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Abstract

Principal-oscillation-pattern (POP) analysis is a multivariate and systematic technique for identifying the dynamic
characteristics of a system from time-series data. In this study, we demonstrate the first application of POP analysis to
genome-wide time-series gene-expression data. We use POP analysis to infer oscillation patterns in gene expression.
Typically, a genomic system matrix cannot be directly estimated because the number of genes is usually much larger than
the number of time points in a genomic study. Thus, we first identify the POPs of the eigen-genomic system that consists of
the first few significant eigengenes obtained by singular value decomposition. By using the linear relationship between
eigengenes and genes, we then infer the POPs of the genes. Both simulation data and real-world data are used in this study
to demonstrate the applicability of POP analysis to genomic data. We show that POP analysis not only compares favorably
with experiments and existing computational methods, but that it also provides complementary information relative to
other approaches.
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Introduction

Genes whose expression varies differentially and periodically over

the cell cycle have been identified by both experimental and

computational methods [1,2,3,4,5,6]. Existing methods analyze

individual genes or small-scale gene sets; in contrast, our goal is a

systematic, multivariate method for analysis of genome-wide gene-

expression data. A graphical approach has been applied to model

gene expression data systematically in [7], but it does not identify

the genome-wide dynamic patterns such as oscillation patterns.

Principal-oscillation-pattern (POP) analysis is a data-driven multi-

variate and systematic technique for identifying the dynamic

characteristics of a system using dynamic system equations. It has

been widely used to analyze climate data in the geosciences [8], but

to the best of our knowledge, this is the first time that POP analysis

has been applied to identify oscillation patterns in gene expression.

Typically, the dynamics of a genomic system are too complicated

to be known explicitly. In POP analysis, a complex system is

linearized using a set of first order ordinary differential equations

(ODEs). These ODEs correspond to the state equation in systems

theory; their parameters can be inferred from data. The state

equation with perturbations has been applied to model gene

expression in [9], but a typical genome-wide gene expression dataset

does not reveal the perturbation signals explicitly. Moreover, the

method in [9] did not analyze dynamic characteristics from the state

equations to identify the genes that express differentially and

periodically over the cell cycle. However, POP analysis identifies the

dynamic patterns of the genomic system directly from the

eigenvalues and eigenvectors of the system matrix.

However, genome-wide gene-expression data sets normally

have a limited number of time samples. Since the number of time

samples is much fewer than the number of genes, estimation of the

genomic system matrix is underdetermined. In order to solve this

problem, we use the idea of dimensionality reduction to construct

an eigen-genomic system that consists of significant eigengenes

calculated from the singular value decomposition (SVD) [10]. We

obtain the POPs for the eigen-genomic system, and then make use

of the linear relationship between the eigen-genomic system and

the genomic system to infer the POPs of the genomic system.

We evaluate the applicability of POP analysis to genomic systems

using both simulation and real-world datasets. Using simulation

data, we check the capability of POP analysis to recover the

oscillation amplitudes and phases defined by the simulation

parameters. Using real-world data, we compare POP analysis with

both the results of experiments and existing computational methods

[1,2,3,4,5,6]. We demonstrate that the systematic, multivariate

approach of POP analysis can accurately identify genes that are

differentially and periodically expressed across the cell cycle.

Methods

We model gene expression data from a system point of view;

i.e., the genome-wide time-series gene-expression data X (t)[RN

for N genes at time-points t~t1,t2,:::,tm is expressed as a matrix

first-order ordinary differential equation, also known as the state

equation in systems theory, as follows:

dX (t)=dt~AX (t), ð1Þ

where A[RN|N is the genomic system matrix, which models how

the current genomic state X(t) affects the state change rate dX(t)/dt,
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and also encapsulates the dynamic characteristics of the genomic

system, and in this paper, we denote as Rn1|n2 the set of n1|n2

real matrices.

Estimating the genomic system matrix A is an underdetermined

problem since the number of time samples is typically much less

than the number of genes. Instead of estimating the genomic

system matrix, the eigen-genomic system matrix, denoted as ~AA, is

estimated. The eigen-genomic system is introduced in Eigen-

genomic System Dynamic pattern Analysis (ESDA) in [11]. The

eigen-genomic system consists of the first few significant

eigengenes. The eigengenes can be calculated from the singular

value decomposition (SVD) of the gene-expression data matrix.

The significant eigengenes are defined to be those that explain

most of the covariance of the gene-expression data matrix.

Eigen-genomic system
In this section, we introduce to calculate the eigen-genomic

system matrix. The singular value decomposition (SVD) of X is

denoted as svd(X )~USVT~WVT . We denote the expression of

first r significant eigengenes at time t as E(t)[Rr, which are the

first r rows of VT . By the linear relationship between gene

expressions and eigengene expressions in ESDA, we know that

X (t)~WE(t), ð2Þ

where W[RN|r is the coefficient matrix of genes on the first r

significant eigengenes.

By Equation (1) and Equation (2), the eigen-genomic system

matrix ~AA satisfies

dE(t)=dt~~AAE(t): ð3Þ

The relationship between the genomic system matrix A and the

eigen-genomic system matrix ~AA[Rr|r is given by

~AA~W �AW , ð4Þ

where W �[Rr|N is the pseudo-inverse of W .

