overall metabolomics

and proteomics landscapes and proposed the optimal machine learning

predictive models, which provide insights into the mechanisms of HZ and

PHN.

KEYWORDS

herpes zoster, postherpetic neuralgia, herpetic neuralgia, proteomics, metabolomics,
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Introduction

Herpes zoster (HZ) is caused by reactivation of the herpes virus, which occurs
during aging or immunosuppression and presents as a localized, painful cutaneous
eruption (Sampathkumar et al., 2009; Bader, 2013). The annual incidence of HZ is 2–
5/1,000 people per year (Johnson and Rice, 2014). Furthermore, cancer and immune
dysfunction may increase the incidence of HZ (Johnson and Rice, 2014). Postherpetic
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neuralgia (PHN) is the most common chronic complication
of HZ, with an incidence rate of up to 30%, and is defined
as pain lasting more than 3 months after the rash has healed
(Sampathkumar et al., 2009; Johnson and Rice, 2014; Yang et al.,
2019). However, the incidence of PHN in patients with HZ
over 50 years of age is still as high as 25–30% (Sampathkumar
et al., 2009). Once PHN develops, treatment is extremely difficult
and less effective, and patients suffer from severe physical and
psychological disabilities due to continuous pain (Dworkin et al.,
2010). Considering the tremendous financial responsibility on
patients, society, and the medical system of PHN, exploring
the risk factors and elucidating the mechanisms associated
with the early diagnosis, classification of risks, and prediction
of outcomes between HZ and PHN underlying their clinical
development is urgently required.

Currently, we lack precise indicators for screening high-
risk PHN populations, and early implementation of preventive
interventions is impossible (Delaney et al., 2009). The main
reason is that the pathogenesis of PHN is still not comprehensive
and thorough, and the neuropathy caused by viral infection
has its specificity (Delaney et al., 2009). Researchers explored
the factors related to PHN based on extensive data analysis
and built a prediction model in hospitalized patients with HZ,
identifying 62 variables related to PHN. These models exhibited
high accuracy values (Li et al., 2020). The development of omics
technology based on large-sample sequencing has provided
a potential new method for predicting PHN (Freidin et al.,
2016; Wang T. et al., 2020). Our previous results revealed that
we should focus on the outcome of HZ and the prediction
and intervention of PHN from the metabolism and immunity
perspective because the susceptibility of PHN in the elderly is
related to metabolic and immune dysfunction. Metabolomics
and proteomics, as components of systems biology, can be used
to explore the molecular mechanism and from the immune-
metabolism perspective of pain, is an effective research method
to identify biomarkers and provide new insights into the
generation and development of PHN (Shen et al., 2020; Jiang
et al., 2021).

In this study, we applied untargeted metabolomics and
quantitative proteomics using isobaric tags for relative and
absolute quantitation (iTRAQ) of plasma from healthy, HZ,
and PHN participants (Figure 1). In addition, we identified
differentially expressed metabolites (DEMs), differentially
expressed proteins (DEPs), and key signaling pathways that
differed between healthy volunteers and individuals with acute
and/or chronic herpetic neuralgia.

Furthermore, we developed and validated three optimal
predictive models based on metabolic patterns and machine
learning. We aimed to describe the metabolomic and
proteomic signatures of herpes virus infection-induced
neuropathy. Additionally, our study can help determine the
individual differences that influence pain symptoms and drug
reactions in HZ and PHN.

Materials and methods

Study population and setting

Patients with HZ and PHN were obtained from the
pain management department of the West China Hospital
of Sichuan University. The study was conducted according
to the Code of Ethics of the World Medical Association
(Declaration of Helsinki). All patients signed an informed
consent form, and the Ethics committee of West China Hospital
of Sichuan University approved the implementation of the
study, which was registered at the China Clinical Trials Registry
(Registration No. ChiCTR1800015561). The patient plasma
samples were collected between September 2017 and September
2018. The West China Hospital of Sichuan University selected
60 participants: 20 HZ patients, 20 PHN patients, and 20
healthy individuals.

