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Where in the brain consciousness resides remains unclear. It has been suggested that the subnetworks supporting consciousness
should be bidirectionally (recurrently) connected because both feed-forward and feedback processing are necessary for conscious
experience. Accordingly, evaluating which subnetworks are bidirectionally connected and the strength of these connections would
likely aid the identification of regions essential to consciousness. Here, we propose a method for hierarchically decomposing a network
into cores with different strengths of bidirectional connection, as a means of revealing the structure of the complex brain network.
We applied the method to a whole-brain mouse connectome. We found that cores with strong bidirectional connections consisted
of regions presumably essential to consciousness (e.g. the isocortical and thalamic regions, and claustrum) and did not include
regions presumably irrelevant to consciousness (e.g. cerebellum). Contrarily, we could not find such correspondence between cores
and consciousness when we applied other simple methods that ignored bidirectionality. These findings suggest that our method
provides a novel insight into the relation between bidirectional brain network structures and consciousness.
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Introduction
Where in the brain consciousness resides has been one of
the biggest questions in science. Although we have not
yet reached a conclusive answer, much empirical evi-
dence has been accumulated in the course of searching
for the minimal mechanisms sufficient for conscious
experience, called neural correlates of consciousness
(NCC) (Koch et al. 2016). Among the many problems that
need to be solved in identifying NCC, we focus here on the
problem of identifying the minimally sufficient subnet-
works in the brain that support conscious experience. In
this study, we simply refer to such subnetworks as “the
locus of consciousness.” For example, it is commonly
agreed that the retina is not included in the locus of
consciousness because it has been empirically shown
that neural activities in the retina do not directly
correlate with what we perceive (Tononi and Laureys
2005). More importantly, a person who becomes retinally
blind in adulthood continues to have vivid visual dreams
(Tononi and Laureys 2005). As another notable example,
the cerebellum is also not considered to be included
in the locus of consciousness because lesions of the
cerebellum do not much affect conscious experience,
even though it has far more neurons than the cerebral

cortex and is densely connected to the rest of the brain
(Lemon and Edgley 2010, Yu et al. 2015). On the other
hand, which cortical areas or subcortical areas are
essential for consciousness are still controversial (see
Boly et al. 2017, Odegaard et al. 2017, Melloni et al.
2021 for general reviews, and Leopold 2012 for a review
focusing on the primary visual cortex as an example).

In inferring the locus of consciousness in the brain, it
is important to note suggestions that feed-forward pro-
cessing alone is insufficient for subjects to consciously
perceive stimuli; rather, feedback is also necessary, indi-
cating the need for bidirectional (also called recurrent,
reciprocal, or reentrant) processing (Cauller and Kulics
1991, Lamme et al. 1998, Supèr et al. 2001, Self et al.
2012, Auksztulewicz et al. 2012, Sachidhanandam et al.
2013, Koivisto et al. 2014, Tang et al. 2014, Manita et al.
2015). The feedback component disappears not only
during the loss of specific contents of consciousness
in awake states, but also during unconscious states,
where conscious experiences are generally lost, such as
general anesthesia (Lamme et al. 1998, Ku et al. 2011,
Boly et al. 2012, Cohen et al. 2018), sleep (Cauller and
Kulics 1988), and vegetative states (Boly et al. 2011). The
importance of bidirectional processing is suggested to be
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independent of sensory modality (Dembski et al. 2021)
(vision (Lamme et al. 1998, Supèr et al. 2001, Self et al.
2012, Koivisto et al. 2014, Tang et al. 2014), somato-
sensation (Cauller and Kulics 1991, Auksztulewicz et al.
2012, Sachidhanandam et al. 2013, Manita et al. 2015),
and audition (Schlossmacher et al. 2021)) and species
(humans (Boly et al. 2011, Auksztulewicz et al. 2012, Boly
et al. 2012, Tang et al. 2014), monkeys (Cauller and Kulics
1988, Cauller and Kulics 1991, Lamme et al. 1998, Supèr
et al. 2001, Self et al. 2012, Koivisto et al. 2014), rodents
(Sachidhanandam et al. 2013, Manita et al. 2015), birds
(Nieder et al. 2020), and even flies (Cohen et al. 2018)).

Given these findings, it appears reasonable that
subnetworks in which brain areas are strongly bidi-
rectionally connected would be included in the locus
of consciousness. In fact, many major theories of
consciousness have made similar predictions about the
locus of consciousness in common, even though they
differ in many other respects (Tononi and Edelman 1998,
Dehaene and Naccache 2001, Edelman 2003, Lamme
2006, Dehaene and Changeux 2011, Oizumi et al. 2014,
Tononi et al. 2016, Lamme 2018, Pennartz et al. 2019,
Sikkens et al. 2019, Aru et al. 2020, Mashour et al. 2020).
Under this criterion, the retina, for example, is evidently
excluded from the locus of consciousness because it is
connected to the other areas of the brain in a purely
feed-forward manner. To examine the relation between
subnetworks with strong bidirectional connections and
consciousness, it is important to first identify such
subnetworks and understand the bidirectional network
structure of the brain. If we understand which subnet-
works are strongly bidirectionally connected and which
are only weakly so connected, we can quantitatively
discuss the correspondence between these subnetworks
and consciousness.

For this purpose, we propose a method for extracting
subnetworks in which nodes are strongly connected
in a bidirectional manner. We call such subnetworks
“complexes”; this term and concept originate from
integrated information theory, although the specific
definition of complexes differs in the original theory
(Tononi et al. 1994, Tononi 2004, Balduzzi and Tononi
2008, Oizumi et al. 2014, Tononi et al. 2016, Kitazono et al.
2020). To be specific, in this study, we first define a “main”
complex as a subnetwork that has the local maximum
of bidirectional connection strength. We evaluate the
strength of bidirectional connections by a measure that
takes a large value when nodes are connected by strong
bidirectional edges. To reveal the network structure, we
also define complexes as a weaker notion of a main
complex. Complexes are less strongly bidirectionally
connected than a main complex and form a nested
structure. That is, a main complex is included in another
less strongly connected complex; that complex is in turn
included in yet another complex; and so on. In this
hierarchical organization, a main complex, intuitively
speaking, is a central core where there is no weakly
connected parts and complexes are surrounding cores.

If we search for complexes by brute force, computation
time grows exponentially with the number of nodes,
because we need to take account of all possible sub-
networks. To reduce computation time, we can use an
algorithm proposed in our previous study (Kitazono et al.
2020). This algorithm, called hierarchical partitioning for
complex search (HPC), enables the identification of com-
plexes simply by hierarchically dividing the entire net-
work. Because of the simplicity of this algorithm, the
computation time increases only polynomially with the
number of nodes. HPC allows us to find all complexes in
a practical amount of time, even from large networks of
thousands of elements, without omissions or misidenti-
fications.

As a step in investigating the relationship between
bidirectionally connected subnetworks—complexes—
and consciousness, we applied the proposed method to
a meso-scale, whole-brain mouse connectome (Oh et al.
2014) and identified the complexes. This connectome
includes not only the cortical regions but also the
subcortical, brainstem, and cerebellar regions, and has
high spatial resolution. These characteristics make it
suitable for discussing the relationship between brain
regions and consciousness. We found that the extracted
complexes with strong bidirectional connections consist
of the brain regions that are thought to be essential
to consciousness. In addition, to assess whether it is
important to take account of the bidirectionality of
connections, we examined how the results are affected
if the bidirectionality of connections is ignored. We
found that the complexes do not necessarily consist
of the particular brain regions thought to be essential
to consciousness, but rather of various brain regions
that do not directly contribute to consciousness. We also
applied a widely used method for extracting network
cores, s-core decomposition, which does not consider
bidirectionality. Interestingly, we could not find such
correspondence between the extracted cores and the
brain regions presumably essential to consciousness. In
addition, we investigated the relationship between the
complexes and the degree of nodes. We found that the
complexes with strong bidirectional connections do not
necessarily consist of high-degree nodes. This means
that the core structures revealed by the complexes
largely differ to the structures that are revealed by
degree-based methods that ignore bidirectionality. These
results indicate that the identification of bidirectional
network structures will provide new insights into areas
essential to consciousness.

The MATLAB codes of HPC are available at https://
github.com/JunKitazono/BidirectionallyConnectedCores.