The eigen-genomic system equation is given by Equation (3).

After discretizing it into a difference equation, we obtain

E(tzt)~e
~AAtE(t)~BE(t), ð5Þ

where t is the time interval between measurement time points and

B~e
~AAt[Rr|r.

We can estimate B from the eigengene expressions E(t) at

t~t1,t2,:::,tm as follows:

B~E2E�1 , ð6Þ

where E2~

j ::: j
E(t2) ::: E(tm)

j ::: j

0
@

1
A[Rr|(m{1),

E1~

j ::: j
E(t1) ::: E(tm{1)

j ::: j

0
@

1
A[Rr|(m{1), and

tiz1~t1zit,i~2,:::,m.

POP analysis
By Equation (5), the eigengene expression E(t) can be

decomposed as the linear combination of eigenvectors of B as

follows:

E(t)~
Xr

i~1

ai(t)Mi, ð7Þ

where Mi[Cr is the ith eigenvector of B, and ai(t) is the coefficient

of E(t) on Mi.

The coefficient satisfies the dynamic equation:

ai(tzt)~lt
i ai(t), ð8Þ

where li is the eigenvalue of B. Thus, the coefficient ai(t) can be

calculated as

ai(t)~ltbi, ð9Þ

where bi is a scaling factor. Without loss of generality, we assume

that bi~1, i~1,2,:::,r:
The eigen-genomic system matrix B is not necessarily

symmetric, so the eigenvalues of B may be complex. Thus, if l
is an eigenvalue of B with its eigenvector M, then its conjugate, l�

is also an eigenvalue of B with eigenvector M�.
For a complex conjugate pair of eigenvalues, l and l�, we let

l~sejv, where j is the imaginary unit. The real part of their

eigenvectors is denoted as MR[Rr, and the imaginary part of their

eigenvectors is denoted as MI[Rr.

After summing the terms of the complex conjugate eigenvectors

in Equation (7), their sum, denoted as M(t), is given by

M(t)~ltMzl�tM�~stejvt(MRzjMI)zste{jvt(MR{jMI)

~2st( cos (vt)MR{ sin (vt)MI),
ð10Þ

which shows that the oscillation with frequency v is driven by the

patterns MR and MI. Thus, MR and MI are referred to as the

principal oscillation patterns (POPs) of the eigen-genomic system.

By Equation (2), the relationship between gene expression and

eigengene expression is linear, so gene expression X (t) is also a

linear summation of ai(t),i~1,2,:::,r. The portion of the summa-

tion of the coefficients corresponding to the POPs, MR and MI of

the eigen-genomic system to X (t), denoted as P(t), is given by

P(t)~WM(t)~2st( cos (vt)WMR{ sin (vt)WMI)~

2st( cos (vt)PR{ sin (vt)PI)
ð11Þ

Principal-Oscillation-Pattern of Gene Expression
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where PR~WMR[RN and PI~WMI[RN are referred to as the

POPs of the genomic system. They drive the oscillation process

with the angular frequency v; i.e., the period = 2p=v.

From a system point of view, the oscillation part of a genomic

system is a periodic process starting from PR to {PI to {PR to

PI, and then back to PR (as shown in Figure S1).

For an individual gene, for example, the nth element of a POP

represents the coefficient of the nth gene on this POP. We denote

its coefficients on the POPs, PR and PI, as pn,R and pn,I,

respectively. We convert the coefficient pair (pn,R,pn,I) into polar

coordinates (rn,hn) as follows:

rn~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

n,Rzp2
n,I

q
, ð12Þ

hn~ tan{1 (pn,I=pn,R), ð13Þ

where rn represents the oscillation amplitude of the POPs, and hn

represents the oscillation phase of the POPs. A high POP

amplitude rn means that the gene expression level oscillates

strongly with the angular frequency v as shown in Figure 1. The

POP phase hn unveils the stage at which the gene expression

achieves its peak value.

Overview of Analysis
We now perform a series of analyses to determine the strengths

and limitations of POP analysis as applied to gene expression data:

a. Can POP analysis recover known periodic features of a

genomic system? To address this question, we apply POP

analysis to simulation data. At the system level, we check if the

period of the POPs recovers the one defined in the simulated

oscillation process. At the gene level, we check if the

amplitudes of the POPs are highly positively correlated with

the simulated amplitudes of the oscillating strengths, and

likewise if the phases of the POPs match the simulated phases.

b. What is the sensitivity of POP analysis, i.e., for genes that have

been experimentally verified as being periodically expressed,

does POP analysis identify them as periodically expressed? To

address this question, we examine the results of POP analysis

on genes that are experimentally considered to be periodic

based on previously reported experimental investigations of

gene expression across the cell cycle.

c. What is the specificity of POP analysis, i.e., does POP analysis

falsely identify genes as periodic that are not actually

periodically expressed? To address this question, we examine

the results of POP analysis on genes that have never been

identified by either previous experiments or existing compu-

tational methods as periodic across the cell cycle.

