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A Novel Characterization of 
Amalgamated Networks in Natural 
Systems
Victor J. Barranca1,2, Douglas Zhou3 & David Cai1,2,3

Densely-connected networks are prominent among natural systems, exhibiting structural 
characteristics often optimized for biological function. To reveal such features in highly-connected 
networks, we introduce a new network characterization determined by a decomposition of network-
connectivity into low-rank and sparse components. Based on these components, we discover a new 
class of networks we define as amalgamated networks, which exhibit large functional groups and 
dense connectivity. Analyzing recent experimental findings on cerebral cortex, food-web, and gene 
regulatory networks, we establish the unique importance of amalgamated networks in fostering 
biologically advantageous properties, including rapid communication among nodes, structural 
stability under attacks, and separation of network activity into distinct functional modules. We 
further observe that our network characterization is scalable with network size and connectivity, 
thereby identifying robust features significant to diverse physical systems, which are typically 
undetectable by conventional characterizations of connectivity. We expect that studying the 
amalgamation properties of biological networks may offer new insights into understanding their 
structure-function relationships.

With advances in technology and mathematical theory increasingly facilitating the study of complex 
networks, recent experimental evidence suggests that many networks are more densely-connected than 
previously proposed. In the case of the macaque cerebral cortex, for example, highly-resolved tracer 
injections have revealed 36% more inter-areal connections than reported by past studies, yielding a total 
edge density of 66%1. Similarly, the application of new methodology in studying node interactions has 
led to the discovery of dense gene, protein, and food-web networks2–5. In general, network characteri-
zations, such as small-worldness or scale-freeness, have proven useful in studying physical systems with 
sparse connectivity, such as in the framework of non-equilibrium physics, sociology, and biology6–8. 
In contrast to sparsely-connected networks, dense networks trivially have short path lengths and high 
clustering coefficients, making these common descriptors of connectivity unable to characterize their 
unique structure8,9.

For sparse networks, communities, composed of particularly densely-connected nodes, give signif-
icant insight into the functional roles of various inhomogeneous groups of nodes and the overall net-
work structure-function relationship10–13. There has been a recent development of a host of community 
detection techniques, such as modularity maximization, edge betweenness, maximum likelihood, and 
graph-Laplacian spectral methods14–17, which are often successful in identifying communities in large 
networks. However, in the case of dense networks, the question of how to formulate the notion of com-
munities remains a theoretical challenge important for understanding diverse biological systems18–22.

In this article, we introduce a new framework to characterize the distinct architectures of 
densely-connected networks through sparse and low-rank (SL) decomposition of connectivity (adjacency) 
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matrices. The SL decomposition is a newly-developed method of recovering the low-dimensional linear 
structure in non-ideal observations by decomposing a data matrix into a low-rank component (sig-
nal) and a sparse component (noise or perturbation)23,24. It has amassed a wide range of applications, 
including feature recognition, video surveillance, and image denoising25–27. Using the SL decomposition, 
we discover a class of networks, i.e., amalgamated networks, that exhibits both modularity and dense 
connectivity. By analyzing a variety of real-world network data, we demonstrate that these networks 
naturally manifest in biological systems, and hypothesize their functional advantages under biological 
constraints28. We expect that the amalgamated network structure is evolutionarily desirable, with the 
modularity of amalgamated networks facilitating integrated network activity29 and the observed high 
connection-density promoting rapid communication among functional groups. Since these networks are 
also resilient to node attacks, preserving overall network structure and activity fundamental for biological 
function, they have likely remained pervasive in many physical systems and may give significant insight 
into their characteristics.

Results
Sparse and Low Rank Network Decomposition.  In motivating the amalgamation characteristics, 
consider a densely-connected network of n nodes with connectivity matrix, A, containing an intermediate 
level of randomness. Such a network, due to its high degree, will comprise of a large number of cliques, 
which are sets of vertices in which every possible pair of nodes is connected, or near-cliques. For a net-
work composed of disjoint cliques indexed such that the nodes in each clique are numbered in sequential 
order, each clique will contribute a block of 1’s along the diagonal of A and each block will increase the 
rank of A by 1. A network composed of m disjoint cliques will therefore have rank(A) =  m <  n, and 
thus A will be of low rank. Likewise, if a network is not complete yet dense, then there will typically 
also exist sparse edges connecting near-cliques. In this case, A can be decomposed into the sum of two 
components, namely low-rank matrix L, which contains the connections within near-cliques, and sparse 
matrix S, which contains the connections between near-cliques. As will be discussed below, the rank and 
density of these components are scalable with network size, statistically reliable, and can indeed be used 
as a diagnostic metric for describing topological features of such densely-connected networks.

