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A B S T R A C T

Non-coding accounts for 98 %-99 % of the human genome and performs many essential regulatory functions in 
eukaryotes, involved in cancer development and development. Non-coding RNAs are abundantly enriched in 
exosomes, which play a biological role as vectors. Some biofunctional non-coding RNAs are specifically designed 
as exosomes for the treatment of cancers such as glioma. Glioma is one of the most common primary tumors 
within the skull and has varying degrees of malignancy and histologic subtypes of grades I-IV. Gliomas are 
characterized by high malignancy and an abundant blood supply due to rapid cell proliferation and vasculari-
zation, often with a poor prognosis. Exosomal non-coding RNAs can be involved in the tumorigenesis process of 
glioma from multiple directions, such as angiogenesis, tumor proliferation, metastatic invasion, immune evasion, 
apoptosis, and autophagy. Therefore, non-coding RNAs in exosomes are suitable as markers or therapeutic 
targets for early diagnosis of diseases and for predicting the prognosis of a variety of diseases. Regulating exo-
some production and the level of exosomal non-coding RNA expression may be a new approach to prevent or 
eliminate glioma. In this review, we review the origin and characteristics of exosomal non-coding RNAs, and 
introduce the functional studies of exosomal non-coding RNAs in glioma and their potential clinical applications, 
in order to broaden new ideas for the treatment of glioma.

1. Introduction

Glioma is considered one of the most common types of malignant 
tumors, which accounting for about 80 % of all malignant intracranial 
tumors (Asadi et al., 2023) and is distinguished by its complexity, 
multiplicity and its unfavourable prognosis. Gliomas occur in glial cells, 
which are cells that help neurons function normally and play a sup-
portive role (Gusyatiner and Hegi, 2017), and include astrocytomas, 
ventricular meningiomas, and oligodendrogliomas, of which glioblas-
toma (GBM) is the most lethal glioma, accounting for 60–80 % of all 
diffuse glioma diagnoses, with a median overall survival rate of 
approximately 450 days (Molinaro et al., 2019). The 2021 edition of the 
WHO classification of central nervous system tumors classifies gliomas 
as grades I-IV, and WHO grade III-IV gliomas are classified as high-level 
malignant tumors (Mortensen et al., 2022). Current treatment is based 
on surgical re-excision of the tumor combined with radio- and chemo-
therapy as well as targeted drug treatment (Ostrom et al., 2014). GBM 
stem cells (GSCs) have a high level of malignancy and worse outcome 
due to multidrug resistance (MDR) to common chemotherapeutic agents 

and tumor recurrence (Anastasiadou et al., 2017; Mahinfar et al., n.d.), 
and it has also been suggested that glioma treatment failure is related to 
the anatomical location and blood-brain barrier (BBB) (Wang et al., 
2021). The poor prognosis of GBM is mostly due to its rapid proliferation 
and extensive invasion of tissues, as well as the lack of understanding of 
its molecular pathogenesis. Diagnostic and therapeutic monitoring tools 
with high specificity and sensitivity for early diagnosis have not yet been 
sought (Mahinfar et al., n.d.; Reifenberger et al., 2016). Therefore, 
further exploration of reliable biomarkers is essential for the diagnosis 
and treatment of patients and for predicting their prognosis.

In recent years, researchers have explored the tumour microenvi-
ronment (TME), providing new insights into carcinogenesis, growth and 
treatment. The TME of cancer cells often includes fibrous cells, vessels, 
neurofibrils, immunocyte, and other stromal cells and the extracellular 
vacuoles that encase various genetic signals (Vitale et al., 2019). In the 
normal microenvironment there is a state of homeostasis that prevents 
the spread of malignant cells, nevertheless, as the cancer progresses and 
histological grade increases, it leads to changes in the surrounding tissue 
layers and communicates with immune cells, promoting immunity, 
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simultaneous activation of angiogenesis, tumour nerves and 
epithelial-mesenchymal transition (EMT), creating a favourable tumour 
microenvironment for successful tumour growth(Chen et al., 2021; Mao 
et al., n.d.; Li et al., 2021). There is growing evidence that communi-
cation among tumour cells and peripheral constituents of the glioma the 
microenvironment can influence positively various features of glioma 
(Klemm et al., 2020; Godlewski et al., 2015) and promote glioma growth 
and invasion. In recent years, exosomes have emerged as a new mediator 
of intercellular communication that can contain many cellular compo-
nents, such as DNA, RNA, lipids, metabolites, and cytoplasmic and cell 
surface proteins (Wei et al., 2020). As a result, exosomes are of great 
interest. Among these components, non-codingRNA (non-coding RNAs, 
ncRNAs) are abundant and stable in exosomes, and studies have shown 
that non-coding rna is inextricably linked to cancer development, pro-
gression and prognosis (Anastasiadou et al., 2017; Slack and Chin-
naiyan, 2019). This paper reviews the origin and characteristics of 
exosomal ncRNA and describes the role of exosomal ncRNA in glioma 
and its potential clinical applications.