d. Can POP analysis identify genes that are likely to be

periodically expressed but that were missed in previously

reported previous experiments? To address this question, we

examine annotations [12] of genes that POP analysis identifies

as periodically expressed across the cell cycle but that previous

experimental methods don’t identify as such.

e. Can POP analysis identify genes that are unlikely to be

periodically expressed across the cycle, yet were previously

reported as such by previous experiments? To address this

question, we examine annotations [12] of genes that POP

analysis identifies as probably not periodically expressed but

that experimental methods identify as periodically expressed

across the cell cycle.

f. How does POP analysis compare with existing computational

methods for identifying periodically expressed genes? To

address this question, we evaluate the results of POP analysis

relative to existing computational methods [1,2,3,4,5,6].

Simulation data
We simulate the time series expression of each gene using the

following first order differential equation, which is widely used in

modeling gene-expression data:

dx(t)=dt~u(t){kx(t), ð14Þ

where x(t) is the gene expression at time t, u(t) is the transcription

rate also known as the production rate, and k is the decay rate

constant. Thus, the gene-expression change rate dx(t)=dt is equal

to the difference between the production rate u(t) and the

degradation rate kx(t). The production rate u(t) drives the

oscillation of x(t). If u(t) is zero, then x(t) will be a decay process.

If u(t) is oscillating, then x(t) will oscillate as well.

Therefore, using Equation (14), we obtain simulated expressions

of 4000 genes at 0,7,14, ... ,119 minutes. These time points were

selected to match those of a widely used budding-yeast cell-cycle

data set with a-factor-based synchronization [5]. We generate the

simulated decay half-lives using the lognormal distribution that fit

the experimental measurements for mRNA decay half-lives in

[13], and obtain the decay rate constant k using k = -ln(2)/half-

life. We let the production rate, u(t), which generates the

oscillation process, be u(t)~b cos (vtzQ)zn(t). We set the

angular frequency, v, as v = 2p/30, which corresponds to a 30

minute period of the oscillation process. The simulated phase Q is a

random number uniformly distributed on [0, 2p]. The simulated

amplitude b is also a random number uniformly distributed on [0,

0.1] such that simulated expressions are positive. Ten-percent

Gaussian noise, n(t)*N(0,b=10), is added to the production rate

Figure 1. POP amplitude and phase. For the nth gene, the nth

element of a POP represents the coefficient of the nth gene on the POP.
Its coefficients of the POPs, PR and PI , are denoted as pn,R and pn,I ,
respectively. We convert the coefficient pair (pn,R,pn,I) into polar
coordinates (rn ,hn), where rn represents the POP amplitude and hn

represents the POP phase. A high POP amplitude means that the gene
expression level oscillates strongly with the angular frequency v. The
POP phase unveils the stage at which gene expression achieves its peak
value.
doi:10.1371/journal.pone.0028805.g001
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such that the first five significant eigengenes explain at least 98%

covariance of simulated gene expressions.

Real-world data
We apply POP analysis to a widely studied budding-yeast

(Saccharomyces cerevisiae) gene-expression dataset with a-factor-based

synchronization [5]. The state equation (1) assumes that the

genomic system matrix is constant, so the estimate of B by Equation

(6), which describes the dynamic evolution between adjacent time

samples of eigen-genomic system, requires that we have an equal

time sampling interval. The gene expressions with a-factor-based

synchronization were measured at t = 0, 7, 14, … , 119 minutes

covering two cell cycles of around 120 minutes with an equal time

sampling interval of 7 minutes [5]. We obtain N = 4598 genes with

no more than three missing samples and ratios of Mean Intensity to

Median Background Intensity in both Channel 1 and Channel 2

being greater than 1.5. We estimate the missing samples using the

singular value decomposition method as in [10], and normalize time

series expression data for each gene such that its norm of expression

levels at all time samples is equal to one.

Results

Simulation data
We select the first five significant eigengenes to comprise the

eigen-genomic system of the simulated data. The eigenvalues of

the eigen-genomic system matrix are summarized in Table S1.

The first and second eigenvalues are complex conjugate, which

correspond to the POPs with a period of 30 minutes that recover

the period defined by the simulation parameters. The third,

fourth, and fifth eigenvalues are real, so they do not represent the

oscillation process but rather the slow, median, and fast decay

processes of the system, which are discussed in [11].

Thus, we focus on the POPs corresponding to the first and second

eigenvalues. These two POPs, PRand PI, are plotted in Figure 2.

The horizontal axis represents the POP phases of the simulated

genes in degrees, which unveils when the expression levels of the

simulated genes peak. The vertical axis represents the coefficients of

simulated genes on each POP. Over 360 degrees, i.e., over a period

of 30 minutes, the envelopes of PR and PI are cosine and the sine

waves, respectively, which shows that PR drives the cosine

oscillation, and PI drives the sine oscillation of genomic system.

The envelopes of PR and PI are determined by the genes that have

large POP coefficients on these POPs. If a gene has a large

coefficient value for either POP at a certain phase, it means that the

oscillation pattern of the gene’s expression is strong at this phase.

