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Gentamicin (GEN) is a bactericidal aminoglycoside known to cause nephrotoxicity.
Formononetin (FN) is a potent flavonoid that exhibits numerous promising
pharmacological activities. In this study, we have assessed the nephroprotective
efficacy of FN against GEN-induced renal injury in rats. Rats were orally administered
with FN (60 mg/kg/day, for 2 weeks) and were co-treated with intraperitoneal (i.p.) injection
of GEN (100 mg/kg/day) during the days 8–14. GEN-treated rats demonstrated increased
urea and creatinine levels in serum associated with marked histopathological changes in
the kidney. Malondialdehyde (MDA) and protein carbonyl contents were elevated, whereas
glutathione concentration and catalase and superoxide dismutase activities were lowered
in GEN-administered rats. The FN largely prevented tissue damage, attenuated renal
function, reduced MDA and protein carbonyl, and enhanced antioxidant capacity in the
kidney of GEN-administrated animals. The kidney of GEN-treated rats demonstrated
elevated Bax and caspase-3 protein expression, accompanied by lowered Bcl-2 protein
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expression, an effect that FN attenuated. Moreover, FN treatment caused upregulation of
nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) expression
in renal tissue of GEN-intoxicated animals. Collectively, FN protects against GEN-caused
renal damage via exhibiting antioxidant, anti-inflammatory, and antiapoptotic activities and
augmenting Nrf2 signaling, suggesting FN as a promising agent for preventing drug-
induced organ damage.

Keywords: formononetin, gentamicin, nephrotoxicity, inflammation, oxidative stress, Nrf2

INTRODUCTION

Gentamicin (GEN) is a bactericidal aminoglycoside used to treat
potentially fatal Gram-negative bacterial infections (Randjelovic
et al., 2017; Abdel-Fattah et al., 2021). Unfortunately, the
therapeutic application of GEN is frequently restricted by the
induction of nephrotoxicity. It has been reported that
nephrotoxicity appears in 10–25% of patients after treatment
with GEN (Quiros et al., 2011). GEN-induced kidney injury is
manifested by necrosis and apoptosis of tubular cells and
inflammatory cell infiltration (Balakumar et al., 2010; Quiros
et al., 2011; Randjelovic et al., 2017). The primary mechanisms
behind the nephrotoxicity of GEN include, but are not limited to,
increased free radical (FR) formation and activation of pro-
inflammatory and cell death pathways, which eventually
culminate in renal dysfunction (Balakumar et al., 2010;
Ahmed and Mohamed, 2019; Medić et al., 2019; Abdel-Fattah
et al., 2021). Therefore, therapeutic approaches aimed at
attenuating oxidative stress (OS) and inflammation can protect
against the devastating complication of GEN.

Indeed, excessive reactive oxygen species (ROS) production
provokes deleterious cellular effects, including direct damage to
lipids, oxidative damage of deoxyribonucleic acid (DNA), and
protein oxidation. In addition, GEN-induced ROS
overproduction is linked to nuclear factor-kappa B (NF-κB)
activation, which results in the activation of several
inflammatory components, particularly pro-inflammatory
cytokines, eventually culminating in renal cell apoptosis and
nephrotoxicity (Balakumar et al., 2010; Randjelovic et al.,
2017; Ahmed and Mohamed, 2019; Li et al., 2022). Since OS
is an important event in the induction of GEN nephrotoxicity,
activation of various antioxidant and cytoprotective enzymes is
essential. The nuclear factor erythroid 2-related factor 2 (Nrf2) is
among the possible druggable targets that can prevent oxidative
tissue injury induced by various redox insults (Satta et al., 2017;
El-Sayed et al., 2021). It is a critical coordinator of the cellular
stress reaction by modulating the expression of a plethora of
cytoprotective and antioxidant enzymes (Shelton et al., 2013; He
et al., 2020). Boosting the Nrf2 activity has been shown to
attenuate drug-induced oxidative tissue damage in animals
(Mahmoud et al., 2017a; Aladaileh et al., 2019a; Aladaileh
et al., 2019b; Aladaileh et al., 2021a). Conversely, Nrf2-
deficient animals were more vulnerable to a wide spectrum of
chemical toxicity and pathological situation (Liu et al., 2009;
Klaassen and Reisman, 2010). Hence, activation of Nrf2 might

represent a novel therapeutic approach to avert drug-induced
tissue injury.