To determine L and S, we devise a new method of decomposing unweighted connection matrices. 
First, we compute the connectivity matrix SL decomposition A = L̂ +  Ŝ where L̂ is low-rank and Ŝ is 
sparse. Intuitively, this is achievable by simultaneously minimizing the rank of L̂ and sparsity of Ŝ. 
Because this problem is generally not solvable in polynomial time23, a more viable convex alternative is 
the optimization problem

λ+ ( )ˆ ˆ
⁎minimize L S 11

given L̂ +  Ŝ = A, where nuclear norm σ= Σ ( )ˆ ˆ
⁎L Li i  is the sum of the singular values,  σi of L̂. Intuitively, 

the number of nonzero singular values indicates the rank of L̂. In addition, = Σ ,ˆ ˆS Si j ij1
 where Ŝ = (Ŝij). 

Note that the number of nonzero values in Ŝ indicates its sparsity. The sparsity penalization parameter λ  
can be regarded as the weight balancing the minimization of these two terms23. The parameter λ  controls 
the number of zero entries in Ŝ, with higher λ  yielding more sparse connectivity. In general, Problem (1) 
can be solved efficiently by algorithms such as singular value thresholding, augmented Lagrangian, and 
proximal gradient methods27,30,31, Sufficient conditions were proposed to address the existence and 
uniqueness of the solution to Problem (1), however, these conditions essentially require that the solution 
matrices, L̂ and Ŝ, demonstrate certain structure, such as incoherence and sparsity. In general, it is quite 
difficult to provide necessary conditions for the success of the SL decomposition based only on the 
structure of a given connectivity matrix24,25.

One difficulty of this approach is choosing the degree to which connections in Ŝ should be penal-
ized, which can often only be done a priori for specific classes of components25. While in some cases λ  
can only be computed experimentally23,32,33, we instead devise a technique for choosing λ  that is quite 
successful for our application. For all decompositions, we choose as our sparsity penalization parameter

λ
Σ

=
( )

,
( )A n

1

2

where Σ (A) is the density of A, defined as the fraction of nonzero elements of A, such that a completely 
connected network will have a density of 1. The scaling factor / n1  was established by Candés, reducing 
the penalization of sparse connections in larger networks, which have more possible connections25. In 
addition, we introduce a factor of / Σ( )A1  to conserve the penalization of connections in Ŝ regardless 
of the density of A. Without this new normalization, in the case of more sparsely-connected networks, 
for example, under-penalization of connections (i.e., with / n1  scaling only) in Ŝ may result in the 
sparse-component capturing all connections with none contained in L̂. By using our choice of λ , a sim-
ilar percentage of connections will be captured by Ŝ for networks with diverse connection densities.
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After completing the initial decomposition, we threshold each matrix element so all entries are 0 s or 
1 s, reflecting the absence or presence of connections in an unweighted network, to yield decomposition 
components L and S. Our study indicates that the decomposition is insensitive for a range of thresholds. 
Note that because of this thresholding, the sum of the final decomposition, Ar =  L +  S, is an approxima-
tion of A which we show to be highly accurate in Fig. 1. It is also important to remark that the connec-
tions between nodes in each component are invariant with respect to node indexing, giving consistent 
network descriptors regardless of how nodes are labeled.

Network Characterization.  In characterizing a given network of n nodes, we analyze structure 
embedded by both the rank of L and sparsity of S. For the low-rank component, we compute the nor-
malized rank of L, ν(L) =  Rank(L)/n. In this way, full-rank matrices will have ν(L) =  1. Similarly, for 
the sparse component, we determine the density of S, Σ (S), the fraction of nonzero elements of S. Both 
metrics are bounded in [0,1], and are therefore useful in comparing networks of varying sizes.