Pearson correlation between POP amplitudes and
simulation amplitudes

We investigate the relationship between the amplitudes defined

by the simulation parameters and the amplitudes extracted from

the simulated data via POP analysis. The Pearson correlation

between the simulated and POP amplitudes over 4000 simulated

genes is 0.99 with p,0.01 (Figure S2). Thus, the POP amplitudes

recover the oscillation amplitudes defined by the simulation

parameters. A high POP amplitude of a gene means that its

expression level is strongly oscillating with a period of 30 minutes.

Pearson correlation between POP phase and simulation
phases

The phases extracted by POP analysis recover the phases

defined by the simulation parameters; the Pearson correlation of

the sine values of their phases is 0.96 with p,0.01 (Figure S3). So,

the POP phase of a simulated gene reflects the phase of the

oscillation process in its expression.

Budding yeast (Saccharomyces cerevisiae) cell cycle
expression data

We choose the first five significant eigengenes as the eigen-

genomic system of the budding yeast since they capture more than

98% of the covariance of the data matrix [10]. The eigen-genomic

system matrix of the budding yeast has eigenvalues (as shown in

Table S2). The first and second complex conjugate eigenvalues

correspond to POPs with a period of 65.7 minutes, which falls into

the estimated period of the cell cycle (66611 minutes) of budding

yeast with a-factor-based synchronization [5,14]. We plot POP

coefficients versus POP phases for all 4598 genes in Figure 3 (POP

amplitudes and phases are included in Table S3). The PR and PI

have approximately cosine and sine envelopes, respectively, which

are driven by genes that have large values of the POP coefficients.

Thus, these genes have strong oscillation patterns.

Genes periodically expressed across the cell cycle have
high POP amplitudes

In order to assess the sensitivity of POP analysis for identifying

periodically expressed genes, we examine the results of POP

analysis on genes that are experimentally considered to be periodic

based on previously reported experimental investigations of gene

expression across the cell cycle. In our model, a gene that is

periodically expressed across the cell cycle should have a

production rate in Equation (14) that has a strong oscillating

process with a period matching the length of the cell cycle. Thus,

we investigate whether the mean POP amplitude of genes that are

known to be periodically expressed across the cell cycle is higher

than the mean POP amplitude of other genes.

As summarized in [1], small-scale experiments have measured

expression level changes or investigated cell cycle transcription

factors for individual genes. Throughout this paper, we refer to

methods that infer cell-cycle genes by computational means from

genome-wide gene-expression time-series as ‘computational meth-

ods’, and we refer to methods that infer cell-cycle genes by

identifying periodically expressions in small-scale experiments, or

promoters of genes bound by known cell cycle transcription

factors, as ‘experimental methods’. Experimental methods have

identified a total of 465 cell-cycle genes, including 113 genes that

are expressed periodically across cell cycle [2,5], and 402 genes

that are bound by known cell-cycle transcription factors at their

promoters [15,16], which drive the oscillation processes of

expression in transcription rate in Equation (14), and, thus, can

be inferred to be periodically expressed. We compare the POP

amplitudes of these genes to the POP amplitudes of other genes

not known to be modulated by the cell cycle. Out of 4598 genes

reported in the budding yeast dataset with a-factor-based

synchronization, there are 344 cell cycle genes identified by

experimental methods. The mean of the POP amplitudes of these

344 ‘cell cycle’ genes (0.12) is significantly (p,0.01) greater than

the mean of the POP amplitudes of the rest of the genes (0.07)

according to a two-sample t-test with unequal variances. (Their

variances are not statistically equivalent, F test, p,0.01.) In

addition, a permutation test [17] also indicates that the mean of

the POP amplitudes of these 344 ‘cell cycle’ genes is statistically

significantly (p,0.01) greater than the mean of the POP

amplitudes of the rest of the genes. The permutation test is

implemented as follows: we randomly select 344 genes without

replacement, and calculate the difference between the mean of

their POP amplitudes and the mean of the POP amplitudes of the

Principal-Oscillation-Pattern of Gene Expression
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Figure 2. POPs of the simulated genomic system. The horizontal axis represents the POP phases of simulated genes, which unveils when the
expression levels of the simulated genes peak. The vertical axis represents the coefficients of simulated genes on each POP. Over 360 degrees that go
through a period of 30 minutes, the envelopes of PR and PI consisting the genes that have large POP coefficients on either POPs, are the cosine and
the sine waves, respectively, which shows that PR drives the cosine oscillation, and PI drives the sine oscillation of genomic system.
doi:10.1371/journal.pone.0028805.g002

Figure 3. POPs of the real genomic system, budding yeast genomic system. The horizontal axis represents the phases of genes in degree on
each POP. The vertical axis represents the coefficients of genes on each POP. The PR and PI have approximately cosine and sine envelopes,
respectively, which is driven by genes around envelopes that have large values of POP coefficients. Thus, these genes have strong oscillation patterns.
doi:10.1371/journal.pone.0028805.g003
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rest of the genes. We repeat this random selection 10,000 times,

and record the resulting 10,000 differences of the means. The p-

value is calculated as the proportion of the differences of the means

that are greater than or equal to the difference of the means

observed for actual 344 ‘cell cycle’ genes compared to the rest of

the genes.