Formononetin (FN) is a natural isoflavone found in several
plants, mainly of the “Fabaceae” family (Tay et al., 2019; Dutra
et al., 2021). Various scientific reports have demonstrated that FN
exhibits antioxidant, anti-inflammatory anti apoptotic, and tissue
protective properties (Aladaileh et al., 2019a; Yi et al., 2020). It has
been shown that FN improved renal function and demonstrated
nephroprotective properties through ameliorating oxidative
damage and lowering the degree of pro-inflammatory
cytokines in vivo and in vitro models of cisplatin-induced
nephrotoxicity (Shinde et al., 2021). In addition, FN
attenuated rhabdomyolysis-induced kidney apoptosis by
upregulating Nrf2 (Huang et al., 2016). Moreover, FN
protected mice from acetaminophen-induced hepatotoxicity,
which was attributed to its ability to activate Nrf2 (Jin et al.,
2017). Furthermore, a recent study showed that FN upregulated
Nrf2/heme oxygenase 1 (HO-1) signaling and prevented renal
oxidative injury, inflammatory reaction, and apoptosis in
methotrexate (MTX)-treated animals (Aladaileh et al., 2019a).
Novel research found that FN preserved renal action in a rat
model of diabetic nephropathy by hindering ROS overproduction
and restoring antioxidants (Oza and Kulkarni, 2019).

However, the potential protective impact of FN against GEN-
induced renal damage is yet to be studied. Therefore, this
experiment sought to assess the impact of FN on GEN-
induced tissue injury in the kidney, focusing on the role of
Nrf2/HO-1 signaling. The findings of this study may have
significant relevance for the protection of nephrotoxicity
induced by GEN.

MATERIALS AND METHODS

Animals
Twenty-four healthy adult male Wistar rats (220–250 g,
9–10 weeks of age) were used in this work to determine the
protection impact of FN on GEN nephrotoxicity. The rats were
accommodated in suitable cages under ideal circumstances and
were supplied with balanced feed and clean water ad libitum. All
the animal experiment handling processes in this investigation
were performed following the National Institutes of Health (NIH
publication No. 85-23, revised 2011). The animal experiment
ethics committee of Al-Hussein Bin Talal University approved
them.
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Experimental Design
After 1 week of acclimatization, the rats were allocated into four
groups (n = 6). Group I (control): rats were orally administered with
vehicles, 0.5% carboxymethyl cellulose (CMC), for 2 weeks and were
intraperitoneally (i.p.) injected with normal saline during the days
8–14 (Aladaileh et al., 2019b); Group II (FN): rats orally
administered FN (60mg/kg/day, by oral route) for 14 days
(Huang et al., 2017; Cai et al., 2019); Group III (GEN): rats were
administered by vehicles (0.5% CMC, orally) for 2 weeks and were
injected with GEN (100mg/kg/day, i.p.) during the days 8–14
(Ahmed and Mohamed, 2019); and Group IV (FN + GEN): rats
were orally administered with FN (60mg/kg/day) for 2 weeks and
were co-treated with GEN (100mg/kg/day, i.p.) during the days
8–14. GEN (Memphis Pharmaceuticals, Egypt) and FN (Sigma, St.
Louis, MO, USA) were dissociated in saline (Ahmed andMohamed,
2019) and 0.5% CMC (Aladaileh et al., 2019a), respectively.

Samples Collection
On day 15, animals were deeply anesthetized using ketamine and
xylazine (100 mg/kg and 10 mg/kg, i.p., respectively) before
performing a direct heart puncture and collecting blood
samples (Alibakhshi et al., 2018). Then, immediately, both
kidneys were removed, and the left kidneys were ground in
cold Tris-HCl buffer (pH = 7.4) (10% w/v), centrifuged, and
the clear supernatant was separated and stored in deep freezing
(-80°C) for further investigations. In comparison, the right ones
were settled in 10% neutral phosphate-buffered formalin for
histological examination and immunohistochemistry analysis.
The blood samples were left standing until complete clotting
on the other side. Then, the collected samples were centrifuged,
and the serum was isolated and stored in deep freezing (-80) for
further biochemical analysis.

Determination of Kidney Function Markers
According to the manufacturer’s instructions, urea (Sampson
et al., 1980) and creatinine (Slot, 1965) levels in serum samples
were estimated by a commercial reagent kit (Spinreact, Spain) by
following the protocols recommended by the manufacturer.