1.1. Origin and characterization of exosomes

Also known as intraluminal vesicles (ILVs), exosomes are 40–160 nm 
in diameter (mean ~100 nm) and are a subset of extracellular vesicles 
(EVs), the investigation of which has the potential to uncover unknown 
cellular and molecular mechanisms in cell-to-cell transmission, organ 
homeostasis and disease (Nojima and Proudfoot, 2022). The released 
exosomes can alter the microenvironment of the extracellular matrix, 
delivering signals and macromolecules, including proteins, DNA, lipids, 
messenger RNAs (mRNAs), microRNAs (miRNAs), long non-coding 
RNAs (lncRNAs) and circular RNAs (circRNAs), to facilitate cellular 
intercellular communication(Zhan et al., 2024). The released exosomes 
can alter the microenvironment of the extracellular matrix, delivering 
signals and molecules to recipient cells to trigger changes in their 
pathophysiological functions. Originally observed by John stone 
(Johnstone et al., 1987) in 1986 in sheep reticulocytes, exosomes were 

considered to be "waste" after membrane function was shed and their 
biological relevance was long overlooked due to the lack of certain 
structures and biological activities. In recent years, it has been discov-
ered that almost all cell types are capable of secreting exosomes, such as 
plasma, serum, cerebrospinal fluid (CSF), lymph, urine, bile, saliva, 
mother’s milk, amniotic fluid and semen (Hornick et al., 2015; Andreea 
et al., 2016; Goto et al., 2018; Kagota et al., 2019; Zlotogorski-Hurvitz 
et al., 2015; Dixon et al., 2018). These specific cellular signals prob-
ably therefore contains information that can be used for cancer diag-
nosis, treatment and disease prognosis.

Exosome biogenesis involves a series of sequential processes, the 
foremost of which is the endosomal sorting complex required for 
transport(ESCRT), which is instrumental in the generation of ILVs and 
MVEs and is the driving force behind membrane formation and cleavage 
(Wei et al., 2021; Niel et al., 2018). The ESCRT family composed of the 
ESCRT-0, ESCRT-I, ESCRT-II and ESCRT-III protein complexes, that 
together with the vesicular protein sorting gene 4 (VPS4) protein 
AAAATPase function in various pathways regarding MVB biosynthesis, 
cytokinesis, nuclear membrane resealing, self-phagocytosis and viral 
exosomes (Coomans et al., 2024; Henne et al., 2011).The exosome has 
been demonstrated to contain ESCRT and TSG101 has become a 
frequently used marker within the exosome. The proproteins of the 
ESCRT-0 and ESCRT-I complexes are present in the exosome and cause 
substantial aggregation of membrane bridge-associated and the cyto-
plasmic proteins to which they subsequently incorporate.Thus, ESCRT-0 
and ESCRT-I proteins are in charge of anti-packaging ubiquitinated 
proteins and protein-containing precursor/serine precursor (PT/SAP) 
patterns into exosomes(Lee et al., 2023; Nabhan et al., 2012; Cheng 
et al., n.d.), Assembly of ESCR-III is then promoted by the ESCR-II 
complex; ESCR-III forms mature vesicles and promotes vesicle budding 
by switching on the deubiquitination mechanism(Hu et al., 2022). Ul-
timately, of these early endosomes are matured as MVBs, and lysosomes 
degrade these MVBs directly or fuse them with the plasma membrane to 
release secretion of their contents, including exosomes(Huber et al., 
2020; Kalluri and Lebleu, 2024; Wang et al., 2021).Exosome uptake is a 

Fig. 1. Exosomes originate from an endosomal pathway within living cells and are subsequently released into the extracellular environment. During their formation, 
they encapsulate a variety of cellular components, including proteins, lipids, metabolites, small molecules, DNA, RNA, and cell membrane surface proteins. These 
exosomes can then interact with recipient cells through endocytosis or plasma membrane invagination, leading to fusion. Exosomes released by parent cells can be 
taken up by recipient cells via endocytosis or membrane fusion, and they can also elicit a biological response by binding to cell surface proteins or receptors.
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multifaceted process that includes three key steps: receptor contact, 
membrane fusion, and endocytosis/phagocytosis(The assembly process 
of exosomes is shown in Fig. 1). After the secretion, exosomes are taken 
up by target cells.If exosomes have a definite characteristic, it is het-
erogeneity. Due to the limited carrying capacity only a limited amount 
of proteins can be carried. The composition within individual exosomes 
depends mainly on the material near the exosome of each nascent exo-
some, Ayuko Hoshino et al. (Hoshino et al., 2020),clarified the hetero-
geneity of extracellular nanoparticles and defined them as three 
different subpopulations, namely small exosomes (Exo-S), large exo-
somes (Exo-L) and exosomes (Yang et al., 2019), collectively referred to 
as extracellular vesicles and granules (EVP), and they analyzed the 
proteomic distribution of 426 human body fluid samples, and a total of 
862 specific proteins of interest were identified in the study. Surpris-
ingly, the lowest protein diversity was found in the plasma and serum of 
cancer patients, while the highest number of proteins was found in EVPs. 
It was confirmed that certain specific proteins (CD9, TSG101, CD81 and 
CD63) increased with cancer staging and were highly enriched in exo-
somes, with CD81 being the most abundant, and CD81 has become the 
most commonly used exosomal marker protein (Teng and Fussenegger, 
2024). Additional drivers of exosome heterogeneity are associated with 

differential gene expression, while the environment also induces 
changes in gene exocytosis, such as diet and physical radiation(Neuwelt 
et al., 2020). In conclusion, tumour-derived exosomes significantly 
mediate the interplay among tumour cells and the microenvironment, 
and stimulate tumour growth and progression through specific signal-
ling pathways related to metastasis, treatment resistance and immuno-
suppression. This has inspired us to detect exosome species and their 
levels in human body fluids and to establish effective biomarkers to 
monitor the prediction, progression and prognosis of gliomas.