Genes maximally expressed in the same phase of the cell
cycle have similar POP phases

In our model, the POP phase should unveil the point in the cell

cycle at which a gene reaches its peak expression. Thus, we

investigate the correspondences among POP phases of genes that

are maximally expressed at the same cell-cycle phases according to

reports from previous experiments. In this data set, there are 75

genes that have been classified into five clusters, G1, S, S/G2, G2/

M and M/G1, according to experimental investigations of the

genes’ transcriptional activities [5]. Some genes are classified as

belonging to two phases, e.g., M/G1, meaning that the genes are

maximally expressed in late M phase or at the M/G1 boundary.

We plot the ‘cell cycle’ genes according to their POP coefficients in

polar coordinates, i.e., (r, h), and mark different colors for different

previous cell cycle classifications as shown in Figure 4. The median

POP phases of the five experimentally defined clusters are 331.4u
(S/G2), 266.6u (G2/M), 182.4u (M/G1), 102.0u (G1), and 32.4u
(S). Genes that are experimentally classified as having maximal

expression in the same phase of the cell cycle have similar POP

phase values. Moreover, differences in POP phase correspond to

different phases of the cell cycle. Thus, POP analysis provides an

approach for clustering genes according to the peaks of the

oscillation patterns of their expressions across the cell cycle.

Genes consistently not identified as periodic across the
cell cycle have low POP amplitudes

A key question is whether POP analysis is specific for identifying

periodically expressed genes, i.e., does POP analysis falsely identify

genes as periodic that are not actually periodically expressed? To

address this question, we examine the results of POP analysis on

genes that have never been identified by either previous

experiments or existing computational methods as periodic across

the cell cycle. Experimental methods for identifying genes

periodically expressed across the cell cycle were introduced in

[2,5,15,16]. Existing computational methods for identifying ‘cell

cycle’ genes for a-factor-based synchronization [1,2,3,4,5,6] are

summarized in [1]. Out of 4598 genes reported here, there are

3429 genes that have never been identified as periodically

expressed across cell cycle by any of these previous studies.

The mean of the POP amplitudes of these 3429 ‘not cell cycle’

genes (0.064) is significantly (p,0.01) smaller than the mean of the

POP amplitudes of the remaining genes (0.096), according to a

two-sample t-test with unequal variances. (Their variances are not

statistically equivalent, F test, p,0.01.)

POP analysis identifies genes annotated in the ‘cell cycle’
category that are not identified as periodically expressed
by experiments

In the preceding sections, we argued that POP analysis could

identify ‘cell cycle’ and ‘non cell cycle’ genes consistent with

previous experimental designations. Here we investigate whether

POP analysis can provide insights that extend beyond what has

already been reported from experimental investigations of gene

expression across the cell cycle. Specifically, we ask, can POP

analysis identify genes that are likely to be periodically expressed

but that were missed in previously reported experiments? To

address this question, we examine annotations [12] of genes that

POP analysis identifies as periodically expressed across the cell

cycle but that experimental methods do not identify as such.

As summarized in [1] the Munich Information Center for

Protein Sequences (MIPS) [12] has annotated genes as belonging

to various functional categories. The functional category ‘cell

cycle’ includes genes involved in the transcription or regulation

activity of cell cycle. Such genes may drive the oscillation processes

in (14) so may have coherent, periodic expression across the cell

cycle. We investigate the POP amplitudes of 52 genes annotated as

‘cell cycle’ genes in MIPS but not identified as periodically

expressed in reports of experiments [2,5,15,16] (Set 1 in Figure 5).

The mean of the POP amplitudes of these 52 genes (0.14) is not

statistically different from the mean of the POP amplitudes of ‘cell

cycle’ genes identified by experiments and also annotated in MIPS

(0.12) (Set 2 in Figure 5) based on a two-sample t-test with unequal

variances (p = 0.16). (Their variances are not statistically equiva-

lent, F test, p,0.01.) However, it must be acknowledged that the

small sample size limits our ability to detect a statistically

significant difference (post hoc power = 0.29 for alpha = 0.05).

More important is the fact that the mean of the POP amplitudes of

these 52 genes (0.14) is high, indicating that POP analysis concurs

with their annotation as ‘cell cycle’ genes. Also, the mean POP

amplitude of this group is significantly (p,0.01) larger than the

mean of the POP amplitudes of genes that are not identified by

experiments nor annotated in MIPS as ‘cell cycle’ genes (Set 3 in

Figure 5) based on a two-sample t-test with unequal variances.

(Their variances are not statistically equivalent, F test, p,0.01.)

We plot the cumulative distributions [Probability(POP amplitude

.x)] on log-scale of POP amplitudes of these three sets as Figure 5.

Thus, POP analysis is able to identify genes that may be ‘cell cycle’

genes, but which were not found in experiments.