Results
Network cores with strong bidirectional
connections: complexes
A simple example of a complex

In this study, we tried to extract the bidirectionally con-
nected “cores” of the network, called “complexes.” Before
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Fig. 1. Schematic of extracting network cores complexes and main complexes. A complex is a subnetwork that consists of stronger bidirectional
connections than other subnetworks that include it. If we extract complexes from the network on the left, we obtain the result on the right. There
are 2 complexes. One is the subnetwork EFIJ, which is colored orange. The other is the subnetwork BEFIJ, which is colored light blue. Comparing the 2
subnetworks, EFIJ is more strongly bidirectionally connected than BEFIJ because the nodes EFIJ are all strongly connected to each other while the node
B is only weakly connected to the nodes EFIJ (i.e. there is only 1 edge in each direction, B to EFIJ and EFIJ to B). The node set EFIJ turns out to be the most
strongly connected complex in this network, which we call the main complex. The entire network is not a complex. The strength of the bidirectional
connections in the entire network is zero because the entire network includes the nodes CDGH and A, which are connected in a completely feed-forward
manner. If we compare this network to the nervous system of the whole body of a mammal, we can consider the bidirectionally connected nodes BEFIJ
as the brain, the nodes CDGH upstream as sensory nerves such as the retina, and the downstream node A as motor nerves.

we introduce the definition of complexes, let us first
intuitively explain the concept of complexes taking the
network shown in Fig. 1 as an example. In this example,
the node A and the nodes CDGH are only unidirectionally
connected to BEFIJ, and therefore these nodes are not
included in a complex. The node set BEFIJ is a complex
but only a weakly connected one, because the node B is
only weakly connected to the nodes EFIJ (i.e. there is only
1 edge in each direction, B to EFIJ and EFIJ to B). In contrast,
the nodes EFIJ are all strongly connected to each other,
and the nodes EFIJ therefore constitute a strongly con-
nected complex. In this example, the node set EFIJ turns
out to be the most strongly connected complex, which
we call the main complex. In general, complexes form a
nested hierarchical structure, as do the node sets EFIJ and
BEFIJ. That is, a complex contains another complex that is
smaller in size but more strongly connected. A complex
smallest in size is the most strongly connected complex,
which is a main complex.

We can consider this exemplar network as a toy net-
work of the nervous system. For instance, we can con-
sider the bidirectionally connected nodes BEFIJ as the
brain, the upstream nodes CDGH as sensory nerves such
as the retina (afferent nerves), and the downstream node
A as motor nerves (efferent nerves). As we explain above,
the node A (motor nerves for example) and the nodes
CDGH (the retina for example) are not included in the
complexes. If we assume that bidirectional processing
is essential for consciousness, the motor nerves and the
retina would not be included in the locus of conscious-
ness. In the mouse connectome network investigated in
this study, there are no nodes that are only unidirec-
tionally connected to the rest of the network. Thus, we

cannot evidently exclude some of the nodes because of
the lack of bidirectional connections. Rather, we need to
quantitatively investigate the degree of the bidirectional
connections and look at the hierarchical structure of the
complexes.

Outline of complexes and related concepts

The mathematical definition of a “complex” is rather
complicated. To get the gist of it, we first outline 2 impor-
tant concepts, namely strength of bidirectional connec-
tions and minimum cut, and then outline complexes.
Please see Methods for mathematically formal explana-
tions.

Strength of bidirectional connections To define com-
plexes, i.e. bidirectionally connected cores of a network,
we first need to have a measure that quantifies how
strongly the 2 divided parts of a network are bidirection-
ally connected. We propose a measure that is low when
the connections in 1 direction are weak even though
those in the other direction are strong (Fig. 2a and 2b)
and that is high when the connections in both directions
are strong (Fig. 2c). Specifically, we define the strength of
bidirectional connections as the minimum value of the
sum of the weights of connections going from one part
to the other and the sum in the opposite direction (Eq.
(6) in Methods). The strength of the bidirectional con-
nections defined this way is zero when the connections
are completely unidirectional as in Fig. 2a, low when the
connections in 1 direction are weak as in Fig. 2b, and high
when the connections are strong in both directions as in
Fig. 2c.

Minimum cut A complex is a network core whose parts
are strongly connected to each other in a bidirectional
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Fig. 2. Strength of bidirectional connections. To measure the strength of bidirectional connections, we take the minimum value of the sum of the weights
of connections going from one part to the other and the sum in the opposite direction. In the examples a–c, the strength of bidirectional connections
between AB and CD is measured. a) The connection is completely unidirectional: there are connections from AB to CD but there are no connections in
the opposite direction. In this case, the strength of bidirectional connections is 0. b) The connection from AB to CD is strong but that from CD to AB is
weak. In this case, the strength of bidirectional connections is low, which equals to 1. c) The connections in both directions are strong and the strength
of bidirectional connections is high, which equals to 2.

manner. In other words, a complex cannot be “cut” into
2 parts without losing many strong edges no matter how
it is cut. To measure such “inseparability” of a network,
we consider the bi-partition of the network for which
the strength of bidirectional connections is minimum
among those for all possible bi-partitions, which we call
a minimum cut (or a min-cut). We call the strength
of bidirectional connections for a min-cut the “min-cut
weight” and represent it by wmc. As the value of a min-
cut weight wmc gives the lower bound of the strength of
bidirectional connections for any possible bi-partitions of
the network, any part of the network is “bidirectionally”
connected to its complement part with a strength greater
than or equal to wmc.

If a network consists of disconnected parts as shown in
Fig. 3a, the min-cut is the partition that cuts the network
into the 2 disconnected parts and wmc is 0. On the other
hand, in a network where all the parts are strongly
connected and cannot be separated without many edges
being cut as in Fig. 3b, wmc is large. As illustrated in
these examples, a larger min-cut weight wmc indicates
a network that is more inseparable.

Please note that wmc can either grow or shrink as
network size increases, depending on structures of a
network. This means that the largest subnetwork (the
entire network) or the smallest subnetwork (a subnet-
work consisting of 2 nodes) is not necessarily the most
inseparable.

Complex Complexes and main complexes are defined
using the min-cut weight wmc introduced above. A main
complex is a subnetwork that has “locally” maximal wmc.
Local maximum means that wmc in a main complex
is larger than that in any other subnetwork containing
it and any other smaller subnetwork contained within
it (both the left and right inequality in Fig. 4 hold). In
general, a network can have multiple main complexes.
In addition to main complexes, the notion of complexes
is also useful for revealing the structure of a network.
Briefly, a complex is a weaker notion of a main complex,
i.e. a subnetwork such that its wmc is greater than wmc

of any other subnetwork containing it (only the right
inequality in Fig. 4 holds). Complexes form a hierarchical
structure: a main complex is included in a complex larger
in size but with smaller wmc, and the complex is included
in yet another complex even larger in size but with
smaller wmc. Metaphorically speaking, if we consider a
network as a mountain whose height is determined by
the min-cut weight wmc, a main complex tells us the
peak of the mountain and the surrounding complexes
tell us the contour lines of the mountain, as illustrated in
Fig. 1.

A schematic explanation of complexes is shown in
Fig. 4. We consider a network, which is the same as
that in Fig. 1. For example, the subnetwork consisting
of the 4 nodes {E, F, I, J} is a complex because its min-
cut weight wmc is greater than any larger subnetworks
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Fig. 3. Schematic of minimum cut. The minimum cut (min-cut) is the cut
for which the strength of bidirectional connections is minimum among
all possible cuts. In this figure, we assume that all edge weights are 1.
a) A network consisting of 2 mutually disconnected groups AB and CD.
The min-cut partitions this network into the 2 parts AB and CD, and its
weight is zero (wmc = 0). On the other hand, if the network is cut into
AC and BD, the strength of bidirectional connections becomes nonzero. b)
A network where all the parts are strongly connected in a bidirectional
manner. This network cannot be separated without cutting many edges.
The strength of bidirectional connections is therefore high, even for its
min-cut (wmc = 2).

containing it ({B, E, F, I, J}, {D, E, F, H, I, J}, etc.). In addition,
the subnetwork {E, F, I, J} is also a main complex because
its wmc is greater than those of not only larger subnet-
works but also of any smaller subnetworks contained
within it ({F, J}, {E, F, I}, etc.).

Extracting complexes
Fast and exact algorithm to search for complexes

If complexes are searched for by brute force, the compu-
tation time increases exponentially with the number of
nodes N. This is because it is necessary to compute the
min-cut weight wmc for all of the O(2N) subnetworks and
then compare these values. On the other hand, by using
a fast and exact method we proposed in our previous
study, HPC (Kitazono et al. 2020), we need to compute
wmc for only N − 1 subnetworks. As a result, the overall
computation time increases only polynomially with N,
and it is possible to analyze networks with several thou-
sands of nodes in a practical time (see Fig. 5 for an actual
computation time evaluated by a simulation).