The inclusion criteria of HZ and PHN cohort were as
following: (1) Over 18 years old; (2) Diagnosed with HZ or PHN;
(3) Visual analogue scale (VAS) > 3 points before treatment;
(4) Accompanied by neuropathic pain in the lesion area; (5)
Without serious complication. The exclusion criteria of HZ and
PHN cohort were as following: (1) Multiple segments involved;
(2) With severe cardiovascular disease, pulmonary disease or
abnormal liver and kidney function; (3) Severe pain caused by
other diseases; (4) Alcohol and drug abusers; (5) With mental
disorders and cannot obtain informed consent.

The healthy control group was recruited from healthy
people and had no blood relationship with the patient group.
The healthy control group was matched with the patient
group according to age and gender. At the same time, the
following criteria should be met: (1) No immunosuppressive
agents, hormones or biological agents were used in the last
month; (2) No history of cancer, AIDS and other diseases; (3)
Patients with severe heart, liver and kidney failure and severe
infection were excluded.

Untargeted metabolomics analysis

The samples were divided into three groups: group A
(healthy control), group B (HZ), and group C (PHN), and
each group contained 20 samples. Metabolomic analysis was
based on previously reported methods (Jiang et al., 2019).
In addition, liquid chromatography-mass spectrometry (LC-
MS) analyses were performed using a UHPLC system (1290,
Agilent Technologies), and the specific parameters for the
positive ion mode (POS) and negative ion mode (NEG) are
shown in Supplementary Methods. Statistical analysis and
data presentation mainly included normalizing the original
data, identifying metabolites via database and multivariate
statistical analysis [principal component analysis (PCA), partial
least squares discriminant analysis (PLS-DA), and orthogonal
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FIGURE 1

Flowchart depicting metabolomic and proteomic characteristics of herpes zoster and postherpetic neuralgia.

projection to latent structures-discriminant analysis (OPLS-
DA)].

The variable importance in the projection (VIP) of PLS-
DA model variables and the p-value for the univariate
statistical analysis t-test were applied to screen significant

DEMs among different comparison groups (VIP ≥ 1 and t-
test P < 0.05) (Ivanisevic and Want, 2019). In addition, we
performed a clinical variable correlation analysis of differential
metabolites using the Pearson correlation coefficient, including
the basic information of patients such as sex, age, course of
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the disease, site of disease, and complications, and the VAS
score.

Proteomics analysis

We selected three representative samples from each of the
three previously collected populations (Group A, B, C) for
proteomic determination, and each group had three samples:
A1, A2, A3, B1, B2, B3, C1, C2, and C3. The details of
protein digestion, iTRAQ labeling, and analysis are provided
in Supplementary Methods, and we have referred to previous
studies (Ren et al., 2017; Zhao et al., 2018). Briefly, it includes
protein digestion, iTRAQ labeling peptide, High PH Reverse
Phase separation, low PH nano-HPLC-MS/MS analysis, and
identification and quantification of peptides and proteins using
the Mascot Distiller (Version 2.6) and Scaffold (Version 4.7.2)
databases. Proteins that changed by > 1.2 or < 0.83 and p< 0.05
were considered DEPs.

Predictive model construction

We used the metabolite level as a candidate feature and
applied the least absolute shrinkage and selection operator
(LASSO) (Tibshirani, 1996) via the “glmnet” R package to select
the feature in the training data. The penalty parameter λ of the
model is determined by calculating the 10-fold cross-validation
and selecting the one with the smallest partial likelihood
deviation λ-value (lambda. min) for metabolite screening to
obtain the metabolites used for modeling.

Subsequently, three mature machine learning algorithms
(Yuan et al., 2012; Han et al., 2014), random forest (RF)
(Breiman, 2001), support vector machine (SVM) (Noble, 2006)
and logistic regression (LR), were used to predict groups
A, B, and C, respectively (each group was compared as a
binary outcome). Five-fold cross-validation was applied to
the modeling process of the three machine-learning methods.
In addition, we plotted the ROC curve using the pROC
package (Robin et al., 2011), in which the AUC value was
used to evaluate the effectiveness and predictive power of the
model.