Renal Oxidative Stress Markers and
Antioxidants
Renal malondialdehyde (MDA) and protein carbonyl were
assessed as described previously (Ohkawa et al., 1979; Levine
et al., 1990), respectively. In addition, reduced glutathione (GSH)
levels (Sedlak and Lindsay, 1968) and activities of superoxide
dismutase (SOD) (Marklund and Marklund, 1974) and catalase
(CAT) (Aebi, 1984) were assayed in the renal homogenate of all
groups. According to the supplier’s instructions, renal tissue HO-
1 contents were assessed using a specific ELISA kit (MyBioSource,
USA) (Althunibat et al., 2022).

Determination of Pro-inflammatory
Cytokines in the Kidney
ELISA kits (R&D Systems, USA) were employed to determine
interleukin 1 beta (IL-1 β), IL-6, and tumor necrosis factor-alpha

(TNF-α) levels in the kidney homogenate as described previously
(Al-Amarat et al., 2021).

Histological Examination
Kidney samples were preserved in 10% formalin buffer. Post
paraffin embedding, 5 μm specimens were stained with
hematoxylin and eosin (H & E) for routine histopathological
examination and periodic acid–Schiff (PAS) stains to illustrate
more details regarding border membrane impairment,
glomerular basement membrane alterations, and
mucopolysaccharide deposition (Feng et al., 2017). Then,
histopathological alterations in kidney cells were observed
using light microscopy.

Immunohistochemistry Analysis
Another group of deparaffinized and hydrated sections was
processed by the heat-induced epitope retrieval (HIER)
method using a microwave oven for immunohistochemistry
analysis. Then, HIER exposed parts were immediately reacted
with 0.3% H2O2 solution in methanol to block endogenous
peroxidase activity. After cooling the prepared slide at room
temperature, the serum was added for 20 min to block the non-
specific antigen-antibody binding. Next, they were treated with
anti-caspase 3, anti-BAX, anti-BCL-2, and anti-Nrf2 [all
obtained from Invitrogen, CA, USA], and anti-NF-κB p65
(obtained from Santa Cruz Biotechnology, TX, USA), and
kept overnight at 4°C. Post rinsing the unbound antibodies
with phosphate-buffered saline, secondary antibodies were
applied, followed by treatment of sections with a 3,3′-
diaminobenzidine-tetrahydrochloride-H2O2 solution to
induce color development. Mayer’s hematoxylin was used as
a counterstain and then all sections were visualized by using
light microscopy (Aladaileh et al., 2021a). Staining intensity
was assessed and presented as a percentage of positive
expression in 1,000 cells per eight HPF for NF-ĸB p65,
caspase 3, and Bax, while Nrf2 and BCL2 immunostaining
was determined through the area of positive expression using
ImageJ analysis software (NIH, USA).

Analyses of Data
All the values are presented as means ± SEM.
Statistical significance between groups was obtained by
GraphPad Prism 7 software (San Diego, CA, USA). For
multiple comparisons, one-way ANOVA followed by
Tukey’s post-hoc test was applied. A p < 0.05 was
considered significant.

RESULTS

FN Attenuates the GEN-Inducted Renal
Damage
The protection activity of FN against GEN nephrotoxicity was
assessed by assaying biomarkers of kidney function (Figures 1A,
B) and histopathological alterations (Figures 2, 3). Renal damage
in GEN-induced rats was proved by the significant (p < 0.001) rise
in creatinine (Figure 1A) and urea (Figure 1B) levels in serum. In
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GEN-intoxicated animals, pre-treatment with FN attenuated
serum urea and creatinine (p < 0.001). FN did not affect these
markers in normal rats.

Examination of sections from the renal tissue of normal and FN-
supplied rats indicates normal tissue architecture with normal renal
glomeruli and tubules. On the other hand, GEN administration

FIGURE 1 | FN attenuates renal function in GEN-induced rats. FN attenuated (A) creatinine and (B) urea in the serum of GEN-intoxicated rats. Data are mean ±
SEM (n = 6). p indicates p < 0.05, pp indicates p < 0.01, and ppp indicates p < 0.001 versus control group, while ### indicates p < 0.001 versus GEN group. FN:
formononetin; GEN: gentamicin.