1.2. Non-coding RNA in exosomes

An increasing number of studies have demonstrated that exosomes 
are rich in non-coding RNAs and that the membrane structure of exo-
somes protects ncRNAs from degradation by enzymes and other chem-
icals, thus significantly improving the stability of ncRNAs within 
exosomes. Functional regulatory molecules mediating cellular pro-
cesses, including chromatin remodeling, transcription, post- 
transcriptional modifications and signal transduction, are key regula-
tors of physiological programs in developmental and disease contexts (T 
et al., 2020; Rezaei et al., 2021). Non-coding RNAs are classified into 

Fig. 2. The specific mechanisms by which exosomal-derived ncRNAs participate in the occurrence and development of gliomas.
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structural ncRNAs and regulatory ncRNAs according to their functions, 
and the main focus of current research is mostly on regulatory ncRNAs. 
Swati et al., classified regulatory ncRNAs into microRNA (miRNA), long 
ncRNA (lncRNA), circular RNA (circRNA), PIWI-interacting RNA 
(piRNA) and small interfering RNA(siRNA). As for non-coding RNA in 
glioma exosomes,On the one hand,The expression of lncRNAs is highly 
specific to various tissue types.As tumors progress,the ncRNA released in 
exosomes also dynamically changes,thereby promoting cancer pro-
gression.On the other hand,ncRNAs are bidirectional and specifically 
associated with cancer, being oncogenic drivers and tumor suppressors 
in certain cancer types, for example miR-200c inhibits the development 
of EMT and prevents the initiation of cancer metastasis, but it is over-
expressed in advanced cancers and promotes their distant metastasis 
(Vescarelli et al., 2020). The same phenomenon was observed in gliomas 
(Beermann et al., 2016). They serve as key players in glioma progres-
sion, emitted by cancer cells to orchestrate interactions within the tumor 
microenvironment. Exosomes drive cell invasion, migration, prolifera-
tion, stemness, angiogenesis, immune evasion, and malignant trans-
formation (Banerjee et al., n.d.).Therefore, ncRNAs enriched in 
exosomes can not only be used as biomarkers for the early diagnosis of 
glioma, but a deeper understanding of ncRNAs also provides a unique 
opportunity to design better therapeutic interventions as potential 
therapeutic targets.

Extracellular vesicle-enriched ncRNAs are closely related to glioma 
formation. Studies suggest that extracellular vesicle ncRNAs are 
involved in processes such as glioma tumor formation, angiogenesis, 
metastasis and invasion, immune escape, autophagy, and apoptosis. 
They can serve as highly potential biomarkers for glioma diagnosis(The 

specific mechanism is reflected in Fig. 2). Compared to traditional 
diagnostic methods for gliomas, imaging tests are not sensitive enough, 
and tumor tissue biopsies are invasive, cannot be performed repeatedly 
in large quantities, and more importantly, biopsy samples cannot 
encompass the entirety of the tumor’s characteristics. Exosomes are 
stably present in various bodily fluids, and compared to traditional 
diagnostic methods, they offer advantages in terms of sample acquisi-
tion, high sensitivity, and low invasiveness(Skouras et al., 2023). The 
potential of exosomes for early tumor diagnosis has been widely studied 
and confirmed. Among the various contents of exosomes, ncRNAs have 
attracted increasing attention. Multiple types of exosome-associated 
miRNAs, lncRNAs, and circRNAs have been identified as diagnostic 
markers for gliomas. Furthermore, they can be used to predict tumor 
differentiation levels, survival rates, and recurrence and metastasis, 
directly indicating the prognosis.In the future, it is expected that 
meaningful ncRNAs will be integrated and screened, and exosome 
ncRNA kits for clinical applications will be developed to guide the 
diagnosis and prognosis of glioma.

1.3. MiRNA

MiRNAs are endogenous single-stranded ncRNAs consisting of 
approximately 18–25 nucleotides in length. miRNAs bind to the 3′ un-
translated regions of target genes as a means to regulate cell cycle, 
apoptosis, cell development, differentiation, and metabolism. in 2002, 
Calin et al. (Calin et al., 2002), observed genomic changes in the 
miR-15a/16 cluster in leukemia, and this landmark study revealed evi-
dence for the association of aberrant miRNA expression consequences 
with human cancers.Gradually,miRNAs becomes the most studied type 
of ncRNAs, which is related to their extensive role and can be involved in 
more tumor progression processes after crosstalk with lncRNAs and 
circRNAs (He et al., n.d.).A large number of studies have confirmed that 
miRNAs are involved in the disease progression of glioma in many as-
pects, such as angiogenesis, proliferation, invasion, TME trans-
formation, and TMZ resistance, by regulating cell-to-cell communication 
and gene expression(Liegro, 2024) (Different miRNA targets and their 
functions are summarized in Table 1).

First, numerous teams explored which exosome-derived miRNAs 
could be used as reliable biomarkers for diagnosing glioma. In a land-
mark move, expert Lu’s team found that up to 200 miRNAs had signif-
icant differences in expression levels between glioma patients and 
healthy individuals.The differential changes of miRNA are particularly 
prominent in the comparison with nucleic acids and proteins. Therefore, 
the great potential of miRNAs for the diagnosis of glioma is highlighted 
(Lu et al., 2005).Exosomes can be isolated from tumor tissue, cerebro-
spinal fluid, and numerous samples of blood from glioma patients. 
MirNA in exosomes was determined using a variety of methods such as 
flow cytometry, western blotting, PCR detection, high-throughput 
detection, and microarray analysis. Confirmed markers include 
miR-210(Tabibkhooei et al., 2020)、miR-29b(Fengying,Zhong,Ting, 
2019)、miR-454–3p(Shao et al., 2018)、miR-124(Wang et al., 2019)、 
miR-205(Yue et al., 2016)、miR-222(Santangelo and Imbrucè, 2018)、 
miR-21(Shi et al., 2015)、miR-155–5p(Bao et al., 2022)、miR-182–5p 
(Xiong et al., 2020)、miR-766–5p(Nikoobakht et al., 2021).In addition, 
miR-491 has a significant decline in high-grade gliomas and can be used 
to distinguish brain metastases from gliomas. MiR-491 has reference 
significance for predicting the degree of differentiation and metastasis of 
glioma(Hao et al., 2024).