Short time-series expression miner
analysis

Trend analysis is a cluster analysis method used to explore
the expression patterns of differential metabolites and proteins
in multiple samples with continuous characteristics. As
described earlier, the three groups, A, B, and C, could be
considered the normal, acute, and chronic phases of the disease
progression process. We applied the STEM clustering algorithm

(Ernst and Bar-Joseph, 2006) to identify metabolites/proteins
that match certain biological characteristics and then
generalized and classified the expression trends of DEMs/DEPs
according to the analysis results.

Integrative proteomics-metabolomics
analysis

To obtain the significant proteins and metabolites that affect
the sample grouping and analyze the correlation characteristics,
two models, including the O2PLS (bidirectional orthogonal
projections to latent structures) (Bouhaddani et al., 2016) and
Pearson models (details shown in Supplementary Methods),
were further applied to analyze protein expression and
metabolite abundance.

Results

Basic characteristics of study cohorts

We collected the demographic data of all the individuals,
including 20 healthy volunteers, 20 patients with HZ, and
20 patients with PHN. The demographic data of the three
groups were collected, including sex, age, degree of pain, skin
lesion location, disease course, and disease history (Table 1).
No significant differences were observed in age, sex, disease
history, or other general characteristics among the three groups.
The disease course in the HZ group was less than 3 months,
consistent with the definition of HZ. Regarding skin lesions,
lesions in the trunk (thoracic nerve region) were the most
common in the HZ (n = 10, 50%) and PHN groups (n = 13,
65%).

Overall metabolomics signatures of
disease progression in patients with
herpes zoster and postherpetic
neuralgia

A total of 2,280 metabolites were identified in POS
and NEG ionization modes during metabolite detection. The
overlapping display analysis of the base peak chromatogram
(BPC) of different quality control (QC) and blank samples
suggests that the detection instrument is stable, and no cross-
contamination was observed between samples. In addition,
all QC samples were within ± 2 times the standard
deviation (Supplementary Figures 1A,B), and no significant
peak was detected in the blank samples (Supplementary
Figures 1C,D).

As previously mentioned, multivariate statistical analyses
of these metabolites were performed using PCA, PLS-DA,
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and OPLS-DA. First, the PCA score chart for the POS
and NEG modes (Supplementary Figure 2) exhibited
evident metabolic differences between the control and
disease groups. In addition, PLS-DA was used to maximize
the distinction between groups and detect the model’s
fitness. The three groups were also well separated under
supervised conditions in both modes (Supplementary
Figure 3). To avoid over-fitting in multivariate statistical
analysis, we performed OPLS-DA and further validated
the results using a permutation test. The permutation
test revealed that the original Q2 value among the three
groups was mostly lower than the Q2 value after model
replacement (Supplementary Figure 4). Collectively,
these analyses indicated that the model was reliable and
did not overlift.

DEMs were screened by pairwise comparison between the
three groups and are depicted as heatmaps (Figures 2A–C). We
also identified common metabolites among the three groups
using a Venn diagram (Figure 2D). Notably, 11 metabolites
were identified at the intersection of groups A vs. B and B
vs. C, which might be more relevant to acute or acute and
chronic pain transformation. In addition, five metabolites were
identified at the intersection of groups A vs. C and B vs.
C, which might be more relevant to chronic or acute, and
chronic pain transformation. We further conducted a KEGG
metabolite pathway enrichment analysis to explore the main
biochemical metabolism and signaling pathways involved in the
DEMs between the groups (Supplementary Table 1). Notably,

retrograde endocannabinoid signaling, glycerophospholipid
metabolism, and arachidonic acid metabolism were enriched
in groups A vs. B and B vs. C, which might play a
vital role in the progression of the disease. In addition,
we clustered the metabolic expression patterns by STEM
analysis and obtained three significant metabolite expression
profiles (Figures 2E,F, profiles 5, 6, and 7). Furthermore,
the results suggested that metabolites of profile 5 (unchanged
in the healthy and PHN groups and increased in the HZ
group) were mainly involved in lipid metabolism, tricarboxylic
acid cycle, and amino acid metabolism (Supplementary
Table 2).