We illustrate how HPC works using the example shown
in Fig. 6. In the following, for simplicity of notation, we
write a subnetwork consisting of a node set S simply as
S. In HPC, a network is hierarchically partitioned by min-
cuts until it is decomposed into single nodes. First, the
whole network V = {A, B, C, D, E, F, G} is divided by its
min-cut (indicated by a dashed line) into VL = {A, B, E, F}
and VR = {C, D, G}. Then, VL is divided into VLL and
VLR, and VR into VRL and {G}. Finally, the whole net-
work V is decomposed into 7 single nodes. After this
process, we obtain the set of hierarchically partitioned
subnetworks V, VL, VR, VLL, VLR, VRL. We consider all the
set of subnetworks V = {V, VL, VR, VLL, VLR, VRL}, excluding
single nodes. We can then mathematically prove that any
complex in the network belongs to V. The proof is based
on the mathematical property “monotonicity” and its
satisfaction by the strength of bidirectional connections
(Eq. (6) in Methods). Thus, we can consider V as the can-
didate complexes. We can select complexes from these V
candidates without omissions or misidentifications. See
Methods for more details.

In this process, we need to evaluate wmc of only N − 1
(= 6) subnetworks, which are the subnetworks in V. This
number is much smaller than the number of subnet-
works evaluated in the brute force method, 2N − N − 1
(= 57), which is the number of subnetworks consisting of
more than 1 node.

Complexes in a network form a hierarchical structure

As we mention above, we can find complexes from
among the candidate subnetworks (V) appearing in the
hierarchical partitioning process. Since the candidate
subnetworks form a nested hierarchical structure, as we
can see in Fig. 6, complexes in a network consequently
form a nested hierarchical structure as in Fig. 1. That is,
a complex contains another complex that is smaller in
size but has a greater wmc. A complex that is locally the
smallest in size has a locally maximum wmc, which is a
main complex. See Methods for mathematical details.

Please note that a nested hierarchical structure is not
necessarily a single peak structure, but can have multiple
peaks (i.e. there can be multiple main complexes in a net-
work). For example, in Fig. S4, there are 2 main complexes
and the complexes form a nested hierarchical structure
with the 2 main complexes as peaks.

Demonstration of the proposed method in a toy
example
In this subsection, we demonstrate with a simple exam-
ple how we can understand the structure of a network
by extracting the complexes. We will also explain how
to visualize the results, which will be used in showing
the results of the mouse connectome analysis in the
next subsection. In addition, to show the significance of
considering bidirectionality, we illustrate using the same
example how the results are affected if bidirectionality is
not considered. Finally, to highlight the characteristics of
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Fig. 4. Schematic of the definition of complexes and main complexes. The subnetwork {E, F, I, J} is a complex because it has a greater min-cut weight
wmc than any larger subnetworks that contain it, namely, {B, E, F, I, J}, {D, H, E, F, I, J}, {A, E, F, G, H, I, J}, and so on. In addition, the subnetwork {E, F, I, J} is a
main complex because it has a greater min-cut weight than not only the larger subnetworks but also any smaller subnetworks within it, namely, {E, J},
{F, I}, {E, F, I}, and so on.

Fig. 5. Computation time of hierarchical partitioning for complex search.
Computation time was evaluated by a simulation. In the simulation,
networks with different numbers of nodes were randomly generated. The
weight of each edge was sampled from a uniform distribution in the
interval (0, 1). The circles and the solid line indicate the computation
time of hierarchical partitioning for complex search and a fitted linear
function (log10 T = 3.419 log10 N − 7.463 (T ∝ N3.419)). The triangles and
dashed line indicate the computation time of the exhaustive search and
a fitted exponential function (log10 T = 0.5421N − 5.179). The simulation
was done on a machine with an Intel Xeon Gold 5220 processor at 2.20
GHz. All the calculations were implemented in MATLAB 2019a.

the proposed method, we compare it with a representa-
tive method for extracting network cores, s-core decom-
position, which does not consider the bidirectionality of
connections.

Understanding a network structure based on complexes

We consider the network shown in Fig. 7a, which is the
same as that in Fig. 1. We visualize the complexes in this
network in Fig. 7b. As mentioned in the description of
Fig. 1, there are 2 complexes in this network. One is the
node set {E, F, I, J} (indicated by orange), and the other is
the node set {B, E, F, I, J} (indicated by light blue), and their
min-cut weight wmc values are 2 and 1, respectively. The
node set EFIJ is the main complex. The whole network
with nonzero wmc is always a complex because it is not

Fig. 6. Schematic of hierarchical partitioning for complex search. In HPC,
a network is hierarchically partitioned by min-cuts until the network
is decomposed into single nodes. In this example, the whole network
V = {A, B, C, D, E, F, G} is divided by its min-cut (indicated by a dashed line)
into VL = {A, B, E, F} and VR = {C, D, G}. Then, VL is divided into VLL and
VLR, and VR into VRL and {G}. Finally, the whole network V is decomposed
into seven single nodes. In this process, we only need to evaluate the
wmc of N − 1 (= 6) subnetworks. This number is much smaller than the
number of subnetworks evaluated in the brute force method, 2N − N − 1
(= 57), which is the number of subnetworks consisting of more than 1
node. The subnetworks appearing in this hierarchical partitioning process
are candidate complexes. The bottom arrow indicates how we sort rows
(columns) of the connection matrices in Figs. 7d and 7h and 8b and 8e
(See Methods).

contained in a larger subnetwork. However, in this case,
the min-cut weight wmc of the entire network is 0. Thus,
the entire network is not a complex because we do not
call a network a complex when its wmc is 0, i.e. it is
completely separable. From this figure, we can see that
the 2 complexes are nested. That is, the complex {E, F, I, J},
which has a larger wmc, is contained in {B, E, F, I, J}, which
has a smaller wmc.
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Fig. 7. Complexes in a toy network. Bidirectionality is considered in a–d and ignored in e–h. a) A toy network, which is the same as the network in Fig. 1.
b) The structure of complexes. Each complex is indicated by a color representing the min-cut weight wmc. c) The connection matrix of the network in
a. Edge weight is shown in grayscale: white, gray, and black indicate 0, 1, and 2, respectively. d) The rows and columns of the connection matrix are
sorted according to the hierarchical structure of the complexes. The color map changing from blue to orange indicates the min-cut weight wmc of the
complexes. Square areas correspond to the complexes and they are superimposed in the ascending order of wmc. The plot at the bottom shows coreness
values. e) The same network as in a except that the direction of connections are ignored, which corresponds to ignoring bidirectionality of connections
(see Methods). f–h) The connection matrix, the complexes, and the sorted connection matrix and the coreness as in b–d.

We can also visualize complexes using connection
matrices (Fig. 7c and 7d). In Fig. 7d, the rows and columns
of the connection matrix (Fig. 7c) are sorted according to
the hierarchical structure of the complexes (see Meth-
ods for a detailed description of the sorting process).
In Fig. 7d, the color map indicates the min-cut weight
wmc of the complexes. Square areas correspond to the
complexes and are superimposed in ascending order of
wmc. We can see that the colored square areas in the
sorted connection matrix in Fig. 7d corresponds to the
colored areas in Fig. 7b.

By using the complexes and their wmc, we can also see
how each node is distributed in complexes with different
strength (wmc). For example, node E is included in the
strongest complex, i.e. the complex with the highest wmc,
and node B is included in the weaker complex, and so
on. To quantify the strength of the complexes that each
node is included in, we use an index called “coreness.” We
define the coreness of node v as kv if node v is included in
a complex with wmc = kv but not included in any complex
with wmc > kv (Eq. (11) in Methods). The coreness values
correspond to the color of the nodes in Fig. 7b, and in the
same way, to the color of the diagonal elements in Fig. 7d.
From this figure, we can see, for example, that nodes E, F,
I, and J have the largest value of coreness, which means

that they are included in a complex with the largest value
of wmc. On the other hand, the nodes A, C, D, G, and H
have a value of 0 for coreness, indicating that they are
not included in a complex with wmc > 0.

Effect of considering bidirectionality

To illustrate the significance of considering bidirection-
ality, we compare the complexes extracted when consid-
ering bidirectionality with those extracted when ignor-
ing bidirectionality. When we ignore bidirectionality, we
quantify the strength of connections by the sum of all
the edge weights between 2 parts (divided by 2 for con-
sistency with the case when considering bidirectional-
ity) as in Eq. (3) in Methods. Quantifying the strength
of connections with this simple measure is equivalent
to quantifying the strength of bidirectional connections
with the original measure (Eq. (6) in Methods) after sym-
metrizing a network (i.e. taking the mean of the original
connection matrix W and its transpose WT) to make it
virtually undirected. See Methods for more details.