Figure 4. POPs in polar coordinates for experimentally
identified ‘cell cycle’ genes. These genes are previously by
experimental methods classified into five clusters based on the timing
of their maximal expression in different phases of the cell cycle:
G1(round), S(triangle), S/G2(star), G2/M(square) and M/G1(diamond).
The median POP phases of the five experimentally defined clusters are
331.4u (S/G2), 266.6u (G2/M), 182.4u (M/G1), 102.0u (G1), and 32.4u (S).
Genes classified as maximally expressed in the same cell cycle phase
have similar POP phases. Different POP phases correspond to different
phases of the cell cycle.
doi:10.1371/journal.pone.0028805.g004
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POP analysis identifies genes as unlikely to be
periodically expressed that are not annotated as ‘cell
cycle’ but are labeled as periodically expressed by
experiments

A central question for POP analysis is whether it can be used to

identify genes that may have been incorrectly labeled as being

periodically expressed over the cell cycle based on reports of

experimental methods. To address this question, we examine

annotations [12] of genes that POP analysis identifies as probably

not periodically expressed but that experimental methods identify

as periodically expressed across the cell cycle.

There are 21 out of 344 experimentally identified ‘cell cycle’

genes that have particularly low POP amplitudes (lowest 10% of

the set). We examine their MIPS annotations to evaluate the

merits of the POP analysis for these genes. We find that MIPS

does not annotate 16 out of these 21 genes (,76%) as ‘cell cycle’

genes, which is consistent with the results of the POP analysis.

These results indicate that experiments may mistakenly identify

some genes as ‘cell cycle’ genes that can be correctly recognized as

aperiodic with the assistance of POP analysis.

Identification of cell cycle genes by POP amplitudes
A high POP amplitude indicates that a gene’s expression is

strongly periodic across the cell cycle. Thus far in our analyses, we

have avoided applying arbitrary thresholds and have evaluated the

POP approach based on comparison of distributions. However, in

practical application of POP analysis to gene expression data, it

would be valuable to apply a fixed threshold to denote some genes

as ‘periodic’ and others as ‘aperiodic’. While such a threshold is

necessarily data-set specific, we present a general approach for

selecting an appropriate cutoff.

In order to choose a threshold on POP amplitudes to identify

‘cell cycle’ genes for the dataset with a-factor-based synchroniza-

tion, we plot the cumulative distributions [Probability(POP

amplitude .x)] on log-scale of POP amplitudes of all 4598 genes

(solid curve) and all genes excluding 344 experimentally identified

‘cell cycle’ genes (dashed curve) as shown in Figure 6. By visual

inspection, we see that the gap between the two curves starts at

POP amplitude < 0.1, which we take as the threshold for

subsequent analysis. There are 846 genes in this data set whose

POP amplitudes are greater than 0.1. A similar approach can be

applied for other gene expression data sets in order to identify a

data-set specific threshold for identifying genes with periodic

expression.

POP analysis compares favorably with existing
computational methods for identifying ‘cell cycle’ genes
and can potentially complement other approaches

In this assessment, we compare the sets of genes identified as

periodically expressed across the cell cycle by POP analysis and six

existing computational methods (Table S4). A detailed summary

on these methods can be found in [1].

The overlap with the ‘cell cycle’ genes reported from

experimental methods (all 465 genes) is also considered. We first

compare POP with existing computational methods by analyzing

the overlaps of the sets of genes identified by the different methods,

and likewise the overlaps with the set of genes identified in reports

of experiments. Then, we analyze the potential benefits of

combining POP with existing methods.

Comparative analysis
Each of the computational methods identifies a substantial

number of genes as periodic that are not flagged by POP nor were

reported as such from experiments (e.g., 371 for Spellman’s

Figure 5. Cumulative distributions of POP amplitudes for
demonstrating that previous experimental methods may miss
‘cell cycle’ genes. Cumulative distributions (Probability(POP ampli-
tude .x)) in log-scale of POP amplitudes of three sets: Set 1 - 52 genes
annotated as ‘cell cycle’ genes in MIPS but not identified as periodically
expressed in reports of experimental methods [2,5,15,16]; Set 2 - ‘cell
cycle’ genes identified by experiments and also annotated in MIPS; Set
3 - genes that are not identified by experiments nor annotated in MIPS
as ‘cell cycle’ genes.
doi:10.1371/journal.pone.0028805.g005

Figure 6. Cumulative distributions of POP amplitudes for
selecting the POP amplitude threshold. Cumulative distributions
(Probability(POP amplitude .x)) on log-scale of POP amplitudes of all
4598 genes (solid curve) and all genes excluding 344 cell cycle genes
identified in experiments (dashed curve). By visual inspection, we see
that the gap between two curves starts at POP amplitude < 0.1, which
we consider is the cutoff. There are 846 genes whose POP amplitudes
are greater than 0.1.
doi:10.1371/journal.pone.0028805.g006
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method [5]). Likewise, POP analysis marks many genes as periodic

that are not identified as such by the other computational methods

considered nor by the experimental approach (e.g., 477 for POP

analysis relative to Spellman’s method). The same is true for the

experimental approach; several genes are identified as periodic

across the cell cycle that are not flagged by POP analysis or the

other computational method considered (e.g., 221 for experiments

relative to Spellman’s method). However, there are also sizeable

subsets wherein there is some agreement between the computa-

tional and experimental approaches. For example, Spellman’s

method and POP analysis both identify 137 genes as periodic

across the cell cycle that are recorded as such based on

experiments. Thus, there is a notably fraction of genes for which

Spellman’s method, POP analysis, and experiments agree.