Finally, we analyzed the correlation between differential
metabolites and clinical data. As shown in Figure 3A, the
expression of N-formimino-L-aspartate increased with age
(r = 0.5873, P = 0.0064), and 5,6-Dihydrouracil was increased
in women (r = 0.488, P = 0.028) in group B vs. A. In the
PHN group (Figures 3B,C), nine metabolites were increased
in women and creatinine registered the highest correlation
(r = 0.790, P < 0.05), whereas five metabolites were increased
in men and phosphatidylserine (PS) exhibited strong relevance
(r =−0.585, P < 0.05). L-kynurenine expression was positively
correlated with disease duration (r = 0.500, P < 0.05). The
expression of phenylacetylglutamine was positively correlated
with age (r = 0.548, P < 0.05). Interestingly, the expression of
triglycerides (TG) and phosphatidylcholine (PC) was negatively
correlated with the degree of pain (r =−0.453, −0.552,
P < 0.05).

TABLE 1 Characteristics of the study population.

Control (n = 20) HZ (n = 20) PHN (n = 20)

Age, mean ± SD (y) 64.22 ± 11.56 66.10 ± 13.49 69.55 ± 11.15

Sex, n (%)

Male 10 (50%) 11 (55%) 10 (50%)

Female 10 (50%) 9 (45%) 10 (50%)

Disease Course (M)

<3 M 0 20

4–6 M 0 0 10 (50%)

7–12 M 0 0 3 (15%)

>12 M 0 0 7 (35%)

Location, n (%)

Face (Trigeminal nerve region) 0 4 (20%) 1 (5%)

Neck and upper limbs (Cervical nerve region) 0 1 (5%) 4 (20%)

Trunk (Thoracic nerve region) 0 10 (50%) 13 (65%)

Buttocks and lower limbs (Lumbar and Sacral nerves region) 0 5 (25%) 2 (10%)

Disease history

Hypertension 1 (5%) 2 (10%) 3 (15%)

Diabetes 0 1 (5%) 3 (15%)

Immune related diseases 0 0 3 (15%)

Osteoporosis 0 0 0

COPD 0 2 (10%) 1 (5%)
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FIGURE 2

Metabolic patterns in healthy control, HZ, and PHZ groups. (A–C) The heatmap of differential expressed metabolites (DEMs) between groups:
(A) Groups A vs. B, identifying 14 DEMs, (B) group A vs. C, identifying 15 DEMs, and (C) groups B vs. C, identifying 17 DEMs. Red represents
increased expression; blue represents decreased expression. (D) Identification of significant common metabolites via Venn diagram. (E) The
trend expression profile of metabolites in the three groups. The black line represents the trend line, and the gray line represents the expression
trend of each metabolite. (F) Number of metabolites in the profile. The height of the column represents the number of metabolites, and the
color of the column represents the P-value.

FIGURE 3

Correlation heatmap between metabolic patterns and clinical data. (A–C) The heatmap of altered metabolic patterns between groups and
clinical data: (A) Groups A vs. B, (B) groups A vs. C, (C) groups B vs. C. Clinical data including VAS, age, sex, location, and duration.

Development of the Predictive model
of herpes zoster and postherpetic
neuralgia based on metabolic patterns
and machine learning

We applied a meticulous machine-learning approach to
assess the clinical utility of differentiating metabolic patterns in
HZ/PHN to assess the predictive power of specific expressed
metabolic patterns in classifying from healthy to HZ and PHN.
For groups A vs. B, we performed LASSO logistic analysis
to select features in the training dataset and established an

11-metabolite predictive model to classify healthy controls
and HZ patients (Figure 4A). Strikingly, we observed that
the specific metabolic profile could accurately classify healthy
controls and HZ patients in model 1 (LR, AUC = 0.905, RF,
AUC = 0.958, SVM, AUC = 0.96 (Figure 4B). Among the
11 features in the diagnostic signature, cholesteryl ester (CE)
demonstrated the highest correlation coefficient for healthy
people in predicting HZ (Figure 4C). For group A vs. C
(Figures 4D–F), an 18-metabolite predictive model (model 2)
was used to classify healthy controls and PHN patients (LR,
AUC = 0.92, RF, AUC score = 0.848, SVM, AUC = 0.952). For
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FIGURE 4