Secondly, miRNAs can participate in tumor formation from multiple 
direction such as angiogenesis, tumor proliferation, invasion and 
metastasis, apoptosis and autophagy. Malignant tumors often have the 
characteristics of unlimited replication, self-supply of nutrients, and 
disorders of cellular energy metabolism. Fast-growing glioma tissues are 
often accompanied by active angiogenesis, and exosomal miRNAs play a 
key role in this process(Yang et al., 2022).Exosomes carrying high levels 
of miR-21 are transferred from glioma cell line U-251 to endothelial 

Table 1 
Summary of exosomal miRNA in glioma.

Function Biomarker Target or Axis References

Angiogenesis miR− 21 miR− 21/VEGF/ 
VEGFR2

(Sun et al., 2017)

miR− 26a PI3K/AKT (Yue et al., 2016)
miR− 204–3p ATXN1/ STAT3 (Ren et al., 2024)
miR− 944 VEGFC and AKT/ 

ERK
(Jiang et al., 2021)

miR− 376b− 3p HOXD10 (Jiang et al., 2020 Jun 
2)

Proliferation 
and 
Invasion

miR− 182–5p KLF2 and KLF4 (Xiong et al., 2020)
miR− 5096 Kir4.1 (Thuringer et al., 2017)
miR− 221 DNM3 (Yang et al., 2017)
miR− 301a PTEN,FAK and 

AKT
(Lan et al., 2018)

miR− 148a CADM1 (Cai et al., 2018)
 ITGA9 (Yang, 2019)
miR− 155–5p ACOT12 (Bao et al., 2022)
miR− 454–3p ATG12 (Shao et al., 2018)
miRNA− 221/222 JAK/STAT (Xu and Liu, 2019)

Regulate 
TME

miR− 25–3p  (Li et al., 2022)
miR− 155–3p  (Xue et al., 2024)
micro− 1246  (Qian et al., 2020)
miR− 3184  (Xu et al., 2022)
miR− 3591–3p  (Li et al., 2022)
miR− 1298–5p NF-κb (Jia and Jia, 2022)
miR− 1246 DUSP3/ERK (Qi et al., 2022)
miR− 29a and 
miR− 92a

Hbp1 and 
Prkar1a

(Qiu et al., 2024)

miR− 10a and 
miR− 21

Rora and Pten (Guo et al., 2019)

miR124 Volume-regulated 
anion channel

(Ghafouri-Fard et al., 
2021)

miR124 Glutamic acid (Serpe et al., 2022)
miR− 15a CCND1/PI3K/ 

AKT/mTOR
(Ren et al., 2023)

Apoptosis 
and 
Autophagy

miR− 124–3 p62 (Ghasemi and 
Mondanizadeh, 2024)

miR− 29a− 3p Bcl− 2 and Bax (Riahi Samani and 
Parker, 2023)

miR− 136 AEG− 1 and 
Bcl− 2

(Yang et al., 2024)
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cells, and the miR-21/VEGF/VEGFR2 axis mediates angiogenesis effects 
(Sun et al., 2017).The bioactive miR-26a uses exosomes as a medium to 
achieve transfer from glioma cells to endothelial cells. It further acti-
vates the PI3K/AKT axis and increases VEGF levels in endothelial cells, 
thereby improving glioma angiogenesis(Yue et al., 2016).Glioma exo-
some miR-204–3p can accelerate angiogenesis. This is due to activation 
of the ATXN1/STAT3 signaling pathway, which allows vascular endo-
thelial cells to form tubular cells(Ren et al., 2024).Interestingly， 
miR-944 which secreted from glioma cell exosomes can effectively 
thwarts glioma proliferation and angiogenesis by repressing VEGFC 
expression and impeding the AKT/ERK axis.When the glioma grade is 
higher, the MiR-944 level is lower(Jiang et al., 2021).Similarly, 
miR-376b-3p targets HOXD10 to produce an angiogenesis inhibition 
effect, thereby exerting a protective effect against malignant glioma 
(Jiang et al., 2020 Jun 2).In glioblastoma exosomes, the level of 
miR-182–5p was notably increased, which promoted the process of 
tumor angiogenesis and proliferation by inhibiting the activity of 
Kruppel-like factor 2 (KLF2) and KLF4(Xiong et al., 2020).In glioma cell 
line U251, miR-5096 is released by exosomes and acts on potassium 
channel Kir4.1 to promote the invasion of glioblastoma cells (Thuringer 
et al., 2017).After co-incubation of SHG-44 cells with U87MG-derived 
exosomes, it was found that miR-221 acted on DNM3 gene to promote 
glioma invasion and migration(Yang et al., 2017).Exosomal miR-301a 
negatively regulates PTEN, stimulates FAK and AKT signal trans-
duction, and ultimately enhances the proliferation and invasion capa-
bilities of glioma-derived H4 cells(Lan et al., 2018).There are also a 
number of exosome-derived miRNAs and their targets that have been 
clearly confirmed to regulate the proliferation, migration, and invasion 
of glioma, including miR-148a targeting CADM1 and ITGA9 (Cai et al., 
2018; Yang, 2019), miR-155–5p targeting ACOT12 (Bao et al., 2022), 
miR-454–3p targeting ATG12 (Shao et al., 2018), and miRNA-221/222 
targeting JAK/STAT (Xu and Liu, 2019).The downstream target genes of 
miR-136 are AEG-1 and Bcl-2, which inhibit the anti-apoptotic effect of 
these two genes, thereby accelerating the apoptosis process of glioma 
cells(Yang et al., 2024).MiR-29a-3p in exosomes from glioma also exerts 
significant anti-apoptotic effects due to the downregulation of the 
anti-apoptotic factor Bcl-2 and the increased expression of the 
pro-apoptotic factor Bax(Riahi Samani and Parker, 2023).Highly 
aggressive gliomas tend to correspond to low-level replication of 
miR-124 in exosomes. The decrease of miR-124–3p was accompanied by 
an increase in the level of autophagy regulator p62, which ultimately 
hindered the autophagy progression of glioma(Ghasemi and Mon-
danizadeh, 2024).