However, more interesting are the small subsets for which there

is some but not universal agreement. For example, there are 208

genes flagged by both Spellman’s and POP analysis that are not

identified by experiments. Thus, we next investigate the potential

benefits to be had from adding POP analysis to another

computation method, such as Spellman’s method.

Complementary analysis
We analyze the potential benefits of combining the results of

POP analysis and existing methods. We analyze Spellman’s

method as an example here, and provide similar comparison

results for other computational methods in Figure S4 and Table

S5.

Out of 800 genes identified by Spellman’s method as

periodically expressed over the cell cycle, 220 (28%) are also

noted as such in reports of experiments. If we consider the 454

genes flagged by Spellman’s method which are not flagged by POP

analysis, the percentage that are also experimentally identified as

‘cell cycle’ drops to 18%. On the other hand, if we consider the

345 genes for which both Spellman and POP analysis indicate that

they are likely to be periodically expressed, the percentage that are

also experimentally identified as ‘cell cycle’ increases to 40%.

Similar results are obtained when other computational methods

are considered (data included in Table S4, Figure S4 and Table

S5). These analyses suggest that combining POP analysis with

other computational methods for identifying periodically ex-

pressed genes may increase the yield over those methods operating

independently, as benchmarked against experimental methods.

Discussion

In this paper, we have presented an application of POP analysis

to genome-wide gene expression data. We model the genomic

system using the first-order matrix ordinary-differential equation,

which is known as the state equation in systems theory. Due to the

small number of time samples and the huge number of genes in a

typical genome-wide gene-expression data set, we first estimate the

eigen-genomic system matrix that is much lower dimensional and

more amenable to solve. The POPs of the eigen-genomic system

are then identified. By multiplying the POPs of the eigen-genomic

system by the coefficient matrix that maps between genes and

eigengenes, we obtain the POPs of the genomic system.

We first evaluate the POPs using simulation data. The

amplitudes and phases of the POPs extracted from the simulated

data are found to highly correlate with the amplitudes and phases

defined by the parameters of the simulation. Thus, POP analysis

well recovers the amplitudes and phases of the oscillation processes

that drive the periodical expressions of genes in simulation.

Real-world data, the budding yeast gene expression data with a-

factor-based synchronization, is also used to evaluate POP analysis

for gene expression data. The POP amplitudes of the cell cycle

genes identified by previous experiments are found to be

significantly greater than POP amplitudes of the rest of the genes.

In addition, we demonstrate that the POP phases matched

experimental cell cycle phase classifications. On average, the POP

amplitudes of genes that have never been identified by either

experiments or existing computational methods are significantly

smaller than POP amplitudes of the rest of the genes. We find that

POP analysis is able to identify possible ‘cell cycle’ genes that are

not identified by experiments but that are annotated as ‘cell cycle’

genes. Moreover, we show that some genes identified in

experiments as periodically expressed over the cell cycle had low

POP amplitudes and are not annotated as ‘cell cycle’ genes. We

also present a method to decide the threshold on the POP

amplitude to identify genes as periodically expressed across the cell

cycle. Previous experiments were implemented for individual

genes rather than genome-wide, so they may not be accurate to

reveal the dynamic characteristics of genes that are driven by

genes’ interactions at genome system-level, which might explain

the discrepancies that POP analysis reports.

Finally, we demonstrate that combining the results of POP

analysis with that of existing computational approaches for

identifying periodically expressed genes has the potential to

provide an increased yield relative to only using existing

computational approaches. It is not unexpected that POP analysis

provides complementary information relative to existing compu-

tational methods given that POP is a very different approach to

identifying periodically expressed genes. A detailed summary on

these methods can be found in [1]; we review only briefly here to

explain how they are different from POP analysis. All six of the

existing computational methods considered in this study analyze

expression levels for individual genes only, as opposed to a system

of genes, and identify periodic expression by fitting the individual

gene expression level over time to common mathematical

functions: sine functions [2,3,5], single-pulse models [6], and

cubic splines [4]. However, the dynamic characteristics of a gene’s

expression are driven by interactions with other genes at genomic

system-level; analyzing genes one-by-one cannot capture these

interdependencies. The use of common functions enables

straightforward mathematical analysis; however, they may not

accurately capture the dynamic characteristics of a particular

biological system. Moreover, fitting all genes to the same function

may not unveil the dynamic characteristics of individual genes

since the quality of the fit may vary from gene to gene. POP

analysis, on the other hand, is a data-driven method that obtains

the dynamic characteristics of each gene based on a genomic

system-level model using systems theory.

We should point out that computationally classifying a gene as

‘cell cycle’ or not ultimately depends on the criteria used for

quantifying the periodic expression, e.g., POP amplitude is the

criterion in the proposed method. The value of an approach for

classifying genes is ultimately determined by whether the method

enables new insight into the biological system. Towards the goal,

the choice of the threshold on the POP amplitude to define ‘cell

cycle’ genes makes use of previously reported experimental results.