Figure 7e represents the same network as that in
Fig. 7a but the direction of the connection is ignored. The
symmetrized connection matrix (W + WT)/2 is shown
in Fig. 7g. Figure 7f and 7h shows the results of the
extracted complexes in this undirected network. Unlike
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the case when bidirectionality is considered (Fig. 7c
and d), the main complex contains not only E,F,I, and
J but also C, D, G, and H. This is because the nodes
C, D, G, and H are strongly unidirectionally connected
to other nodes but not bidirectionally connected. Also,
wmc for the entire network is nonzero but is zero in the
original directed network. Reflecting the structure of the
complexes, the coreness values are highest for the nodes
C, D, E, F, G, H, I, and J, and the coreness of every node
is nonzero (Fig. 7h). As can be seen in this example, if
the bidirectionality of connections is ignored, i.e. only
the summed strength of connections is considered, the
structure of the complexes is substantially changed.

A representative existing method for extracting cores
of a network is s-core decomposition (Chatterjee and
Sinha 2007, Hagmann et al. 2008, Heuvel and Sporns
2011, Harriger et al. 2012), which does not consider the
bidirectionality of connections (Text S1). When s-core
decomposition is applied to the network in Fig. 7, the
obtained s-cores are identical to the complexes when
bidirectionality is ignored. In general, it can be mathe-
matically proven that s-cores are identical to complexes
when bidirectionality is ignored under a certain condi-
tion (see Text S1 for details). In this example, the condi-
tion holds, and accordingly the extracted s-cores and the
complexes are exactly the same.

Complexes in a mouse connectome
To demonstrate whether our method is able to extract
meaningful bidirectionally connected cores in a brain
network, we applied it to a mouse connectome (Oh et al.
2014) and extracted complexes. We consider this mouse
connectome to be highly suitable for this purpose
because it includes not only the cortical regions but also
the subcortical, brainstem, and cerebellar regions, and
has high spatial resolution.

The connectome (Supplementary Table 3 of Oh et al.
2014) consists of 213 brain regions in each hemisphere,
giving 426 nodes in total. Each brain region is at a mid-
ontology level and is classified into one of the major brain
regions such as the isocortex, thalamus, and cerebellar
cortex. The connection matrix is shown in Fig. 8a. The
color coding at the top and left of the connection matrix
indicates the major brain regions. The color of each entry
in the matrix indicates the edge weight between the brain
regions that can be considered to be proportional to the
average out-degree of neurons projecting from one region
to the other. See Oh et al. 2014 for a detailed description.

Brain regions included in complexes

We extracted complexes in the mouse connectome using
the proposed method. The extracted complexes are visu-
alized in Fig. 8b. In Fig. 8b, the rows and columns of the
connection matrix (Fig. 8a) are sorted according to the
structure of the complexes in the same way as in Fig. 7.
The color coding, which changes from blue to yellow,
represents the value of the min-cut weight wmc of the
complexes. See Table S1 for specific region names and

the detail values of wmc. On the left side of Fig. 8b, the
brain regions included in the complexes with high wmc

values are enlarged. Specifically, the regions included in
the complexes with the highest (a main complex) to the
11th highest wmc are extracted. The 11th highest wmc

corresponds to the upper quartile of the coreness value
for all regions.

We first found that the extracted complexes were
symmetric between the left and right hemispheres. That
is, when a region on 1 side was included in a complex,
the corresponding region on the opposite side was also
included in the complex. This means that the connec-
tions between the left and right sides were strong enough
so that each complex straddled the left and right sides
symmetrically (in Text S2, we analyze how strongly the
structure of the complexes depended on the left-right
connections.) In the following, since the extracted com-
plexes were symmetric, we do not distinguish between
the left and right brains.

We now describe the regions that constitute the com-
plexes with high wmc. We observed that many regions in
the cerebral cortex are included in top complexes (com-
plexes with high wmc). In particular, mainly the isocorti-
cal regions constitute the first through third complexes.
The only exceptions are the claustrum (CLA) and the
basolateral amygdalar nucleus (BLA) in the cortical sub-
plate, which are included in the third complex. The 4th
to 9th complexes consist of the regions listed above plus
other isocortical and thalamic regions, and the lateral
parts of the entorhinal cortex (ENTl) in the hippocampal
formation. The 10th and 11th complexes further includes
some regions in the isocortex, olfactory areas, cortical
subplate, and pallidum. The regions in the other major
regions are not included in the 1st to 11th complexes.

Thus, the regions included in the complexes with the
highest wmc are not evenly distributed among all major
regions, but are rather concentrated in the cortical (par-
ticularly isocortical) regions and thalamic regions. We
can confirm the unevenness among the major regions
from the coreness values (Fig. 8d, Table S2). Regions in the
isocortex have particularly high coreness values (i.e. they
are included in complexes with high wmc). Also, regions
in the thalamus have high coreness values. Other regions
with high coreness values are the CLA and BLA in the
cortical subplate, followed by ENTl in the hippocampal
formation, and some regions in the olfactory areas, cor-
tical subplate and pallidum. On the other hand, regions
in the other major regions have low coreness values. In
particular, regions in the cerebellar cortex and cerebellar
nuclei have much lower coreness values.

These results suggest that there appears to be a good
correspondence between whether or not a region is
included in complexes with high wmc and whether or
not a region is considered important for consciousness.
For example, the isocortex and thalamus are considered
essential to consciousness, whereas the cerebellar
cortex and cerebellar nuclei do not directly contribute
to consciousness (Boly et al. 2012, Koch et al. 2016,

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac143#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac143#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac143#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac143#supplementary-data
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Fig. 8. Complexes in a mouse connectome. Bidirectionality is considered in panels a–c and ignored in panels d–f. a) The inter-region connection matrix
of the mouse connectome. The color bars at the left and top of the matrix represent major brain regions and whether they are in the left or right brain.
b) Structure of complexes. A connection matrix in which the rows and columns are sorted according to the hierarchical structure of complexes as in
Fig. 7. The change in color map from blue to yellow indicates the min-cut weight wmc of the complexes. Square areas correspond to complexes and are
superimposed in ascending order of wmc. At the left, the brain regions included in the complexes with high wmc values (top 1, i.e. the main complex,
to top 11) are enlarged. c) The coreness values are plotted for each major brain region. The regions above the dashed line, which indicates the upper
quartile of coreness values for all regions, correspond to the enlarged regions in b. d) The inter-region connection matrix when bidirectionality is ignored,
i.e. the mean of the original connection matrix W and its transpose WT, (W + WT)/2. e) Structure of complexes. At the left, the brain regions included in
the complexes with high wmc values (top 1, i.e. the main complex, to top 14) are enlarged. f) The coreness values are plotted for each major brain region.
The regions above the dashed line, which indicates the upper quartile of coreness values for all regions, correspond to the enlarged regions in e.
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Tononi et al. 2016). Other than the isocortical and
thalamic regions, the CLA in the cortical subplate
has long been associated with consciousness (Crick
and Koch 2005). We discuss the relationship between
consciousness and the regions included or not included
in the top complexes in detail in Discussion.

Large difference in complexes when bidirectionality is
ignored

Next, we investigated how the results change when the
bidirectionality of the connections is ignored, i.e. the
direction of connections is ignored and only the summed
strength of connections is considered, as is in the
example in Fig. 7d–f. Figure 8d shows the symmetrized
connection matrix, based on which the complexes are
extracted.

Let us first mention that similar to the case when
considering bidirectionality, the results are symmetric
between the left and right brains. That is, one of the
following 2 conditions is satisfied: (1) as is in the case
when considering bidirectionality, if a region on 1 side
was included in a complex, the corresponding region
on the opposite side was also included in the complex;
or (2) if a region on 1 side was included in a complex
S, the corresponding region on the opposite side was
included in another complex with the same strength of
bidirectional connections as that of S. We therefore do
not distinguish between the left and right brains in the
following.

Figure 8e represents the extracted complexes. See
Table S1 for specific region names and the detail values of
wmc. In the left side of Fig. 8e, the brain regions included
in the complexes with the highest to 14th values of
wmc is enlarged. The 14th highest wmc corresponds to
the upper quartile of the coreness value for all regions.
By comparing the brain regions in the top complexes
shown in Fig. 8e with Fig. 8b, we can see that these
are largely different in the sense that the brain regions
in the top complexes are evenly distributed in almost
all of the major brain regions when bidirectionality is
ignored but are included in particular major regions such
as the isocortex or thalamus when bidirectionality is
considered. In fact, regions in all major regions except
the cerebellar cortex are included in the complex with
second highest wmc when bidirectionality is ignored. We
then investigate the change by ignoring bidirectionality
using the coreness values (Fig. 8f, Table S2). We observed
that the difference among the major brain regions
becomes small when bidirectionality is ignored. The
maximum values of coreness are equal for many major
regions. This reflects the fact that the regions included
in the complex with large wmc are evenly distributed
in many major regions. Also, the median coreness values
(represented by white circles in Fig. 8f) are equal for many
major regions.