FIGURE 2 | FN prevents renal destruction in GEN-administered animals. Photomicrographs of renal sections from control rats and FN-treated rats demonstrating
normal histology of the glomeruli and tubules (arrowhead and arrow, respectively), GEN-treated animals demonstrating congestion of the glomerular tuft and vacuolar
degeneration in the renal tubules (arrows), and GEN-administered rats pre-treated with FN showing a noticeable decrease in the vacuolar degeneration in the tubular
epithelia (arrows) (H&E, X400, scale bar = 20 µm). FN: formononetin; GEN: gentamicin; and H&E: hematoxylin and eosin.
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FIGURE 3 | FN prevents GEN-induced histopathological damage in the kidney. Photomicrographs of renal sections of control rats and FN-treated rats
demonstrating normal renal histology with very fine mucopolysaccharides on the glomerular tuft. GEN-administered rats showing glomerular atrophy associated with
marked deposition of mucopolysaccharides on the glomerular tuft. GEN-administered rats pre-treated with FN showing mild deposition of mucopolysaccharides on the
glomerular tuft (PAS, X400, scale bar = 20 µm). FN: formononetin; GEN: gentamicin; and PAS: periodic acid–Schiff.

FIGURE 4 | FN ameliorates kidney oxidative stress in GEN-treated rats. Pre-treatment with FN reduced renal (A) MDA and (B) protein carbonyl levels, and
increased (C)GSH level, and activities of (D) SOD and (E)CAT in GEN-intoxicated rats. Results aremean ± SEM (n = 6). p indicates p < 0.05, pp indicates p < 0.01, and ppp

indicates p < 0.001 versus control group, while ### indicates p < 0.001 versus GEN group. FN: formononetin; GEN: gentamicin; MDA: malondialdehyde; GSH: reduced
glutathione; SOD: superoxide dismutase; and CAT: catalase.
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resulted in degenerative vacuolar changes within the renal tubules,
along with congestion of the glomerular tuft. These changes were
markedly decreased when GEN-induced animals were pre-treated
with FN (Figure 2).

The protection activity of FN on GEN renal toxicity was
further evaluated by assessing PAS-stained kidney sections of
all groups (Figure 3). PAS-stained sections of renal tissue from
control and FN-supplied animals demonstrated the normal
appearance of the glomeruli and kidney tubules with very fine
mucopolysaccharides on the glomerular tuft. PAS-stained kidney
sections of GEN-intoxicated rats revealed glomerular atrophy
associated with marked deposition of mucopolysaccharides on
the glomerular tuft. Pre-treatment of GEN-intoxicated rats with
FN largely decreased the level of deposited mucopolysaccharides
on the glomerular tuft (Figure 3).

FN Attenuates the GEN-Induced Renal
Oxidative Stress
Since OS is considered a key player in GEN-induced renal
toxicity, we studied the impact of FN on kidney redox status.
GEN supply revealed a marked elevation (p < 0.001) in MDA
(Figure 4A) and protein carbonyl (Figure 4B). Moreover, GSH
content (Figure 4C) and SOD (Figure 4D) and CAT (Figure 4E)
activities in the kidney were remarkably (p < 0.001) decreased in
GEN-intoxicated animals. All these changes in GEN-treated
animals were attenuated by FN pre-treatment. FN did not
significantly alter the variables mentioned earlier in normal rats.

FN Ameliorates the GEN-Induced
Inflammatory Reaction in the Renal Tissues
The ability of FN to suppress GEN-induced renal inflammation
was evaluated through the assessment of NF-κB p65 expression
and pro-inflammatory cytokine levels in the renal tissue. When
contrasted with the control rats, there was a remarkable (p <
0.001) elevation in the degrees of NF-κB p65 (Figures 5A, B) in
the renal tissue of GEN-intoxicated animals. Likewise, levels of
IL-1β (Figure 5C), IL-6 (Figure 5D), and TNF-α (Figure 5E)
were markedly (p < 0.001) elevated in the GEN-intoxicated
group. The pre-treatment of GEN-intoxicated animals with FN
remarkably (p < 0.001) downregulated renal NF-κB p65
expression (Figures 5A, B) as well as IL-1β (Figure 5C), IL-6
(Figure 5D), and TNF-α (Figure 5E) levels. FN had no effects on
these inflammatory mediators in normal animals.