Development of predictive models in HZ and PHN based on metabolic patterns and machine learning. (A–C) Development of predictive model
1 group A vs. B: (A) LASSO regression, (B) the receiver operating characteristic curves of three classifiers, (C) correlation coefficient of specific
metabolite in the model; (D–F) development of predictive model 1 Model 2 group A vs. C: (D) LASSO regression, (E) the receiver operating
characteristic curves of three classifiers, (F) correlation coefficient of specific metabolite in the model; (G–I) development of predictive model 1
Model 2 group A vs. C: (G) LASSO regression, (H) the receiver operating characteristic curves of three classifiers, (I) correlation coefficient of
specific metabolite in the model.

group B vs. C (Figures 4G–I), the predictive model identified
11 metabolites (LR, AUC = 0.87; RF, AUC = 0.9; SVM,
AUC = 0.907). Furthermore, convicine registered the highest
correlation coefficient with HZ in predicting PHN.

Proteomic Signatures for disease
progression in patients with herpes
zoster and postherpetic neuralgia

DEPs were screened by pairwise comparison between the
three groups and are depicted as heatmaps (Figures 5A–C).
In addition, we identified common DEPs among the three
groups using a Venn diagram (Figure 5D). Notably, keratin
2 (KRT2) and KRT9 were identified at the intersection of
three gene lists, which were subgroups of the keratin family
related to cell structure and integrity and might be relevant to
the disease progression of viral infection-induced neuropathy.
Furthermore, we performed a KEGG enrichment analysis of
the DEPs between the groups (Supplementary Figures 5A–
C). In groups A vs. B, DEPs were mainly enriched in ECM-
receptor interactions, viral protein interactions with cytokines
and cytokine receptors, and chemokine signaling pathways. In
groups A vs. C, DEPs were mainly enriched in critical pathways,
such as complement and coagulation cascades, cholesterol
metabolism, and neutrophil extracellular trap formation. The
Gene Ontology (GO) term enrichment analysis results among

groups are shown in Supplementary Figures 5D–F. In
groups A vs. B, skin development, epidermal development,
keratinization, and neutrophil-mediated immunity were mainly
enriched, consistent with the clinical features of HZ with
painful herpes and immunosuppression. Neutrophil-mediated
immunity-related biological processes play vital roles in PHN.

Finally, we performed STEM analysis and obtained two
significant expression profiles (Figures 5E,F, profiles 4 and
7). Bioinformatics analysis of the proteins assigned to profile
4 (unchanged in the control and HZ and increased in the
PHN) was mainly related to viral infection and immune
reaction (Supplementary Table 3). Bioinformatic analysis of the
proteins assigned to profile 7 (continuous increase in expression
level) was mainly related to inflammatory chemotaxis and
neuroimmune inflammation (Supplementary Table 4).

Integrative metabolomics–proteomics
analysis in healthy control, herpes
zoster, and postherpetic neuralgia
groups

To better characterize the multi-omics of HZ and PHN
during disease progression, we performed model correlation
analysis based on protein expression and metabolite abundance.

(1) O2PLS model: Based on the element loading value
(loading value represents the correlation of omics data) results,
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FIGURE 5

Protein expression patterns in healthy control, HZ, and PHZ groups. (A–C) The heatmap of differential expressed proteins (DEPs) between
groups: (A) Group A vs. B, (B) group A vs. C, (C) group B vs. C. (D) Identification of significant common proteins via Venn diagram; (E) trend
expression profile of proteins among three groups; (F) number of proteins in the profile. The height of the column represents the number of
proteins, and the color of the column represents the P-value.

we filtered the proteins and metabolites with the top 25 loading
values squared in the first two dimensions to integrate the
loading diagram and identify the proteins and metabolites
with the greatest degree of association (Figures 6A–C). In
groups A vs. B (Supplementary Table 5), the metabolites
with strong correlations were mainly lipid metabolites (CerP,
PC, PS, and PE). The proteins with strong correlations were
mainly various keratin components and cytokines. In groups
A vs. C (Supplementary Table 6), metabolites with strong
associations were mainly fatty acid (5,6-dehydro arachidonic
acid and linoleic acid) and amino acid metabolites (ornithine,
pyroglutamic acid, and l-kynurenine). Proteins with strong
associations were mostly associated with neuroimmunity and
inflammation (LRG1, S100A9, FAH, SERPINA3, C7). In
addition, the TOP 5 metabolites (histidine, selenocysteine,
glycerol phosphatidylcholine, PS, and PC) and TOP 5 proteins
(ARG1, PF4, GP1BA, SELENOP, and C4B) were identified in
groups B and C (Supplementary Table 7).