From Fig. 8f, we can see that there are 2 regions that
have a particularly high coreness value, namely the
frontal pole (FRP) in the isocortex and the caudoputamen

(CP) in the striatum. The high coreness of these 2 regions
is due to the strong connection from CP to the FRP. On
the other hand, when bidirectionality is considered, the
coreness value of CP is low because the connection in the
opposite direction, FRP to CP, is weak.

To directly compare the 2 cases, namely when bidirec-
tionality is considered or ignored, we made a scatter plot
of coreness in Fig. 9, (1, 2) or (2, 1) panel (see also the
network diagram that compares the 2 cases in Fig. S5).
We can see that the distributions in the 2 cases are very
different: regions with high coreness values when bidi-
rectionality is considered do not necessarily have high
coreness values when bidirectionality is ignored, and vice
versa. We can also see that the points lie completely
above the identity line (y = x) in the panel (2, 1) in Fig. 9.
This is because the coreness for complexes is always
larger when bidirectionality is ignored than when it is
considered (See Text S3 for a proof).

Thus, if we ignore the bidirectionality of connections,
the results change drastically; the complexes no longer
necessarily consist of regions presumably essential to
consciousness. This suggests that considering the bidi-
rectionality of connections is important in associating
the network core complexes with consciousness.

Comparison with other existing methods
To further assess the significance of considering bidirec-
tionality, we compare the proposed method with other
existing methods that do not take account of bidirection-
ality. We first consider s-core decomposition (Chatterjee
and Sinha 2007, Hagmann et al. 2008, Heuvel and Sporns
2011, Harriger et al. 2012), one of the most popular meth-
ods for extracting network cores. As we mentioned in the
toy network analysis, s-core decomposition does not con-
sider bidirectionality of connections and s-cores become
identical to complexes when bidirectionality is ignored
under a certain mathematical condition (see Text S1 for
details). In the mouse connectome case, this condition
does not hold exactly, but almost does, and the obtained
s-cores are almost the same as the complexes when
bidirectionality is ignored. We can see that the core-
ness values for s-core decomposition (coreness for s-core
decomposition is defined in the same way as for com-
plexes; see Methods) and those for the complexes when
bidirectionality is ignored are almost identical (Fig. 9,
(2,3) or (3,2) panel). Since for complexes the difference
in coreness values among the major regions is small
when bidirectionality is ignored (Fig. 8f), the difference is
accordingly also small for s-cores. This means that the s-
cores with a high s do not necessarily consist of regions
in particular major regions, and therefore do not consist
mainly of regions considered essential to consciousness.

Next, we investigated whether the complexes with
strong bidirectional connections simply consist of the
brain regions with high degree, i.e. network hubs (Heuvel
and Sporns 2013, Fulcher and Fornito 2016). The degree
of a node is the sum of weights of edges connecting to
it, irrespective of direction (Eq. (13) in Methods), and

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac143#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac143#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac143#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac143#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac143#supplementary-data


Jun Kitazono et al. | 11

Fig. 9. Histograms and scatter plots of coreness values and degree of nodes. Histograms of the coreness values and degree of nodes appear along the
diagonal. Scatter plots of pairs of coreness value or degree of nodes appear in the off diagonal. Color of the points indicates major brain regions. The
line in each scatter plot is the identity line (y = x).

the network hubs are nodes with high degree. If the
complexes with strong bidirectional connections consist
of the hub regions, this means that bidirectionality
does not matter to the extraction of complexes. We
observed that the complexes when bidirectionality is
considered do not necessarily consist of regions with high

degree. In Fig. 9, (1,4) or (4,1) panel, we can see that the
coreness values for the complexes when bidirectionality
is considered and the degree are only weakly correlated:
many brain regions with high coreness values have
low degree. In contrast, the coreness for the complexes
when bidirectionality is ignored (and the coreness for
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s-core decomposition) corresponds well to the degree,
especially around the lower degree range (Fig. 9, (2,4)
or (4,2) panel). Thus, these results indicate that the
consideration of bidirectionality in the proposed method
enabled us to extract core structures in the mouse
connectome that cannot be extracted by simple degree-
based methods. We also compared the proposed method
with a motif analysis (Milo et al. 2002, Sporns and Kötter
2004, Onnela et al. 2005, Rubinov and Sporns 2010,
Harriger et al. 2012). We found that nodes in strong
complexes tended to participate more in motifs with
cycles than in motifs without cycles. See Text S4 for the
details of the results.

Discussion
In this study, we proposed a method to find the net-
work cores, called “complexes,”which consist of strong
bidirectional connections. If we search for complexes
by brute force, computation time grows exponentially
with the number of nodes. To solve this problem, we
introduced a fast and exact algorithm proposed in our
previous study, HPC (Kitazono et al. 2020). The HPC algo-
rithm reduces the computation time to polynomial time
and enables the analysis of large networks consisting
of up to several thousand nodes in a practical amount
of time. By utilizing HPC, we extracted complexes in a
mesoscale, whole-brain mouse connectome consisting of
426 regions (Oh et al. 2014), with the aim of identifying
subnetworks in the brain relevant for consciousness. We
found that complexes with strong bidirectional connec-
tions include many brain regions that have been con-
sidered essential for consciousness in previous studies.
We also found that if bidirectionality is ignored, the
brain regions included in the complexes with strong
connections are evenly distributed in major brain regions
regardless of whether or not they are relevant for con-
sciousness. These results indicate that bidirectionality
may be the key that characterizes the regions essential
for consciousness.

Correspondence between complexes and
essential regions for consciousness
In this subsection, we discuss the relationship between
complexes and the regions essential for consciousness.
We first discuss in detail the brain regions with high
coreness, i.e. the regions included in the complexes with
strong bidirectional connections, and then the brain
regions that are not included in such strong complexes.

First, many regions in the cerebral cortex, especially
the isocortical regions, have high coreness. Previous stud-
ies suggested that bidirectional interaction among isocor-
tical regions is essential for consciousness (Koch et al.
2016, Lamme 2018, Mashour et al. 2020). In addition
to the isocortical regions, the claustrum (CLA) in the
cortical subplate also has high coreness. Francis Crick
speculated that the CLA is the seat of consciousness,
and that metaphorically speaking it plays the role of the

conductor that orchestrates the brain (Crick and Koch
2005). In fact, recent studies in mice suggest that the
CLA is involved in the control of arousal and sleep levels
(Narikiyo et al. 2020, Norimoto et al. 2020). The CLA is
also suggested to have a role in salience processing and
attention control (Mathur 2014, Goll et al. 2015, Atlan
et al. 2018, Jackson 2018, Smith et al. 2019, Smith et al.
2020), and might therefore be involved in selecting what
comes to one’s conscious perception.

As for the subcortical regions, many thalamic regions
also have high coreness. It is suggested that the thalamo-
cortical loop—a circuit composed of the thalamus and
cortical regions—is important for consciousness (Mum-
ford 1991, Llinás 2003, Ward 2011, Aru et al. 2019).

As we discuss above, the brain regions with high
coreness seem to correspond well with the regions that
are considered essential to consciousness. However,
the brain regions with high coreness also include
some regions which have not yet been shown to be
relevant to consciousness. A notable example is the
basolateral amygdalar nucleus (BLA) in the cortical
subplate. The BLA has the same coreness as the CLA,
which is highest excluding the isocortical regions. The
BLA is thought to be critical for emotion (positive
and negative valence) and to mediate conditioning
both for reward and fear (O’Neill et al. 2018). To our
knowledge, however, the relationship between the BLA
and consciousness is little understood (e.g. whether
the BLA directly contributes to subjective experience of
emotions). Further investigation of such brain regions
would be useful.

In addition to investigating whether the regions with
high coreness are relevant to consciousness, it is also
important to investigate the converse, namely whether
the regions with low coreness, which are very weakly
bidirectionally connected, are presumably irrelevant
to consciousness. Notably, we found that all nodes in
the cerebellar cortex and cerebellar nuclei have low
coreness. It is well known that the cerebellum does
not directly contribute to consciousness (Lemon and
Edgley 2010, Yu et al. 2015) even though it has much
more neurons than the cerebrum. We also found that
the regions in the midbrain, medulla, and pons—the
major regions which constitute the brainstem—have
low coreness. Although the brainstem is important for
enabling consciousness, it is not thought to contribute
directly to conscious experience, in the same way that
the heart is important for enabling consciousness but
does not contribute directly to conscious experience.
These are called background conditions (Koch et al.
2016).