FN Attenuates the GEN-Induced Renal
Apoptosis
The persistent overproduction of ROS and inflammatory
responses are major driving forces in promoting apoptosis in
GEN-induced kidney levels. We evaluated renal Bcl-2, Bax, and
caspase-3 expression levels. The renal tissue of GEN-treated
animals revealed a marked (p < 0.001) reduction in Bcl-2
(Figure 6) with a concomitant increase in Bax (Figure 7) and
caspase-3 (Figure 8) expression degrees as contrasted with
control rats. These alterations were attenuated when GEN-
induced animals were pre-treated with FN (Figures 6–8). FN

FIGURE 5 | FN attenuates renal inflammatory reaction in GEN-administered rats. (A) Photomicrographs of renal sections from control rats and FN-treated rats
demonstrating a low level of NF-κB p65 expression within the tubular epithelia (arrowheads), GEN-treated animals showing a high level of NF-κB p65 expression
(cytoplasmic and nuclear) within the tubular epithelia (arrowheads), and GEN-intoxicated rats pre-treated with FN demonstrating marked decrease of NF-κB p65
expression within the tubular epithelia (arrowheads) (IHC, X200, scale bar = 20 µm). (B) Image analysis of NF-κB p65 immunostaining in the kidney of rats showing a
significant increase in GEN-administrated rats and a significant decrease in rats treated with FN. (C–E) FN attenuated renal (C) IL-1β, (D) IL-6, and (E) TNF-α in GEN-
intoxicated rats. Results are mean ± SEM (n = 6). p indicates p < 0.05, and ppp indicates p < 0.001 versus control group, while ### indicates p < 0.001 versus GEN group.
FN: formononetin; GEN: gentamicin; NF-κB p65: nuclear factor kappa light chain enhancer of activated B cells p65 subunit; IL-6: interleukin 6; IL-1β: interleukin 1 β; and
TNF-α: tumor necrosis factor α.
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FIGURE 6 | FN upregulates renal BCL-2 in GEN-intoxicated rats. (A) Photomicrographs of renal sections from control rats and FN-treated rats demonstrating a
high level of BCL-2 expression within the tubular epithelia (arrowheads), GEN-treated rats showing a noticeable decrease in BCL-2 expression within the tubular epithelia
(arrowheads), and GEN-administered rats pre-treated with FN demonstrating a noticeable increase in BCL-2 expression within the tubular epithelia (arrowheads) (IHC,
X200, scale bar = 20 µm). (B) Image analysis of renal BCL-2 immunostaining showing a significant decrease in GEN-administrated rats and a significant increase in
FN-treated rats. Results are mean ± SEM (n = 6). ppp indicates p < 0.001 versus control group, and ### indicates p < 0.001 versus GEN group. FN: formononetin; GEN:
gentamicin; and BCL-2: B-cell lymphoma 2.

FIGURE 7 | FN downregulates BAX in GEN-intoxicated kidney. (A) Photomicrographs of renal sections from control rats and FN-treated rats demonstrating mild
expression of BAXwithin the renal tubular epithelium (arrowheads), GEN-treated rats animal demonstrating a noticeable increase in BAX expression within the cytoplasm
and nucleus of the renal tubular epithelium (arrowheads), and GEN-administered rats pre-treated with FN demonstrating marked decrease in the expression of BAX
within the renal tubular epithelium (arrowheads) (IHC, X200, scale bar = 20 µm). (B) Image analysis of BAX immunostaining in the kidney of rats showing a significant
increase in GEN-administrated rats and a significant decrease in FN-treated animals. Results are mean ± SEM (n = 6). ppp indicates p < 0.001 versus control group, and
### indicates p < 0.001 versus GEN group. FN: formononetin; GEN: gentamicin; and BAX: Bcl-2-associated X protein.
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FIGURE 8 | FN downregulates renal caspase-3 in GEN-intoxicated kidney. (A) Photomicrographs of renal sections from control rats and FN-treated rats
demonstrating a low level of caspase-3 expression within the tubular epithelia (arrowheads), GEN-treated animals showing marked cytoplasmic and nuclear expression
of caspase-3 within the renal tubules (arrowheads), and GEN-administered rats pre-treated with FN demonstrating a noticeable decrease in the expression of caspase-3
within the tubular epithelia (arrowheads) (IHC, X200, scale bar = 20 µm). (B) Image analysis of caspase-3 immunostaining in the kidney of rats showing a significant
increase in GEN-administrated rats and a significant decrease in FN-treated animals. Results are mean ± SEM (n = 6). ppp indicates p < 0.001 versus control, and ###
indicates p < 0.001 versus GEN. FN: formononetin; GEN: gentamicin.