As an illuminating example, we examine the macaque cerebral cortex connectivity network depicted 
by Fig. 1 (a), taking the connections to be unweighted and the diagonal entries of A to be 1 under the 
assumption of intra-areal feedback1. Using the SL decomposition, we plot in Fig. 1 (b) the low-rank and 
sparse network components. We observe that the normalized rank of L is ν(L) =  0.69, which can be 
viewed as small compared to the minimum ν(L) of 0.68 for analogous WS networks shown in Fig. 2 (a), 
indicating the existence of modules in the anatomical cortical network. The presence of such mod-
ules suggests an organization of functional integration indicative of segregated neural processing in the 
brain34. The corresponding matrix S is very sparse, with Σ (S) =  0.019. Remarkably, 14 out of the total 16 
connections in the sparse component are between different lobes in the cerebral cortex, which are each 
large clusters of cortical areas with common topological and functional features1. Thus, in accordance 
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Figure 1.  Amalgamated networks. (a) Connectivity matrix, A, for the macaque cerebral cortex network 
of n =  29 cortical areas1. The correspondence of nodes to cortical lobes is as follows: 1–7 (prefrontal), 
8–13 (parietal), 14–19 (temporal), 20–23 (occipital), 24–28 (frontal), and 29 (limbic). Connections are 
marked in black. (b) The connectivity matrix is partitioned using the SL network decomposition into low-
rank component L (grey) and sparse component S (black). (c,d) Gene regulatory and food-web network 
decomposition using the same color scheme as in (b). The relative Frobenius-norm error in the recovered 
network connectivity matrices are 0.0035, 0.0059, and 0.0167 for the cortical, gene, and food-web networks, 
respectively.
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with our intuition, the L component typically captures the dense connections within functional modules 
of nodes, whereas the S component constitutes the connections between the modules.

In Fig. 2, we investigate the dependence of the network decomposition on the regularity of network 
topology, constructing a set of networks that interpolates between regular and random connectivity and 
analyzing the structure of both ν(L) and Σ (S) for each network. Using the Watts-Strogatz (WS) network 
construction, we first assemble a regular ring lattice network of n nodes with a high mean degree k such 
that each node is connected to k/2 neighbors on each side. Then, we rewire each edge with probability 
p, removing the original edge and randomly choosing with equal probability among all possible new 
edges to form a rewired connection. For networks with a high density of 66%, as in the cortical network, 
we plot the dependence of ν(L) and Σ (S) on p in Fig.  2  (a)  and  (b), respectively. For low values of p, 
which correspond to more regular networks, the large number of near-lattice connections in A produce 
a high-rank L and the very few rewires yield a highly sparse S. Hence, ν(L) is very high while Σ (S) is 
quite low. In contrast, for high p, the large number of unstructured connections in A corresponds to a 
high rank L with a high Σ (S) due to the large number of rewires. In contrast, using small-world meas-
ures, we instead observe that the average path length remains approximately constant and the clustering 
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Figure 2.  Amalgamation characteristics and connectivity matrix decomposition statistics. A family of 
networks is constructed using the WS method, varying rewiring probability, p. For each connectivity matrix, 
A, the network SL decomposition is computed. (a) ν(L) as a function of p. (b) Dependence of Σ (S) on 
p. (c) Amalgamation parameter, α, as a function of p. (d) Dependence of α on edge density. In (a)-(c), 
networks are of size n =  500, 700, and 900 nodes with an edge density of 66%. In (d) networks are of size 
n =  500 nodes with edge densities 30%, 50%, and 70%. For each plot, the mean value over an ensemble of 
20 network realizations is depicted, with error bars corresponding to the standard deviation of the statistic. 
(e) Example connectivity matrix for a WS network with 100 nodes, edge density of 30%, and intermediate 
rewiring probability p =  0.1. (f) The connectivity matrix in (e) decomposed using the SL network 
decomposition into low-rank component L (grey) and sparse component S (black). The relative Frobenius-
norm error in the recovered network connectivity matrix is 0.0042.
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coefficient only decreases by 6% over the same set of rewiring probabilities, giving little indication of 
network topological changes.

According to our SL characterization, only for intermediate values of p do we observe unique topo-
logical features typically exhibited by densely-connected natural networks, such as the macaque cerebral 
cortex. In this region, ν(L) exhibits a clear local minimum, indicating the existence of many large mod-
ules, and simultaneously Σ (S) displays a local maximum, which is less than 8%, indicating sparse con-
nections between modules. In Fig. 2 (c), we observe that this region corresponds to a global maximum 
of the amalgamation parameter, α, defined as

α Σ ν= ( )( − ( )). ( )S L1 3

We refer to this class of dense networks as amalgamated networks, composed of large and 
highly-connected modules with relatively sparse interconnections. Connections within these modules are 
typically captured by the entries of L, whereas links exhibiting high-betweenness are primarily contained 
in S, which we have verified numerically. Therefore, α measures the degree of amalgamation exhibited 
by a network, quantifying the rank of L (modularity) and density of S (interconnections between mod-
ules). To demonstrate this intuition, we depict in Fig.  2  (e) the connectivity matrix for a WS network 
with intermediate rewiring probability p =  0.1 and an edge density of 30%, and display its correspond-
ing SL decomposition in Fig.  2  (f). Clearly the low-rank component primarily captures the remaining 
ring-lattice connections after rewiring, and the sparse component mostly encapsulates the rewired con-
nections linking the highly-connected clusters in L. We note that while a network composed of a small 
number of large disjoint cliques will have the lowest rank, such a network will still have a zero α value 
since Σ (S) =  0 in this case. Ideally, an amalgamated network is composed of a small number of intercon-
nected near-cliques, resulting in a large 1 −  ν(L) term from the low rank of the network and a relatively 
large Σ (S) from the connections between modules, which may be numerous but much less dense than 
the connections within modules.