Taking our results together, we have found that (1)
brain regions presumably essential to consciousness
have high coreness—that is, they are included in com-
plexes with strong bidirectional connections; and that
(2) brain regions presumably irrelevant to consciousness
have low coreness, meaning that the regions are only
weakly bidirectionally connected to other regions.

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac143#supplementary-data
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Significance of considering bidirectionality
We here discuss how considering bidirectionality affects
the results of the complexes and its importance in relat-
ing the complexes with the locus of consciousness. As
we have seen in Results, when bidirectionality is ignored,
the structure of the complexes largely differs from that
when bidirectionality is considered. One large difference
is that the difference in coreness between major regions
is smaller when bidirectionality is ignored. Regions in the
cerebellum (cerebellar cortex and cerebellar nuclei) and
brainstem (midbrain, pons, and medulla), which have
smaller coreness than other regions such as the isocortex
and thalamus when bidirectionality is considered, have
similarly high coreness to these regions when bidirec-
tionality is ignored. As mentioned in the previous section,
these regions have not been so far considered to directly
contribute to consciousness (Lemon and Edgley 2010, Yu
et al. 2015, Koch et al. 2016). Another large difference is
that the caudoputamen (CP) in the striatum, which is not
included among complexes with large wmc when bidirec-
tionality is considered, forms the main complex when
bidirectionality is ignored. The striatum, more broadly
the basal ganglia, is not thought to contribute directly
to consciousness (Tononi 2004, Boly et al. 2017) (but see
Slagter et al. 2017, Afrasiabi et al. 2021).

Thus, when bidirectionality is ignored, regions both
relevant and irrelevant to consciousness are evenly
included in the strong complexes. This means that the
seemingly good correspondence between complexes and
regions relevant to consciousness we identified when
considering bidirectionality is largely lost.

The operation of ignoring bidirectionality is equivalent
to symmetrizing a network and treating it as practically
an undirected network, as described in Results. There-
fore, the fact that ignoring bidirectionality leads to large
changes in the complex can be rephrased as saying that
ignoring “directionality” leads to large changes in the
complex. In a previous study, Kale et al. studied how
ignoring directionality affects graph-theoretic measures
of connectomes and showed that hubs are particularly
affected (Kale et al. 2018). The concept of hubs is based on
the local structure of a network, connectivity of a single
node. The concept of complexes, on the other hand, is
based on the global structure of a network, which is how
strongly subnetworks are connected. Thus, the present
study can be said to show that not only local structures
(e.g. hubs) but also global structures, i.e. complexes, can
be greatly affected by ignoring directionality.

Comparison with other core extraction methods
in terms of bidirectionality
In the literature, a variety of methods have been applied
to connectomes to extract network cores in which ele-
ments are densely connected to each other. In what
follows, in terms of bidirectionality of connections, we
compare complexes with 3 representative methods for
core extraction, namely s-core decomposition, network
hubs, and modularity maximization.

In this study, we first compared s-core decompo-
sition with the complexes. s-core decomposition is a
representative method that has been widely applied to
connectomes of various species (Chatterjee and Sinha
2007, Hagmann et al. 2008, Harriger et al. 2012), and
the extracted cores are related to certain functions.
We showed that the s-cores extracted from the mouse
connectome largely differ to the complexes when
bidirectionality is considered, but are almost identical
to the complexes when bidirectionality is ignored. This
means that the consideration of bidirectionality enabled
us to reveal core structures that cannot be revealed by
s-core decomposition.

We next compared network hubs (Heuvel and Sporns
2013, Fulcher and Fornito 2016) with the complexes.
Previous studies showed that the brain network contains
cores in which hubs (high-degree nodes) are densely
connected to each other (called “rich-clubs”) (Heuvel
and Sporns 2011, Harriger et al. 2012, Fulcher and
Fornito 2016). We showed that in the mouse connectome
the complexes with strong bidirectional connections
included not only high-degree nodes but many low-
degree nodes (Fig. 9). This means that the core structures
revealed by the complexes largely differ to the structures
that can be revealed by hub-based methods.

Finally, we discuss modularity maximization, which is
also widely used in connectome analysis (Sporns and
Betzel 2016). Similar to the proposed method, modu-
larity maximization is a method used to extract sub-
networks with dense connections. Its objective is, how-
ever, qualitatively different from that of the proposed
method. The objective of modularity maximization is to
partition a network into non-overlapping cores (called
modules or communities) with dense internal connec-
tions, and not to decompose a network hierarchically
as for complexes. This difference in objectives ham-
pers direct quantitative comparison of the 2 methods by
experiments. We therefore confined ourselves here to a
qualitative comparison in terms of bidirectionality. The
mathematical formulation of modularity maximization
is suitable for undirected networks (Sporns and Betzel
2016). It is therefore impossible to consider the direction
of connections and hence bidirectionality. However, a
variant of the modularity maximization methods con-
siders the direction of connections when defining the
density of connections (Leicht and Newman 2008). This
variant does not consider bidirectionality, however, and
extracted modules do not therefore necessarily consist
of bidirectional connections, i.e. modules have fully feed-
forward structures.

As exemplified above, the core extraction methods
in wide current use for connectome analysis do not
consider the bidirectionality of connections. Thus, we
conclude that the main result of the present paper,
which has revealed the correspondence between the
network cores of the brain and consciousness, can only
be achieved by methods such as the proposed method
which take account of the bidirectionality of connections.
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Number of main complexes
In general, since main complexes are “local” maxima in
terms of wmc, there can be multiple main complexes
in a network as we mentioned in Results. An extreme
example occurs when a network consists of 2 mutually
disconnected modules: in this case, there will be 2 (or
more) main complexes. The presence of multiple main
complexes in a network indicates that the network con-
sists of multiple weakly coupled modules.

In the mouse connectome, there are 5 main complexes
when bidirectionality is considered, albeit that we only
mentioned one of them in Results. The main complex we
mentioned has the highest wmc of all main complexes
(and of all subnetworks by definition) and is largest in
size among all main complexes. The other main com-
plexes, which we did not mention, have low wmc and con-
sist of only 2 regions, i.e. are minimum in size. This means
that the mouse connectome can be almost considered to
consist of 1 large module.

Thus, we can ascertain modular structure using com-
plexes. In contrast, when we use s-core decomposition,
this cannot be ascertained. Consider a network consist-
ing of 2 densely connected parts, as shown in Fig. S6. In
this case, s-core decomposition extracts the entire net-
work as a single core and does not extract the modular
structure in this network. The proposed method, on the
other hand, extracts 2 modules as 2 main complexes.
This is because s-core decomposition uses only local
information, i.e. degree of nodes, and cannot consider the
global structure of a network as a whole. On the other
hand, the proposed method uses the global information
of networks, min-cuts, which allows us to extract the
modular structure.

Limitations of this study and future direction
We searched for complexes using a method proposed in
our previous study, hierarchical partitioning for complex
search (HPC) (Kitazono et al. 2020). The computation time
of HPC increases only polynomially with the number of
the nodes, which is much smaller than the exponential
increase in brute force search. This enables us to find
complexes in a network with several thousand nodes in
a practical amount of time. However, to find complexes
in networks with more nodes (N � 2, 000–3, 000), a
further speeding-up is required. One possible solution is
the use of approximation algorithms for min-cut search
(Kirkpatrick et al. 1983) instead of the exact algorithm,
the Hao-Orlin algorithm (Hao and Orlin 1994), which we
used in this study.

In this study, we discussed how complexes extracted
from the mouse connectome, which consists of anatomi-
cal connections, are related to consciousness. We should
note, however, that it is not the anatomical connections
themselves that are directly responsible for conscious
experiences at a particular time, but rather interactions
between brain regions that result from the brain activity
(Cauller and Kulics 1991, Lamme et al. 1998, Supèr
et al. 2001, Auksztulewicz et al. 2012, Self et al. 2012,

Sachidhanandam et al. 2013, Koivisto et al. 2014,
Tang et al. 2014, Manita et al. 2015). The location of
bidirectional interactions changes from time to time,
and the brain regions that mediate consciousness
can also change accordingly (Koch et al. 2016, Tononi
et al. 2016). To capture such dynamic change in con-
sciousness, future research should therefore aim to
extract complexes from functional or causal networks
constructed by quantifying interactions using brain
activity data. The relationship between anatomical and
functional networks is not as simple as a one-to-one
correspondence. It is empirically known, however, that
there are some similarities between them (Mišić et al.
2016, Grandjean et al. 2017, Sethi et al. 2017), as would
be naturally expected from the fact that anatomical
connections are the basis for interactions between
brain regions. In addition, bidirectional connections are
suggested to play a crucial role in synchronizing brain
regions (Gollo et al. 2014). We therefore expect that
complexes extracted from functional networks could be
similar to the complexes extracted from the anatomical
network.