FIGURE 9 | FN increases renal Nrf2/HO-1 in GEN-intoxicated animals. (A) Photomicrographs of renal sections from control and FN-treated rats demonstrating
marked expression of Nrf2 in the tubular epithelia (arrowheads), GEN-administered animals showing decreased immunostaining of Nrf2 within the epithelial cells’ renal
tubules (arrowheads), and GEN-intoxicated rats pre-treated with FN demonstrating marked increase in the expression of Nrf2 antibody within the renal tubular epithelium
(arrowheads) (IHC, X200, scale bar = 20 µm). (B) Image analysis of Nrf2 immunostaining demonstrating significant upregulation in the kidney of GEN-intoxicated
rats treated with FN. (C) FN increased HO-1 expression in the kidney of GEN-intoxicated rats. Results are mean ± SEM (n = 6). p indicates p < 0.05, and ppp indicates p <
0.001 versus control, while ### indicates p < 0.001 versus GEN. FN: formononetin; GEN: gentamicin; and Nrf2: nuclear factor-erythroid factor 2-related factor 2.
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alone did not significantly alter the aforementioned apoptotic
proteins in normal rats.

FN Enhances Nrf2/HO-1 Signaling in Renal
Tissues of GEN-Intoxicated Rats
To further investigate the protective role of FN versus GEN renal
toxicity, the expression degrees of the kidney Nrf2 andHO-1 were
evaluated in GEN- and/or FN-administrated animals. As shown
in Figure 9, there was a remarkable (p < 0.001) downregulation of
Nrf2 (Figures 9A, B) and HO-1 (Figure 9C) in the kidney of
GEN-intoxicated animals as compared to those of normal
animals. Largely, FN pre-treatment of GEN-intoxicated rats
upregulated renal Nrf2 and HO-1. Healthy animals that
received FN alone showed no renal Nrf2 and HO-1 alterations.

DISCUSSION

Kidney damage is an abundant complication of GEN that
involves the increased formation of ROS, inflammation, and
caspase activation, limiting its clinical exploitation (Balakumar
et al., 2010; Ahmed and Mohamed, 2019; Medić et al., 2019). FN
is a naturally occurring isoflavone that has been reported to
exhibit effective antioxidant and anti-inflammatory effects
(Aladaileh et al., 2019a; Yi et al., 2020). Herein, we studied the
effects of FN on GEN-related renal oxidative damage,
inflammation, apoptosis, and consequent kidney injury. We
revealed that FN attenuates oxidative tissue injury,
inflammatory reaction, and apoptosis and upregulates Nrf2/
HO-1 in the renal tissue of GEN-administrated animals, along
with remarkable enhancement of compromised renal function.

Consistent with previous studies (Helal et al., 2018; Ahmed
and Mohamed, 2019; Cao et al., 2019; Beshay et al., 2020), GEN
administration induced nephrotoxicity in rats. Indeed, GEN is
taken up by renal tubular cells and accumulates in the endosomes,
causing phospholipidosis and disruption of their membranes.
Thus, it leads to the release of GEN and other contents, including
protease enzymes, eventually causing various events of cellular
damage (Randjelovic et al., 2017). The GEN-induced
nephrotoxicity can be defined by depletion of kidney function,
divulged by elevated creatinine and urea concentrations,
albuminuria, a declined glomerular filtration degree, and
incidence of acute tubular necrosis (Balakumar et al., 2010;
Udupa and Prakash, 2019). This is in line with our findings
that revealed increased urea and creatinine levels in the serum of
GEN-intoxicated rats.

Additionally, GEN administration showed a high score of
microscopic renal damage, including congestion and
degeneration and glomerular atrophy-associated
mucopolysaccharide deposition, as illustrated in H&E- and
PAS-stained sections. On the other hand, our experimental
model revealed that FN exhibited a nephroprotective effect
against GEN toxicity, manifested by the significant reduction
in urea and creatinine concentrations in serum, in addition to
remarkable improvement of histopathological changes in GEN-
intoxicated rats pre-treated with FN. In accordance with our

results, FN showed a potent renoprotective efficacy and alleviated
kidney function in MTX-Aladaileh et al., 2019a and cisplatin-
Huang et al., 2017 caused nephrotoxicity in rats.

GEN-induced nephrotoxicity has been linked to numerous
pathological pathways including the existence of OS and cell
death in renal tubules as well as the stimulation of inflammation
in the renal cortex and medulla (Helal et al., 2018). The
deleterious effect of GEN on mitochondria leads to OS by
overproducing different FRs, which progresses to break the
respiratory chain and decrease adenosine triphosphate (ATP)
production, ultimately culminating in cell death and injury
(O’Reilly et al., 2019). Herein, we found that GEN resulted in
increased renal OS as revealed by elevation of renal MDA and
protein carbonyl concentrations, associated with decreased CAT
and SOD activities, in addition to decreased GSH level. This is in
agreement with several scientific reports, which demonstrated
that GEN induces overproduction of FRs, leading to oxidative
cellular damage such as lipid peroxidation (LPO), DNA damage,
and protein oxidation, which are implicated in the existence of
GEN kidney damage (Adil et al., 2016; Beshay et al., 2020; Abdel-
Fattah et al., 2021). LPO causes membrane disruption and loss of
integrity and the inactivation of membrane proteins, ultimately
culminating in membrane destruction (Smathers et al., 2011).