(2) Correlation coefficient model: Correlation heatmaps
between differential metabolites and proteins among groups
are shown in Figures 6D–F. For example, in groups A and
HZ (Figure 6D), some noteworthy issues were identified: (1)
S100A9 was highly positively correlated with the expression
of lipid metabolites, such as DG, Cer, PS, PE, and PC. (2)
Cytoarchitectural proteins, such as keratin components, JUP,
and DSG1, were positively correlated with 3-methyl pyruvate.

In groups A and PHN (Figure 6E): (1), some proteins
associated with immune inflammation, such as CST3, CD163,
and S100A9, were highly positively correlated with the
metabolite d-ornithine (cor > 0.95). (2) Inflammatory mediator

proteins, such as S100A8 and SERPINA3, were positively
correlated with L-kynurenine. Comparing the PHN group with
the HZ group (Figure 6F), we observed that proteins and
metabolites strongly correlate, including inflammation-related
proteins such as C4B, CST3, GP5, PPBP, and LTBP1, were
positively correlated with selenium homocysteine expression.

Discussion

To the best of our knowledge, this is the first attempt
to discover metabolomic and proteomic signatures of disease
progression in patients with HZ and PHN. We identified
DEMs, DEPs, and signaling pathways that transition from
healthy volunteers to various stages of HZ and PHN, similar
to the acute and chronic phases of herpetic neuralgia.
Moreover, based on metabolic patterns and machine learning,
we developed and validated three optimal predictive models
for herpes virus infection-induced neuropathy. Furthermore,
we performed integrative metabolomics-proteomics analysis to
explore the molecular mechanism from the protein-metabolism
perspective, which provides new insight into the generation and
development of PHN.

In this study, alterations in plasma metabolites and proteins
may distinguish patients with HZ from controls. Regarding
metabolomics, the dysregulated metabolites were mostly related
to these four metabolic pathways: lipid metabolism, fatty
acid metabolism, histidine metabolism, and the tricarboxylic
acid cycle. The upregulated lipid metabolites are commonly
upregulated in neuroinflammatory responses and are vital
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FIGURE 6

Integrative metabolomics-proteomics analysis in healthy control, HZ, and PHZ groups. (A–C) Loadings plots of differentially expressed
metabolites and proteins altered in differential compared groups. (A) Group A vs. B, (B) group A vs. C, (C) group B vs. C. The loading value
represents the explanatory ability of the variable (metabolite/protein) in each component, and the positive and negative values represent a
positive or negative correlation with other omics. The greater the absolute value of the load value, the stronger the correlation. (D–E)
Correlation heatmap between differential metabolites and proteins among groups. (D) Group A vs. B, (E) group A vs. C, (F) group B vs. C. Red
represents increased expression, and blue represents decreased expression.

regulators of pain perception (Malan and Porreca, 2005; Neely
et al., 2012). In particular, the Cer-S1P pathway has emerged
as a vital modulator and druggable target for developing
peripheral and central sensitization involved in pain processing
(Salvemini et al., 2013). Meanwhile, the downregulated lipid
metabolite (lysoPC) was identified as a metabolic biomarker
for multisite musculoskeletal pain (MSMP) by metabolomics
(Liu et al., 2021). Furthermore, our results suggest that
increased levels of citric acid and pyruvate, and decreased
D-glucose, might indicate that inflammatory stimuli could lead
to increased glucose uptake by peripheral tissues and disrupt the
tricarboxylic acid cycle, affecting the energy metabolism of the
body.