Methods
Strength of bidirectional connections
Here, we propose a way of quantifying how strongly 2
parts of a graph are bidirectionally connected. We con-
sider a directed graph G(V, E), where V and E are the node
set and the edge set, respectively. For a bi-partition of
the node set V, (VL, VR), there are 2 types of edges that
connect VL and VR depending on its direction. One is the
set of edges outgoing from VL to VR:

E(VL → VR) = {(u, v) ∈ E|u ∈ VL, v ∈ VR}. (1)

The other is the set of the edges incoming to VL from VR

(or equivalently, outgoing from VR to VL):

E(VR → VL) = {(u, v) ∈ A|u ∈ VR, v ∈ VL}. (2)

When we ignore the directions of the connections
between VL and VR, the simplest way of quantifying the
strength of the connections is to add up all the weights
of the edges that connect VL and VR regardless of their
directions:

wsimple sum(VL; VR) = 1
2

∑

e∈E(VL→VR)∪E(VR→VL)

we, (3)

where we represent the weight of the edge e. The factor 2
in the denominator is for consistency with the strength
of bidirectional connections, as explained later.

On the other hand, when we consider the bidirectional-
ity of connections between VL and VR, we first separately

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac143#supplementary-data
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add up the weight of the edges for each direction,

w(VL → VR) =
∑

e∈E(VL→VR)

wa, (4)

w(VR → VL) =
∑

e∈E(VR→VL)

wa, (5)

and then define the strength of bidirectional connections
as their minimum:

w(VL; VR) = min (w(VL → VR), w(VR → VL)) . (6)

With this definition, if 2 parts of a network are only
connected unidirectionally, as in Fig. 2a, the strength of
bidirectional connections w(VL; VR) is 0, which means
that the 2 parts are considered to be “disconnected”
bidirectionally. In Fig. 2b, the connection from one part to
the other part is strong (3) but that in the other direction
is weak (1). Consequently, the strength of bidirectional
connections is low (w(VL; VR) = 1). In Fig. 2c, the connec-
tions in both directions are strong (2) and the strength
of bidirectional connections is high (w(VL; VR) = 2). If we
ignore the directionality of connections and add up the
edge weights in the 2 directions (wsimple sum), the strength
of connections is evaluated as 2 in all 3 cases.

The 2 measures w(VL; VR) and wsimple sum, with and
without considering bidirectionality, are equal to each
other when connections are symmetric (w(u,v) = w(v,u)).

Minimum cut
Definition of minimum cut

A cut of a graph G(V, E) is called a minimum cut if the
strength of the connections for the cut is not higher than
that of any other cut. More formally, a minimum cut
(Vmc

L , Vmc
R ) is defined as follows:

(Vmc
L , Vmc

R ) = arg min
(VL,VR)∈PV

w(VL; VR), (7)

where PV denotes the set of all bi-partitions of V. We
denote the weight of the minimum cut (Vmc

L , Vmc
R ) of a

graph G as

wmc
G := w(Vmc

L ; Vmc
R ). (8)

Fast and exact algorithms for searching for min-cuts

We defined a measure of strength of bidirectional
connections as in Eq. (6). Although this definition is
different from the canonical definition of a graph cut
weight for directed graphs, the minimum cut problems
for the 2 definitions are equivalent (Text S5). Therefore,
we can use a well-established algorithm to solve the
minimum cut problem. In this study, we utilize the Hao-
Orlin algorithm (Hao and Orlin 1994). Its time complexity
is O(|V||E| log(|V|2/|E|), where |V| and |E| are the number
of nodes and edges, respectively.

Complex
In this section, we introduce the definition of a complex
(Balduzzi and Tononi 2008,Tononi 2008, Kitazono et al.
2020). We also introduce a main complex, which is a
stronger definition of a complex (Balduzzi and Tononi
2008, Tononi 2008, Kitazono et al. 2020).

To formally define complexes, we need to introduce
the concept of an induced subgraph. Let G be a graph
consisting of node set V and edge set E, and let S ⊆ V
be a subset of nodes. Then, an induced subgraph G[S] is
the graph consisting of all the nodes in S and all the edges
connecting the nodes in S. The min-cut weight of G[S] is
denoted by wmc

G[S]. We are now ready to define complexes.
Definition 1.1 (Complex). An induced subgraph

G[S](S ⊆ V) is called a complex if it satisfies wmc
G[S] > 0

and wmc
G[S] > wmc

G[T] for any subset T that is a superset of S
(T ⊃ S and T ⊆ V).

A schematic explanation of the definition of a complex
is shown in Fig. 4. In this schematic, we consider induced
subgraphs of a graph G consisting of 10 nodes {A, B, . . . , J}.
An induced subgraph G[{E, F, I, J}] is a complex because it
has greater wmc than any induced subgraph of G that is
its supergraph (e.g. G[{B, E, F, I, J}] and G[{D, E, F, H, I, J}]).

The whole graph G is a complex if it satisfies wmc
G > 0

by definition. We define wmc = 0 for single nodes because
we cannot consider partitions of a single node. Therefore,
single nodes cannot be complexes.

An induced subgraph is called a main complex if its
min-cut weight wmc is larger than those of any induced
subgraphs that are its supergraphs, and is also larger
than or equal to those of any induced subgraphs that are
its subgraphs. That is, a complex is called a main complex
if its min-cut weight wmc is larger than or equal to those
of any induced subgraphs that are its subgraphs.

Definition 1.2 (Main complex). A complex is called a
main complex if it satisfies wmc

G[S] ≥ wmc
G[R] for any subset R

of S (R ⊂ S).
A schematic explanation of the definition of main

complexes is shown in Fig. 4. An induced subgraph
G[{E, F, I, J}] is a main complex because it is a complex
and has greater wmc than any induced subgraph that is
its subgraph (e.g. G[{F, J}] and G[{E, F, I}]).

At this point some readers might wonder if, instead of
Definition 1.1, we could define a core, which we call here
a sub-complex, in the following form:

Definition 1.3 (Sub-complex). An induced subgraph
G[S](S ⊆ V) is called a sub-complex if it satisfies wmc

G[S] > 0
and wmc

G[S] > wmc
G[R] for any subset R that is a subset of S

(R ⊂ S).
The difference between Definitions 1.1 and 1.3 is

whether we compare the wmc of a core with those of
its supersets or subsets. We explain here why we define
a core complex in accordance with Definition 1.1, and
not with Definition 1.3. The reason lies in 2 properties of
complexes. The first property is the hierarchical nature
of complexes. As mentioned in the Results, complexes
form a nested hierarchical structure. That is, if there
are 2 complexes, they satisfy either the property that

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac143#supplementary-data
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one contains the other or that they do not overlap with
each other. On the other hand, sub-complexes do not
necessarily form such a hierarchical structure: when
there are 2 sub-complexes, the 2 may partially overlap.
As an example, consider a fully connected network where
the weights of the edges are all equal. In this case,
every subnetwork is a sub-complex, and extracting sub-
complexes does not make sense. The second property is
that complexes can be said to be representative of other
subnetworks. The coreness of a node v is defined as “the
largest of the wmc of all complexes containing v (Eq. (11)).”
As we will see later in this section, the value of coreness
is equal to “the largest of the wmc of all subnetworks (not
necessarily complexes) that contain v (Eq. (12)).” This
means that the wmc of complexes is representative of
the wmc of all subnetworks. On the other hand, if we
define coreness for sub-complexes in the same way, it
can be smaller than Eq. (12). From these 2 properties, we
consider that it is reasonable to use Definition 1.1.

Relation to integrated information theory
As we mention in Introduction, the term and concept
of complexes in the proposed method originate from
the integrated information theory (IIT) of consciousness
(Tononi 2004, Balduzzi and Tononi 2008, Oizumi et al.
2014, Tononi et al. 2016). We here clarify how the pro-
posed method is related to IIT.