Moreover, the comparison of the results of POP analysis,

experiments, and a gene annotation database suggests that POP

analysis may in fact enable scientific discovery, not merely

reproduction of established knowledge.

The real-world dataset that we have used [5] is 13 years old and

has been analyzed in hundreds of follow-up studies. We chose this

well-studied data set precisely for this reason. The main point of our

paper is to present a novel method, one that we believe can identify

cell-cycle genes in a better and more systematic way than previous
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methods. By using a well-understood data set as the basis for our

analysis, we have a solid reference of previous works against which

we can compare our results. However, in order to verify our findings,

we have also applied POP analysis to a newer dataset, Alpha 30 in

[18]. This dataset includes 4774 genes at time, 0, 5, 10, … , 120

minutes. Out of those 4774 genes in the Alpha 30 data set, there are

3512 genes (74%) reported in the Spellman’s dataset that we mainly

applied above. We obtained similar results with the Alpha 30 data

set. The first and second complex conjugate eigenvalues correspond

to POPs with a period of 69 minutes, which falls into the estimated

period of the cell cycle (66611 minutes) of budding yeast with a-

factor-based synchronization [5,14]. We include POP amplitudes

and phases in Table S6. The mean of the POP amplitudes of

experimentally identified ‘cell cycle’ genes is significantly (p,0.01)

greater than the mean of the POP amplitudes of the rest of the genes

according to both a two-sample t-test with unequal variances and a

permutation test. The POP amplitude threshold < 0.04, and there

are 478 genes whose POP amplitudes are greater than this threshold.

Out of those 478 genes, there are 202 genes (42%) also identified by

our method using the Spellman’s dataset.

There are limitations to the application of POP analysis to gene

expression data. In particular, POP analysis requires that the time

samples be taken as equal intervals. Thus, POP analysis cannot be

applied to genome-wide gene expression data that were sampled at

unequal time intervals, which is a common experimental design.

One possible strategy to overcome this limitation would be to

interpolate the data first and then sample at equally-timed intervals

[9]. It should also be noted that whereas existing computational

approaches for identifying periodically expressed genes consider

each gene one-by-one, POP analysis of genome-wide expression is

open to the opposite criticism; that is, when POP analysis is applied

to whole-genome data, the expression level of each gene is modeled

as possibly being dependent on the expression level of all other

genes. In reality, the expression level of a given gene likely depends

upon the expression levels of some subset of the genome. In future

work, POP analysis could potentially be combined with data mining

techniques to create more biologically plausible models of periodic

gene expression that employ a flexible system size that may be

smaller than the whole genome.

In conclusion, we present the first application of POP analysis, a

multivariate and systematic method, to genome-wide gene

expression data to identify genes that are periodically expressed

across the cell cycle. Using both simulation and real-world data,

we show that POP analysis is not only compares favorably with

experiments and existing computational methods, but that it also

provides complementary information relative to other approaches.

Supporting Information

Figure S1 Dynamic trajectory of principal oscillation
patterns (POPs). The POPs, PR and PI, two N-dimensional

vectors, drive the cosine and sine, respectively, of the oscillation

part with angular frequency v. The oscillation part of an N-

dimensional genomic system starts from PR to {PI to {PR to PI,

and then back to PR with period ~2p=v.

(DOC)

Figure S2 Scatter plot and Pearson correlation of POP
amplitudes vs. Simulated amplitudes. The Pearson corre-

lation between the gene expression amplitudes defined in the

simulation and the amplitudes recovered by POP analysis is 0.99

with p,0.01. Thus, the POP amplitudes well recover the

simulation oscillation amplitudes.

(DOC)

Figure S3 Scatter plot and Pearson correlation of POP
phases vs. Simulated phases. There is high Pearson

correlation between the gene expression phases defined in the

simulation and the phases recovered by POP analysis (rho = 0.96

with p,0.01 for sine values). So, the POP phase of a simulated

gene reflects the phase of the oscillation process in its expression.

(DOC)

Figure S4 ‘Cell cycle’ genes identified by Experiment
vs. POP vs. Existing methods. Venn diagrams show overlaps

of ‘cell cycle’ genes identified by previous experiments, POP

analysis and each existing computational method.

(DOC)

Table S1 Eigenvalues and POP period of simulated
genomic system.

(DOC)

Table S2 Eigenvalues and POP period of the genomic
system of the budding yeast with a factor-based
synchronization.

(DOC)

Table S3 POP amplitudes and phases of all 4598 genes.

(XLS)

Table S4 ‘Cell cycle’ genes identified by POP, experi-
ment, MIPS and existing computational methods.

(XLS)

Table S5 Overlap in percentage of experimentally
identified ‘cell cycle’ genes identified by POP and
existing methods.

(XLS)

Table S6 POP amplitudes and phases of all 4774 genes
in Dataset alpha 30, http://labs.fhcrc.org/breeden/
cellcycle/.

(XLS)
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