In amalgamated networks, modules often act as integrated functional groups, which we will discuss 
in the context of several real-world networks in the following section. The information flow within such 
networks is facilitated via local spreading and global communication. Intuitively, α can be used to char-
acterize the optimal information flow achievable by a proper balance between the number of modular 
structures and the number of the connections amongst them35–37.

To summarize, the general procedure for decomposing the network connectivity and subsequently 
characterizing the amalgamation properties is composed of four main steps. First, the network con-
nectivity matrix is decomposed into low-rank and sparse components by solving optimization problem 
(1) with the penalization parameter λ  chosen by Eq. (2). Then, the elements of the component matri-
ces are thresholded to obtain an unweighted approximation of the original connection matrix. Third, 
the network amalgamation parameter defined in Eq. (3) is computed using the normalized rank of the 
low-rank component and density of the sparse component. Finally, the computed network amalgama-
tion parameter may be compared to that of other networks or a baseline value to determine the extent 
to which the network may be considered amalgamated. We remark that, as shown for small p in Fig. 2, 
lattice networks have very small α values, as do networks with completely random connectivity. While 
we could define α such that it is normalized by the amalgamation for a benchmark network with random 
or regular connectivity, this would no longer guarantee that α remains bounded, and so in this work we 
directly compare α values as defined by Eq. (3) among networks to characterize amalgamation prop-
erties. Intuitively, one may view networks with α values comparable to WS networks with similar edge 
densities and intermediate rewiring probability, for which α is maximized as in Fig. 2, as amalgamated.

It is important to remark that amalgamated network properties scale well with network size and are 
stable across network realizations, allowing for direct comparison of topology regardless of variations 
in network size and small perturbations in connectivity. Fig. 2  (a–c) displays the average values of the 
network statistics across an ensemble of network realizations and the associated standard deviations. We 
observe that the particularly small error bars, especially for α, give a stable characterization of amal-
gamated networks. Likewise, since both factors in α are bounded in the interval [0 1], α is a strictly 
bounded characterization of amalgamation that will not increase with network size as in the case of other 
connectivity measures38. In Fig. 2 (a–c) we also plot the scaling of these statistics for networks of sizes, 
n =  500, 700, and 900 nodes, while holding the density of the connections constant at 66%. Regardless 
of network size, we observe a nearly identical amalgamation structure, demonstrating the robustness of 
the characterization.

For dense networks, with varying levels of connectedness, we find that the amalgamation properties 
scale relatively well and therefore facilitate fair comparison for networks of different densities. We plot 
in Fig.  2  (d) the average amalgamation parameter for networks with edge densities of 30%, 50%, and 
70% over an ensemble of network realizations. We note that the maximum α occurs in approximately 
the same parameter regime for each density. Since we observe variation in α with respect to connection 
density, we remark that it is reasonable to compare amalgamation properties among networks with sim-
ilar edge density. Furthermore, because amalgamated networks are so densely connected, their structure 
persists even with the removal of many nodes and edges. In an amalgamated network of n =  500 nodes 
with 66% edge density, for example, the random removal of 10% of the nodes and their corresponding 
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edges only results in an approximately 2% reduction in ν(L) and 8% decrease in Σ (S), therefore having 
a relatively small impact on the network characterization.

Real-World Networks.  Analyzing real-world data, we find certain systems exhibit a varying degree 
of amalgamation properties. For example, the cortical network in Fig. 1 (a) is quite amalgamated with a 
high α =  0.006. In comparison, we note that for a 29 node WS network with the same connection density, 
the mean maximum α is 0.0017, and therefore the α value for the cortical network can be viewed as 
large. Corresponding to this amalgamation, we remark that the exhibited modularity and dense connec-
tivity contribute to several important brain processes29. Considering interconnected networks undergo 
sharp transitions from independent to coupled nearly identical dynamics as more interconnections are 
formed39, the relatively sparse interconnections between functional modules control integration of com-
partmentalized cortical processes34, without inter-module connections so numerous that the dynamics 
of each module are nearly identical. Also, within the 6 relatively large functional regions considered, 
dense intra-areal connections promote rapid parallel processing necessary for sensory integration over 
time-scales small enough for survival40,41.