The definition of complexes in this study basically
follows that in IIT. However, there are some important
differences between the two. First, the most major differ-
ence is in systems to be analyzed: the proposed method
targets static graphs (e.g. connectomes) while IIT tar-
gets stochastic dynamical systems (e.g. brain dynamics).
Since the targeted systems are different, the measures of
coupling strength between subsystems are also different:
this study uses strength of bidirectional connections,
which is based on weight of edges in a graph, while
IIT uses a measure called integrated information (also
called �) (Tononi 2004, Balduzzi and Tononi 2008, Oizumi
et al. 2014, Tononi et al. 2016). Integrated information
� measures how much information is lost when inter-
actions between subsystems are removed (Amari et al.
2018, Oizumi et al. 2016). Apart from these differences
in the targeted systems and the measures of coupling
strength, complexes in this study are defined in the same
way as those in IIT 2.0, which is a previous version of
IIT (Balduzzi and Tononi 2008). Note that the equivalent
to the minimum cut is called the minimum information
partition in IIT.

Although the measures of coupling strength in this
study and IIT differ, as stated above, a mathematical idea
to take account of bidirectionality is borrowed from IIT.
In this study, to quantify the strength of bidirectional
connections, we consider the minimum of the sum of
weights in 1 direction and the sum of weights in the
opposite direction (Eq. (6)). This definition, i.e. taking the
minimum of the 2 directions, is from the operation in

computing � in the latest version of IIT (IIT 3.0, Oizumi
et al. 2014, Tononi et al. 2016), where the amount of
information is computed in 2 directions for time: forward
(past to future) and backward (future to past), and the
minimum value is taken.

Using graph weights to quantify coupling strengths
has advantages and disadvantages over integrated infor-
mation �. The advantages include that we can apply
the HPC algorithm to find complexes rapidly, whereas
we cannot use HPC for � because � does not have the
mathematical property required by HPC to be valid (Kita-
zono et al. 2020). The disadvantages include that since a
graph is fully described by one-to-one relations between
nodes, graph-based analysis inevitably omits the effects
of many-to-many interactions. In contrast, when � is
used, such many-to-many interactions can be considered
(Kitazono et al. 2020).

Hierarchical partitioning for complex search
If we search for complexes by brute force, computation
time increases exponentially with the number of nodes.
Therefore, when the number of nodes in the network
exceeds several tens, it becomes practically impossible
to identify the complexes. On the other hand, using the
algorithm HPC, which we proposed in a previous study
(Kitazono et al. 2020), the computation time increases
only polynomially with the number of nodes. HPC is an
exact method that does not use approximations and can
extract all complexes without any omissions or misiden-
tifications. This makes it possible to extract all com-
plexes from a network consisting of several thousand
nodes in a practical computation time. An actual com-
putation time evaluated by a simulation is shown in
Fig. 5.

In what follows in this subsection, we write the
induced subgraph G[S] for a node subset S as S for
simplicity of notation.

HPC primarily consists of 2 steps. The first is list-
ing candidates of (main) complexes. HPC narrows down
candidates for (main) complexes by hierarchically par-
titioning a network. The second step is screening the
candidates to find (main) complexes.

In the first step, HPC hierarchically partitions a net-
work with min-cuts (Fig. 6). HPC starts by dividing the
whole network with its min-cut, and then repeatedly
divides the subnetworks with their min-cuts until the
entire network is completely decomposed into single
nodes. This procedure in HPC is summarized as follows:

1) Find the min-cut (VL, VR) of the whole network V and
divide the whole network V into the 2 subnetworks
VL and VR.

2) Find the min-cuts of the subnetworks found in the
previous step, VL and VR, and divide them into (VLL,
VLR) and (VRL, VRR), respectively.

3) Repeat this division until the whole network is
decomposed into single nodes.
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After the procedure above, we obtain the set of hierarchi-
cally partitioned subnetworks, that is, V, VL, VR, VLL, VLR,
VRL, VRR, and so on. We consider all the set of subnetworks

V = {V, VL, VR, VLL, VLR, VRL, VRR, . . .}, (9)

excluding single nodes. Then, the following theorem
holds.

Theorem 1.4. Any complex S ⊆ V belongs to V (S ∈ V).

Thus from this theorem, V can be seen as the set
of candidates of complexes. The theorem is based on
satisfaction of a mathematical property “monotonicity”
by the strength of bidirectional connections (Eq. (6)). Let
us consider the strength of bidirectional connections
w(S; T) between 2 subsets of nodes S and T. If we then add
another set of nodes U to S, the strength of bidirectional
connections does not decrease. That is,

w(S ∪ U; T) ≥ w(S; T). (10)

Also, if we add U to T, w(S; T∪U) ≥ w(S; T). This inequality
means that the strength of bidirectional connections
monotonically increases as nodes are added. We call this
property “monotonicity.” By using monotonicity, we can
easily show that a subnetwork cannot be a complex if it
straddles the boundary of a min-cut of a subnetwork that
contains it, and can prove Theorem 1.4 (see our previous
work (Kitazono et al. 2020) for the proof).

After the hierarchical partitioning procedure described
above, in the second step, we need to check whether
each candidate of complexes belonging to V is actually
a (main) complex or not in accordance with Def. 1.1.
We can efficiently check this by taking advantage of the
hierarchical (tree) structure. For more detail please, see
our previous work (Kitazono et al. 2020).

In general, a network can have multiple min-cuts. If
this is the case, depending on which min-cut is used to
divide a network in the hierarchical partitioning process,
the candidate set of complexes V can vary. However, even
though V varies, the resulting complexes (and also main
complexes) do not vary. This is because any of the candi-
date sets contains all (main) complexes independent of
which min-cut is used. Therefore we do not have to care
which of multiple min-cuts we select.

Coreness of each node
Using the complexes and their wmc, we define a “core-
ness” of each node. When a node is included in complexes
with high wmc, the coreness of that node is high, and con-
versely, when a node is included only in complexes with
low wmc, the coreness of that node is low. Specifically,
we define the coreness of a node v as kv if the node v is
included in a complex with wmc = kv but not included in
any complex with wmc > kv. Equivalently, we can define
the coreness of a node v as the largest of the wmc of all

complexes containing the node v:

kv = max
C∈Gcomplex|v∈V(C)

wmc
C , (11)

where Gcomplex denotes the set of all complexes in the
graph G and V(C) denotes the set of all nodes in the
complex C. The coreness Eq. (11) is equal to the largest of
the wmc of all subnetworks containing node v (see Text
S6 for a proof):

kv = max
S|v∈V(S)

wmc
G[S]. (12)

Coreness for s-cores
We can define a coreness for s-cores in the same way as
for complexes: we define the coreness of a node v as s
if node v is included in s-core but is not included in any
s′-core with s′ > s.

Degree of a node
We define the degree of a node v as the sum of the
weights of all edges connecting v and other nodes, irre-
spective of the direction of edges:

deg(v) = 1
2

∑

e∈E(v,V)

we,

E(v, V) = {(v, u) ∈ E|u ∈ V}. (13)

The factor 2 in the denominator is for consistency with
the strength of connections: when we measure the
strength of connections (Eq. (3)) between a node and the
nodes connecting to it, it becomes equal to the degree of
the node. This degree can be also regarded as the mean
of in-degree and out-degree.

Sorting rows and columns of a connection matrix
according to the structures of complexes
In Figs. 7b and 7h and 8d and 8h, we sorted rows and
columns of a connection matrix according to the hierar-
chical structures of the complexes. Here we explain this
sorting process in detail.

To start, we sort the rows and columns in the order
of the leaf nodes of the hierarchical structure obtained
by hierarchical partitioning (Fig. 6). In the case of Fig. 6,
the rows (columns) are sorted in the order of A, B, E, F,
C, D, and G. We now explain in detail. At each step of
the hierarchical partitioning process, we sort the nodes
according to which of the 2 subnetworks (e.g. VL or VR)
they are classified in. Therefore, at the end of the process,
nodes classified into the same groups until a late stage
of the process are placed close to each other, whereas
those classified into different groups at an early stage
are placed away from each other. Since the hierarchical
structure obtained by the hierarchical partitioning is the
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basis of the hierarchical structure formed by the com-
plexes, the result is that nodes in the same complex with
high wmc are placed close to each other.

This is the rough flow of how the order of nodes
is determined. This alone, however, is not enough to
uniquely determine the order. There is still arbitrariness
with regard to which of the 2 subnetworks (e.g. VL or
VR) comes first at each step of the process. To eliminate
this arbitrariness, we chose to place the upstream sub-
network first. That is, for example, when the strength of
the connections from VL to VR (Eq. (4)) is higher than that
in the opposite direction (Eq. (5)), i.e. when VL is located
relatively upstream to VR, VL is placed ahead of VR. If the
strengths of the connections in the 2 directions are equal
to each other, we arranged the rows (columns) so that
their original order is maintained.

Supplementary material
Supplementary material is available at Cerebral Cortex
Journal online.
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