Moreover, the important role of exosomal miRNAs is also reflected in 
cell communication, where primary communication occurs between 
tumor cells, while high-level communication occurs between glioma 
cells and the surrounding tumor microenvironment(TME).Immune 
reversal occurs in the tumor microenvironment (TME) of gliocytoma. In 
the context of tumors, the immune cells that are originally responsible 
for suppressing tumors gradually transform, thereby assisting tumor 
escape(Russo et al., 2022; Luo et al., 2023).In the immune-related 
microenvironment, macrophage polarization and myeloid suppressor 
cell formation play a crucial part(Toledo et al., 2024; Shokati and Safari, 
2023).Exosomes carrying the tumor modulators miR-25–3p, 
miR-155–3p,microRNA-1246,miR-3184 and miR-3591–3p detach from 
tumor cells, then polarize macrophages to an M2-like phenotype, ulti-
mately inhibits adaptive immunity(Li et al., 2022; Xue et al., 2024; Qian 
et al., 2020; Xu et al., 2022; Li et al., 2022). The hypoxic environment of 
tumors accelerates the transcription and selective packaging of the 
aforementioned types of miRNA(Jia and Jia, 2022).MiR-1298–5p can be 
excreted from glioma cells through exosomes, which promotes the 
immunosuppression and malignant progression of MDSCs mediated by 
NF-κb(Qi et al., 2022).Exosomal miR-1246 from the body fluids of gli-
oma patients can activate the DUSP3/ERK pathway, which plays a key 
role in the activation of myeloid-derived suppressor cells(Qiu et al., 
2024).Exosomal miR-29a/Hbp1, miR-92a/Prkar1a, miR-10a/Rora, and 

Table 2 
Summary of exosomal lncRNA in glioma.

Biomarker Target or Axis Function References

MALAT 1 miR− 199 a/ZHX 1 Anti-apoptosis, 
inhibition of 
proliferation

(Liao et al., 2019)

miR− 124/ZEB2 Anti-apoptosis, 
inhibition of 
proliferation

(Cheng et al., 2021)

miR− 129/SOX4 Maintain stem cell 
properties

(Xiong et al., 2017)

Crosstalk with 
miR− 129–5p, 
miR− 384, and 
miRNA− 613

Growth, 
metastasis, and 
invasion

(Su et al., 2024; Ma 
et al., 2020; Yang 
et al., 2020)

ZEB 1 promot EMT (Hashemi et al., 2024)
miR− 140 and NFYA Increase blood- 

brain barrier 
permeability

(Ma et al., 2016)

H19 miR− 29a/ 
vasohibin2

Angiogenesis (Jia et al., 2016)

miR− 138/HIF− 1α/ 
VEGF

(Li et al., 2024)

H19/miR− 675/ 
TGFBI axis

Proliferation and 
invasion

(Yadav et al., 2021; Lu 
and Zhang, 2024; 
Chen et al., 2018; 
Chen et al., 2021; 
Zhou et al., 2022; Qi 
and Jianxing, 2018; 
Xin et al., 2019)

H19/miR 200 a/ 
CDK 6/ZEB 1axis
H19/miR− 342/ 
Wnt5a/β-Cadherin 
axis
sponge action with 
miR− 140, 
miR− 152, 
miR− 193a, 
miR− 130a− 3p

HOTAIR VEGFA Angiogenesis (Sun et al., 2018)
miR− 126–5p, 
Glutaminase

Proliferation, 
invasion, 
metastasis

(Luan et al., 2017)

PI3K/AKT和MEK 1/ 
2

(Ke et al., 2015)

BET (Pastori et al., 2015)
CCAT2 VEGFA and TGFβ, 

Bax and caspase− 3
Promote 
angiogenesis, 
inhibit 
programmed 
death

(Lang and Guo-Wen, 
2017)

PI3K/AKT Promote 
angiogenesis, 
inhibit 
programmed 
death

(Sun et al., 2020 May)

Wnt/β-Cadherin 
signaling pathway

Reduce the 
malignant 
phenotype of 
glioma cells

(Guo et al., 2016)

sponging with 
miR− 424

Promote 
angiogenesis

(Ghafouri-Fard and 
Askari, 2024)

UCA1 mir193a-mediated 
PI3K/AKT, MAPK, 
and Notch pathways

Proliferation and 
migration

(Yadav et al., 2021; He 
et al., 2018; Huang 
et al., 2019; Fan et al., 
2018; Zhao et al., 2017 
Jun)