Similarly, in the Escherichia coli glycolysis gene network of n =  16 nodes with edge density 33% in 
Fig.  1  (c) 2, ν(L) =  0.25, Σ (S) =  0.023 and α =  0.018. Composed of a small number of relatively large 
clusters of nodes, we observe that the gene network exhibits even more amalgamation than the cortical 
network, with a markedly higher α value. The gene network also displays a modular structure with 
an intuitive biological interpretation. Considering these genes have both fast and slow interactions, we 
emphasize that 5 of the total 6 sparse connections include fast gene-interactions while the low-rank 
component, on the other hand, mostly includes densely-connected slow gene-interactions. These inter-
actions facilitate various feed-back loops necessary for the interplay between slow protein synthesis and 
fast enzymatic reactions crucial for carbon assimilation2. Likewise, numerous experimental studies have 
provided strong evidence of modularity in gene interactions akin to amalgamated networks42.

Although some food-webs exhibit small-world structures, most do not because their edge density is 
relatively high despite containing few large clusters of nodes43. Therefore, we investigate if amalgama-
tion characteristics can instead be used to describe such networks. In the case of the Mondego estuary 
food-web network with n =  46 nodes and an edge density of 34% in Fig.  1  (d)4, we observe amalga-
mation, but to a lesser extent than the other example networks, with ν(L) =  0.76, Σ (S) =  0.013, and 
α =  0.0032. This is likely because while the food-web network still is composed of several near-cliques, 
the average cluster of nodes is relatively small in size. Observing a modular structure similar to other 
biological networks, the sparse connections in this case often connect organisms of differing trophic 
levels belonging to distinct ecological communities. Such modular structure is widely observed among 
food-webs, and is hypothesized to sustain ecosystems against environmental disturbances, such as natu-
ral disasters and extinctions44,45. Comparing these network characterizations, we see that the amalgama-
tion properties are able to describe topological variations and provide a useful diagnostic for detecting 
differences in the structure of densely-connected networks, which would typically be missed by classical 
descriptors of network connectivity.

Discussion
In summary, we have developed a framework for characterizing the connectivity structure of 
densely-connected networks using a decomposition of network connectivity matrices into sparse and 
low-rank components. Based on the density and rank of these respective components, we then measure 
the network amalgamation, α, a novel descriptor of both the modularity and interconnectedness of a 
network. In addition, we identify a class of networks with particularly high α as amalgamated networks, 
which we show to be prominent in diverse biological systems. We hypothesize that such networks arise 
naturally due to their advantageous properties, including fast node communication, functional modu-
larity, and structural stability.

We remark that our characterization methodology is well-suited to be extended to formulate alter-
native network characterizations. In the case of weighted networks, our method could be adapted by 
rounding the entries of each component to the nearest appropriate weight. Likewise, due to the stability 
and scalability of α, we could instead define an amalgamated network by thresholding on a specific high 
value of α given a certain level of connection density. For generality, to further characterize amalgama-
tion properties, we instead compare the α values of real-world networks and highly-amalgamated WS 
networks of similar density. In this framework, real-world networks with higher α than corresponding 
WS networks may be considered amalgamated. We note that through direct comparison, α values may 
also be used to distinguish among the randomness of connectivity for densely-connected networks sim-
ilar to how small-world measures are applied in the case of sparsely-connected networks8,38.

It is important to emphasize that community structure itself is no guarantee of amalgamation. In addi-
tion to modularity, dense overall connectivity, useful for rapid functional integration, and yet sufficiently 
sparse interconnectivity between modules, facilitating functional segregation, are necessary for amalga-
mation. A network may contain several communities, but still lack an approximate low-rank structure 
due to excessively dense inter-community connections, thereby preventing it from being characterized as 
amalgamated. Likewise, a network instead composed of large cliques may have insufficient connections 
between these cliques for amalgamation. Considering that the current tools of network science make 
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it difficult to identify communities in densely-connected networks18–22, the framework we introduce is 
particularly useful in gaining novel insight into dense network structure and may also further charac-
terize networks for which it is possible to separate modules from sparse inter-module connections using 
community detection. Likewise, it may also be informative to use amalgamation properties to similarly 
characterize sparsely-connected networks and determine how these properties compare to conventional 
measures of connectivity. In light of the prevalence of dense connectivity in biological networks, we hope 
that our work will be useful in understanding those networks and the importance of connection density 
to network function.
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