Regarding proteomics, the dysregulated proteins in patients
with HZ were mostly highly sensitive markers of the innate
immune system or inflammation-related diseases. Notably,
S100A9 was overexpressed in the dorsal root ganglia (DRGs)
after HSV-1 infection via the TLR4/TNF pathway and positively
modulated acute herpetic neuralgia, consistent with our results
(Silva et al., 2020). Integrative analysis revealed that S100A9
expression was positively correlated with lipid and tricarboxylic
acid cycle-related metabolites. S100A9 may also exert its
biological effects through the phospholipid transmembrane and
participate in the acute inflammatory response process via the

lipid metabolic pathway with enhanced energy metabolism.
Meanwhile, many upregulated proteins related to cell structure
and integrity and epithelial tissue damage (DSP, JUP, DSG1,
and KRT family) were also detected in HZ patients, which
resulted in the secretion of large amounts of keratin and
connexin components by proliferating or apoptotic epithelial
cells and blister formation on the body surface (Jones et al., 2014;
Tommasi et al., 2020). In summary, metabolomics indicated that
increased lipid metabolism and abnormal energy metabolism
due to viral infection might be the main manifestations of
HZ. Alterations in proteomics indicated that virus infection
contributed to the immune-inflammatory response in epithelial
tissues and DRGs, and secretion of keratin and connexin
components released large amounts of inflammatory factors to
promote the inflammatory response further.

Regarding metabolomics in PHN patients, the dysregulated
metabolites were mostly related to four metabolic pathways:
fatty acid, tryptophan, glutamate, and ornithine. Dysregulated
fatty acid metabolites were identified as vital inflammatory
mediators of arachidonic acid, and its metabolites could activate
the endogenous transmitter TRPV1 to increase the sensitivity
of nerves (Zimmer et al., 2018; Kim et al., 2019; Osthues
and Sisignano, 2019). More importantly, the activation of the
tryptophan metabolic pathway by inflammatory stimuli in the
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PHN patients led to abnormalities in 5-HT metabolism and
reuptake and might respond to the absence of the action of the
downstream inhibitory system and increased neuro sensitivity
leading to the development of PHN (Roth et al., 2021).
Consistent with this, some DEMs were identified to be involved
in the metabolic processes of essential neurotransmitters in vivo,
including glutamate, glutamine, and aspartate, which might
lead to abnormal synthesis and release of the excitatory
neurotransmitter glutamate, and thus be involved in the
development of neurosensitization (Hoffmann and Charles,
2018).

Regarding proteomics in patients with PHN, some
upregulated proteins (HNRNPK and RPS10) were related
to viral infection and replication (Pettit Kneller et al., 2009;
Sundaramoorthy et al., 2021). This implies that viral infection
might remain a cause of changes in the disease during the
PHN phase, and studies have proven that higher viral DNA
loads contribute to the risk factors for PHN (Quan et al., 2006;
Quinlivan et al., 2011). Furthermore, many DEPs associated
with inflammatory responses and glial cell activation have
been identified. In addition, persistent chronic immune-
inflammatory stimulation in PHN patients could further
activate glial cells and aggravate nerve damage (Komori
et al., 2007). Consistent with the metabolomics results, we
observed significant upregulation of FAH and FAH-related
biological pathways, including the metabolism of histidine,
phenylalanine, tryptophan, and other amino acids (Weiss et al.,
2018). Furthermore, consistent with the clinical changes, the
cell structure- and integrity-related DEPs (such as the KRT
family) in the PHN group were significantly reduced compared
with the high keratin content in the HZ group, consistent with
the disease process of skin healing in the PHN phase. The
changes in metabolic substances in PHN patients revealed that
chronic neuroimmune inflammation resulted in abnormal fatty
and amino acid metabolism (glutamate-aspartate, tryptophan-
kynurenine, and arginine-ornithine metabolic pathways),
leading to the massive release of excitatory neurotransmitters
and increased neurosensitivity involved in the development of
PHN. Alterations in proteomics indicated that viral infection
and inflammatory response persisted, leading to abnormal
neurological function and glial cell activation.