UCA 1/miR− 206/ 
CLOCKaxis
UCA1/ 
miR− 182axis
UCA1-miR− 627–5p 
axis

POU3F3 Angiogenin,VEGFA Angiogenesis (Lang et al., 2017)
ATB miR− 204–3p Astrocyte 

phenotype 
transformation

(Er-Bao et al., 2019)

LINC 
01060

MZF1/c-Myc/ 
HIF− 1α Signal axis

Proliferation (Li et al., 2020; 
Marangon and Lecca, 
2023)

LINC 
00470

miR− 101,ELFN 2 Inhibit autophagy (Changhong et al., 
2018)

AKT,FUS (Changhong et al., 
2018)
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miR-21/Pten can all participate in the communication between glioma 
cells and myeloid-derived suppressor cells (MDSCs), at the same time, 
activate the immunosuppressive function of MDSCs(Guo et al., 2019; 
Guo and Qiu, 2018).The complexity of this microenvironment lies in the 
fact that tumor cells are able to positively regulate TME, and the dy-
namic changes in TME also have an impact on tumor growth.MiR-15a is 
expressed at low levels in M2 macrophage-derived exosomes. Further 
exploration of its mechanism of action showed that miR-15a quickly 
activated the PI3K/AKT/mTOR signaling axis after binding to CCND1, 
which in turn hindered the migration and infiltration of glioma cells(Ren 
et al., 2023).Astrocytes and microglia are likewise important compo-
nents of the microenvironment. Under the action of tumor cells, astro-
cyte NHAs were converted to TAA, and microglia underwent M2 
polarization(Li and Zhu, 2024; Guo and Qiu, 2024).As is well known, 
MiR124 is an inhibitory gene that is enriched in brain tissue and is also 
involved in central nervous system diseases such as hypoxic-ischemic 
encephalopathy and ischemic stroke(Ghafouri-Fard et al., 2021).When 
miR124, a tumor suppressor concentrated in astrocyte-derived exo-
somes, acts on glioma GL261 cells in reverse effect, it can weaken the 
volume-regulated anion channel activity and hinder tumor migration 
and invasion(Serpe et al., 2022).Microglia-derived exosomes potently 
inhibit glioma development via modulation of tumor cell metabolism 
and augmentation of glutamate elimination,miR-124 is a key medium in 
this process(Serpe et al., 2021).

1.4. Lnc RNA

LncRNAs are RNA transcripts that are at least 200 nucleotides in 
length and lack significant protein encoding abilities or have limited 
capabilities(St. Laurent et al., 2015; Sideris et al., 2022). lncRNAs have 
structures similar to mRNAs (Sun et al., 2018; Bunch, 2017), such as: a 
methylation cap at the 5′ end,a polyadenylated tail at the 3′ end, both 
exogenous and intronic, and despite the low level of expression of 
lncRNAs, the However, it is more tissue-specific and dynamic than 
mRNA, i.e., it has different expression patterns and different biological 
roles depending on the stage of tissue development, pathophysiological 
state (Deveson et al., 2017). The folded secondary and tertiary structures 
enhance the stability of LncRNA (Long non-coding, 2016; Lv et al., 
2020). This could be considered the most promising marker for the 
diagnosis of GBM and the presumption of disease progression.

In the last decade, great interest has been shown from the regulatory 
gene expression to the protein translation role of LncRNAs. LncRNAs can 
be further categorised into five groups based on their relevance to the 

genomic sites of adjacent proteincoding genes (Xu et al., 2022; Peng 
et al., 2018): sense lncRNAs (Herman et al., 2022), antisense lncRNAs 
(Ma et al., 2013), bidirectional lncRNAs (Stackhouse et al., 2020), 
intronic lncRNAs(Maurano et al., 2012) and intergenic (lincRNAs). They 
are able to interact with other nucleic acids (e.g. DNA and RNA) and 
proteins (Statello et al., 2024). LncRNAs mediate gene expression in 
cis-structures and bind directly to DNA for epigenetic modifications and 
recruitment of chromatin modifiers, leading to activation or repression 
of transcription (Stamidis and Żylicz, n.d.; Guh et al., 2020; Zhang et al., 
2020) and DNA repair by binding proteins (Hu et al., 2020), while in the 
cytoplasm, lncRNAs also show functional diversity.Regulates the pro-
cessing of RNA, thereby influencing the stabilisation of mRNA or 
directly regulating the behaviours of proteins.(Lin et al., 2016; Ouyang 
et al., 2022) lncRNAs can also be categorised as exosomes and contribute 
to an intercellular interface in the tumour microenvironment. The 
lncRNAs in exosomes can be involved in the development and progress 
of gliomas, and these may become attractive therapeutic targets. Tar-
geting tumour-specific lncRNA abnormalities for treatment due to 
regulation of the lncRNA net meshes the counterproliferative effects of 
malignancies and invokes treatment outcomes.LncRNAs are involved in 
the regulation of glioma development and progression. The following 
highlights several lncRNAs that are currently the most studied(Sum-
marize in Table 2):