Furthermore, oxidative protein modification can disrupt the
structural conformations of several proteins and damage
enzyme’s active sites, including antioxidant enzymes,
aggravating oxidative tissue injury (Cai and Yan, 2013).
Extensive evidence indicates that OS in GEN-intoxicated
kidneys is exacerbated by reducing renal antioxidant
constituents, including GSH, SOD, CAT, glutathione
peroxidase (GPx), and glutathione reductase (GR)
(Manikandan et al., 2011; Cao et al., 2019). Therefore,
suppressing OS and boosting antioxidant defenses are efficient
approaches to prevent GEN nephrotoxicity. Herein, FN
attenuated the GEN-induced oxidative damage in the kidneys
of treated rats which was verified by reducing MDA and protein
carbonyl levels with a concomitant increase in SOD and CAT
activities and enhancement of GSH levels. These effects may be
because of the higher antioxidant and FR scavenging potential of
FN (Dutra et al., 2021; Pan et al., 2021). Consistent with our
findings, FN showed antioxidant activity and thus abrogated OS-
mediated nephrotoxicity induced by various drugs such as
cisplatin, MTX, and cyclophosphamide (Aladaileh et al.,
2019a; Aladaileh et al., 2021b; Shinde et al., 2021).

Furthermore, the inflammatory reaction is considered a main
player in advancing GEN-induced kidney injury (Albino et al.,
2021). Indeed, FRs are involved in activating an inflammatory
mediator, NF-κB (Dos-Santos-Pereira et al., 2020). FRs produced
by GEN promote NF-κB phosphorylation and dissociation from
the complex (NF-κB–IB), allowing for its nuclear translocation
and consequently inducing the expression of several pro-
inflammatory genes as IL-6, iNOS, and TNF-α (Subramanian
et al., 2015; Hassanein et al., 2021). In the same way, we tested the
potential anti-inflammatory impacts of FN on GEN-evoked
inflammatory markers in renal tissues. Unsurprisingly, GEN
administration increased the expression of NF-κB p65, IL-1β,
IL-6, and TNF-α. On the contrary, FN pre-treatment diminished
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inflammatory response in the kidney via downregulation of NF-
κB p65 and its pro-inflammatory mediators. This is following a
recent study conducted by our lab which proved the involvement
of the anti-inflammatory capability of FN in its nephroprotective
function against cyclophosphamide-induced nephrotoxicity in
rats (Aladaileh et al., 2021b). Similarly, FN exhibited dose-
dependent anti-inflammatory action via suppressing the pro-
inflammatory mediators, involving IL-1β and TNF-α, as part of
its renal protective mechanism against MTX-induced kidney
injury (Aladaileh et al., 2019a). Furthermore, FN was found to
protect liver tissues of the murine model versus concanavalin-A-
caused autoimmune hepatitis via suppressing NF-κB signaling
and the inflammatory process (Liu et al., 2021).

Notably, the tissue oxidative damage and inflammation in GEN
nephrotoxicity are closely interrelated, eventually culminating in
mitochondrial dysfunction and tissue apoptosis (Balakumar et al.,
2010; He et al., 2015; Promsan et al., 2016; Sepand et al., 2016;
Ahmed and Mohamed, 2019; Medić et al., 2019). Herein, GEN-
intoxicated rats showed tissue apoptosis manifested by elevated Bax
and caspase-3 and lowered Bcl-2. Indeed, apoptosis in GEN-induced
animals is thought to be elicited via increased ROS and pro-
inflammatory mediators, resulting in pro-apoptotic factors and
diminishing anti-apoptosis factors (Morales et al., 2010; Promsan
et al., 2016; Sepand et al., 2016). Thus, attenuation of OS and pro-
inflammatory pathways may prevent GEN nephrotoxicity and
apoptosis. Herein, FN protected against GEN-induced renal
apoptosis in rats as evidenced by stimulated expression of Bcl-2
and lowered expression of Bax and caspase-3. Consistently, FN
attenuated apoptosis via downregulating Bax and caspase-3 and
upregulating Bcl-2 in rats’ model of MTX-Huang et al., 2017- and
cisplatin-Huang et al., 2017-induced nephrotoxicity. The ability of
FN to prevent GEN-induced renal apoptosis could be attributed to
its potential inhibitory effects on ROS and pro-inflammatory
cytokine formation.