In this study, we explored the metabolomic and proteomic
signatures that transition from HZ to PHN. The expression of
lipid metabolites involved in the inflammatory response was
lower in patients with PHN. In contrast, the expression of amino
acid metabolites involved in neurotransmitter anabolism was
significantly higher than that in HZ patients. In addition, the
metabolite pattern of profile 5 was the most crucial metabolite
involved in lipid metabolism, exhibiting upregulation in HZ
patients and downregulation in PHN patients. The expression
patterns were consistent with that in the acute phase of
neuroinflammation in the HZ state, and the body stabilizes
neuronal cell membranes. It promotes neuronal repair by
regulating glycerol phospholipid metabolism, whereas the

downregulation of expression in the PHN state presented
a chronic inflammatory phase and led to abnormal neural
repair processes. In terms of proteomics, the DSP, JUP, and
KRT families associated with skin alterations due to herpes
were identified and reflected the healing process of lesions
from the acute to the post-acute phase. This implied that the
immune-inflammatory response owing to viral infection from
HZ to PHN was one of the main pathological changes. More
importantly, HSD17B10 is involved in branched-chain amino
acid metabolism, SLC3A2 mediates the uptake of amino acids,
and the downregulated ARG1 involved in arginine metabolism
was identified as an important protein related to the synthesis
and release of neurotransmitters and neuromodulators. This
implies that the synthesis and release of neuromodulators
and neurotransmitters could contribute to hyperalgesia, which
might further explain the progression of HZ to PHN.

To better understand the clinical utility of differentiating
metabolic patterns in HZ/PHN, we examined the correlation
between the differential metabolites and clinical data. In patients
with PHN, some lipid metabolites (PC and TG) were negatively
correlated with pain scores, suggesting that the regulation
of lipid metabolism in the immune-inflammatory response
might be related to pain. In contrast, L-kynurenine in patients
with PHN was positively correlated with disease duration,
suggesting that the increased expression of L-kynurenine with
prolongation of the disease might promote a significant release
of neurotransmitters by aggravating the neuroinflammatory
response and presenting the disease into the posterior phase.
Interestingly, the increased expression of amino acid metabolites
was more pronounced in women, while increased lipid
metabolites were observed in men. This implies that amino acids
and lipid metabolites are essential components in regulating
pain in sex dimorphism.

Notably, we developed three optimal predictive models
based on specific metabolic patterns and machine learning in
classifying from healthy to HZ and PHN. The AUC of all these
models were > 0.9. Accordingly, patients predicted to be at
high risk of HZ/PHN, especially for HZ patients to develop
PHN, may be considered for early prevention and clinical
intervention. Moreover, the uniform standard could provide
a more objective and measurable method than traditional
methods based on age and accompanying disease (Wang X. X.
et al., 2020). In a previous study, CE that ranked top in model
1 was associated with chronic postoperative pain (Lunde et al.,
2020). Notably, N, N-dimethylarginine was identified in models
2 and 3. Furthermore, restoring arginine bioavailability through
exogenous arginine supplementation might be a beneficial
approach for treating PHN (Bakshi and Morris, 2016). Notably,
a recent study proposed a novel classification method for
patients with HZ and PHN based on functional magnetic
resonance imaging (fMRI), which indicated that decreased
brain activity via the SVM algorithm could be used to
classify individuals with different pain conditions (Huang et al.,
2020). Notably, ML models also provide a novel identification
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method for patients with herpetic neuralgia who are at risk of
inadequate pain management. Studies have explored the clinical
characteristics of herpetic neuralgia patients with medication
responsiveness and built an optimal ML model to discriminate
medication-resistant pain (MRP) from medication-sensitive
pain (MSP) (Zhou et al., 2021). However, this study has some
limitations. First, our multi-omics studies were only performed
on plasma samples, owing to the impossibility of obtaining
human peripheral or central nervous system samples in living
individuals or difficulty obtaining sensitive skin tissue samples.
Because the tissues and blood exhibited some inter-individual
variations and correlation, plasma omics could only partly
demonstrate the landscape of disease progression. Second, we
did not perform validation tests with an expanded sample
size for target proteins and metabolite identification via target
metabolites, which will be our next research intention.

Conclusion

Our study describes an integrative proteomics and
metabolomics investigation of disease progression in patients
with HZ and PHN. We proposed an optimal machine
learning predictive model based on the clinical utility of
metabolic patterns. Owing to the limited number of patients,
future validation studies are needed to verify the findings
reported in this study.
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