LncRNA MALAT 1 was first identified as a tumor biomarker in non- 
small cell lung cancer. It has been gradually confirmed to be involved in 
the evolution of cancer at multiple sites(Eraky et al., 2022; Stackhouse 
et al., 2020; Xu et al., 2024).Exosomes encapsulate MALAT1 and 
transfer from GBM cells to microglia, which is beneficial to promote 
tumor invasion and immune evasion(Fattahi et al., 2024).Both in glioma 
tissue specimens and in experimental cell lines(U87 and U251),the re-
searchers all detected Meaningful elevations of MALAT1 levels.In 
addition, elevated MALAT1 levels have been shown to be associated 
with the degree of glioma malignancy, and can also shorten the survival 
of patients(Jianping et al., 2016).Compared to primary gliomas， 
MALAT1 exhibits higher expression levels in recurrent tumor(Su et al., 
2021).This reflects the close correlation between MALAT1 and the 
prognosis of glioma.A large number of experiments have proved that 
MALAT1, as an important miRNA sponge, can affect the interaction 
between miRNA and target genes, so it plays a biological role in the 
evolution of glioma.Liao’s team found that tumor volume was shrinked 
after knockdown of MALAT 1 in an GBM mouse model.One of the spe-
cific mechanisms is that the MALAT 1/miR-199 a/ZHX 1 axis drives 
GBM cell proliferation.In addition, ZHX 1, as a downstream target of 
MALAT 1, can regulate Bax and Bcl-2, thereby exerting anti-apoptotic 
effects(Liao et al., 2019).Cheng’s team also explored the mechanism of 
tumor shrinkage after MALAT 1 knockout. They found that the 
MALAT1/miR-124/ZEB2 pathway induces cell cycle arrest in the G1/S 
phase, which promotes apoptosis and inhibits proliferation of glioma 
cells(Cheng et al., 2021). Expert xiong used microarray analysis to 
screen MALAT1, one of the lncRNAs highly expressed in glioma stem 
cells, and further confirmed that the MALAT1/miR-129/SOX4 axis can 
maintain the viability of glioma stem cells and exert the role of 
pro-tumor genes(Xiong et al., 2017).It has been confirmed by the 
research of multiple teams,crosstalk between MALAT1 and miR-129–5p, 
miR-384 and miRNA-613 promotes glioma growth, metastasis and in-
vasion (Su et al., 2024; Ma et al., 2020; Yang et al., 2020).In glioma cell 
lines, MALAT 1 was clearly found to regulate the expression of ZEB 1 
protein, which not only induces the loss of E-cadherin and promotes the 
Epithelial-mesenchymal transition (EMT) process, but also accompanies 
metastasis and invasion of tumor cells(Hashemi et al., 2024).Ma found 
that knockdown of MALAT 1 was able to upregulate miR-140 and target 
NFYA, ultimately leading to damage to the blood-brain barrier and 
increased permeability(Ma et al., 2016).

LncRNA H19 is the first member of the LncRNA family to be 
discovered，and also is known to play a regulatory role as an oncogenic 
factor in a variety of malignancies(Zhang et al., 2024). The statistical 

Table 2 (continued )

Biomarker Target or Axis Function References

LC3 II,PTEN (Biyin and Wenwu, 
2023)

miR− 580–3p/ 
WEE1/PI3K/AKT/ 
mTOR

Autophagy (Khan and Umar, 
2022)

TUG1 Sponginess 
miR− 145, 
PRC2-TUG1- 
YY1Compound 
formation

Cell self-renewal (Katsushima et al., 
2016)

caspase− 3, 
caspas− 9,BCL− 2

Apoptosis (Zhao et al)

miR− 299,VEGFA Angiogenesis (Simon et al., 2020)
lncRNA 

ROR1- 
AS1

miR− 4686 Proliferation, 
migration, and 
invasion

(Fan and Zhou, 2024; 
Carelli et al., 2024; 
Sisakht and Malekan, 
2023)lncRNA 

ZEB1- 
AS1

miR− 577 Proliferation, 
migration, and 
invasion

lncRNA 
GAS5- 
AS1

miR− 106b− 5p Proliferation, 
migration, and 
invasion
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analysis of lncRNA-related diseases using neighborhood analysis and 
collaborative filtering found that lncRNA H19 was significantly associ-
ated with the occurrence and development of glioma, guiding scientists 
to verify this important biological indicator (Suzuki et al., 2023). 
LncRNA H19 is encapsulated in exosomes released by glioblastoma 
multiforme and subsequently transported to endothelial cells (Fattahi 
et al., 2024).In an in-depth study of the biological behavior of 
glioma-related endothelial cells, Jia et al. found that LncRNA H19 can 
directly bind to miR-29a, and the complex regulates vasohibin2 levels, 
then mediates endothelial cell proliferation, migration, and tubular 
formation, ultimately promoting glioma angiogenesis (Jia et al., 2016). 
The mechanism by which H19 promotes angiogenesis in gliomas can 
also be achieved by lowering miR-138 and further upregulating 
HIF-1α/VEGF (Li et al., 2024).With regard to glioma proliferation and 
invasion, multiple signaling pathways play a important role，including 
the H19/miR-675/TGFBI axis, the H19/miR 200 a/CDK 6/ZEB 1 axis, 
and the H19/miR-342/Wnt5a/β-catenin axis. In addition, the sponge 
effect of H19 and miR-140、miR-152、miR-193a、miR-130 a-3 p also 
promotes the proliferation and invasion of glioma (Yadav et al., 2021; Lu 
and Zhang, 2024; Chen et al., 2018; Chen et al., 2021; Zhou et al., 2022; 
Qi and Jianxing, 2018; Xin et al., 2019).The cancer stem cell markers 
CD133, NANOG, Oct4 and Sox2 in a variety of GBM cell lines were found 
to be down-regulated after H19 deficiency, which confirmed that H19 
played a positive role in maintaining the stem cell malignancy charac-
teristics of GBM(Li, 2016).