To further understand the potential underlying process of how
FN boosted the antioxidant defenses and protected against GEN-
caused tissue injury, we estimated the possible action of FN onNrf2/
HO-1 signaling in the kidney.Multiple lines of evidence indicate that
Nrf2 is a key player in regulating the expression of a large spectrum
of antioxidant and detoxifying genes and enhancing cellular defense
against oxidative damage (Mahmoud et al., 2017a; Mahmoud et al.,
2017b). Under normal redox status, Kelch-like ECH-accompanied
protein 1 (Keap1) binds to Nrf2 and mediates its destruction by the
ubiquitin-dependent proteasomal degradation pathway (Klaassen
and Reisman, 2010; Satta et al., 2017). Increased intracellular oxidant
agents, on the other hand, disrupt the sequestration of Nrf2 by
Keap1, facilitating its nuclear translocation, where it binds to the
antioxidant reaction element (ARE) to stimulate the gene expression
of several enzymes, such as glutathione S-transferase (GST),
NADPH-quinone oxidoreductase 1 (NQO1), and HO-1 (Loboda
et al., 2016). In this study, GEN loweredNrf2 signaling in the kidney,
as proved by the suppressed Nrf2 and HO-1 levels. Consistently,
several studies showed decreased Nrf2 and HO-1 levels in the renal
tissue of GEN-handled animals (He et al., 2015; Wang et al., 2020).

Also, accumulating expertise shows that a large spectrum of
natural materials that stimulate the Nrf2/HO-1 signaling pathway
provided an additional protective strategy against GEN

nephrotoxicity (He et al., 2015; Promsan et al., 2016). Herein, FN
effectively increased Nrf2/HO-1 signaling in GEN-treated animals.
Accordingly, these findings supported previous studies where FN
treatment upregulated renal Nrf2/HO-1 signaling in MTX-
administrated animals (Aladaileh et al., 2019a) and cisplatin
nephrotoxicity (Hao et al., 2021). Moreover, several reports
indicated that Nrf2 is considered a key player in protecting
against oxidative damage and regulating inflammatory and cell
death pathways (Wardyn et al., 2015; Huang et al., 2016). This
assumption is supported by a previously published report which
showed that deletion of Nrf2 is associated with enhanced
inflammation while its upregulation reduced pro-inflammatory
cytokines regulated by NF-ĸB (Wardyn et al., 2015). Moreover,
activated Nrf2 and HO-1 regulate the inflammatory cascade
through inhibition of NFκB signaling and activating anti-
inflammatory cytokines (Wardyn et al., 2015; Ahmed et al., 2017).
Also, activation of Nrf2 by FN suppressed the inflammatory response
of proximal tubule epithelial cells in cisplatin nephrotoxicity in
animals (Hao et al., 2021). It inhibited intracephalic inflammatory
response in brain tissue of a rat model of traumatic brain injury (Li
et al., 2014). In addition, FN-mediated Nrf2 upregulation prevented
renal apoptosis by lowering BAX and caspase-3 levels in
rhabdomyolysis-induced renal damage in rats (Satta et al., 2017).
Taken together, FN can effectively prevent GEN-caused kidney
destruction, possibly via upregulation of Nrf2/HO-1 signaling.

LIMITATION

This study demonstrates the renoprotective effects of FN on
GEN-induced nephrotoxicity; however, it has some limitations.
While our study clearly showed upregulation and downregulation
of some proteins as indicated by immunohistochemistry, we did
not validate it by RT-qPCR to show the relationship between
mRNA and protein levels.

CONCLUSION

Our findings demonstrate that FN may have promising
therapeutic potential against GEN-induced nephrotoxicity in
vivo. FN ameliorated kidney function markers, prevented
histopathological alterations, alleviated oxidative tissue
damage, and boosted antioxidants in the kidney of GEN-
administrated rats. In addition, FN downregulated GEN-
induced NF-κB activation, pro-inflammatory cytokine release,
and apoptotic cell death in the kidney. These beneficial effects
were associated with the upregulation of Nrf2/HO-1 signaling in
the kidney of GEN-administrated rats. Therefore, FN might
represent a promising approach against the renal
complications of GEN, pending further investigations in
upcoming studies.
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