The long non-coding RNA HOTAIR is abundantly expressed in exo-
somes secreted by Glioma tissues and cell lines. After HOTAIR is deliv-
ered to endothelial cells, it induces angiogenesis by upregulating the 
expression of VEGFA, a significant pro-angiogenic factor (Sun et al., 
2018).In another study, HOTAIR was shown to promote angiogenesis in 
gliomas by targeting glutaminase through sponging endogenous 
miR-126–5p (Luan et al., 2017).In the glioma patient population, high 
HOTAIR expression tends to correspond to low survival 
(Xavier-Magalhães et al., 2018).Studies on the gene product expression, 
methylation status and copy number of glioma HOTAIR found that 
HOTAIR was positively correlated with glioma grade (Ahmad et al., 
2024 Feb 16).However, after knocking out the HOTAIR gene, the pro-
liferation, invasion, metastasis and other biological behaviors of glioma 
were inhibited.The rationale is the involvement of the PI3K/AKT and 
MEK 1/2 signaling pathways.This experiment highlights the importance 
and therapeutic potential of HOTAIR in glioma[148].In addition, HOTAIR 
is involved in glioma proliferation as a target gene downstream of the 
Bromodomain and extraterminal (BET) control protein. While BET in-
hibitors down-regulated HOTAIR levels, the glioma cell cycle was in a 
state of arrest (Pastori et al., 2015).

LncCCAT2 was first identified as a pro-tumor gene in colon cancer, 
and it was subsequently demonstrated to be associated with multiple 
types of human tumors (Pirlog et al., 2021).Studies have shown that 
CCAT2 accumulates in large numbers in glioma cells.There was a posi-
tive relationship between the expression level of CCAT2 and the stage 
advancement of tumor (Xin et al., 2016).Exosomes serve as carriers to 
deliver abundant CCAT2 from glioma cells to endothelial cells. Over-
expressed CCAT2 can activate VEGFA and TGFβ, which in turn promote 
endothelial cell proliferation and vascularization.CCAT2 can also pro-
mote angiogenesis through the sponge miR-424.Furthermore，CCAT2 
reduces programmed cell death in glioma by inhibiting the expression of 
Bax and caspase-3 152,153]. After the application of sh-CCAT 2 to knock 
down CCAT 2, the PI3K/AKT signaling pathway was inhibited, which in 
turn hindered the proliferation of glioma cells(Sun et al., 2020 May). 
Silencing the CCAT 2 gene can also reduce the malignant cell phenotype 
of glioma by inhibiting the activity of the Wnt/β-catenin signaling 
pathway (Guo et al., 2016).

LncRNA UCA1 is a world-recognized oncogene，the analysis of 
exosome components isolated from the cerebrospinal fluid of glioma 
patients revealed a high level of expression of UCA1, which is associated 
with tumor invasion and poor prognosis (Fattahi et al., 2024).In 

glioblastoma U-118 MG and A172, knockdown of UCA 1 attenuates 
tumor invasion and metastasis, which is attributed to miR 193a-medi-
ated involvement of PI 3K/AKT, MAPK and Notch pathways (Yadav 
et al., 2021).Evidence suggests that both the the UCA 1/miR-206/-
CLOCK axis, UCA1/miR-182 axis,UCA1-miR-627–5p axis are involved 
in glioma formation and invasion.Therefore, UCA1 can be used as a 
reliable biomarker to assess the prognosis of glioma (He et al., 2018; 
Huang et al., 2019; Fan et al., 2018; Zhao et al., 2017 Jun).

LINC-POU3F3, a highly conserved long non-coding RNA (lncRNA), 
was initially discovered in esophageal malignancies. Subsequent 
research on glioma revealed that POU3F3-abundant exosomes dissem-
inated from tumor cells to endothelial cells. Both in vivo and in vitro 
experiments conclusively demonstrated that upon reaching endothelial 
cells, POU3F3 activates angiopoietin, VEGFA, and other essential fac-
tors, thereby fostering angiogenesis in glioma (Lang et al., 2017). 
Another study not only revealed the overexpression of POU3F3 in 
high-grade glioma tissues, but also further pointed out that POU3F3 
plays an important role in promoting the survival and proliferation of 
tumor cells (Guo et al., 2015).

LncRNA-ATB was first recognized in hepatocellular carcinoma, and 
it is involved in hepatocellular carcinoma invasion as a competitive 
endogenous RNA for miR-200a. Bian’s team confirmed that the same 
mechanism worked in glioma (Chun-Chun and Ma, 2016).Further 
studying the glioma microenvironment, they found that glioma 
cell-derived exosomes can transport lncRNA-ATB to astrocytes, and the 
arriving lncRNA-ATB can cause phenotypic transformation of astrocytes 
by regulating miR-204–3p, thus achieving glioma invasion (Er-Bao 
et al., 2019).Another study showed that lncRNA ATB could also boost 
glioma invasion by activating the P38/MAPK pathway (Tang et al., 
2019).

In Li’s invitro experiments, exosomes were isolated from glioma stem 
cells (under hypoxic conditions, under aerobic conditions) and glio-
blastoma. After further high-throughput sequencing of the lncRNA 
species in the exosome, it was clearly found that LINC01060 was one of 
the significantly upregulated molecules.For glioma patients, LINC01060 
levels were high in exosomes from serum, cerebrospinal fluid, and tumor 
tissue samples, especially in high-grade glioma tissues. When the 
LINC01060 value was measured again after the patient underwent sur-
gery, this index decreased sharply. Clearly, LINC01060 can be used as a 
promising biomarker for diagnosing glioma.Further experiments proved 
that LINC01060 promoted the proliferation of glioma cells through the 
activation of MZF1/c-Myc/HIF-1α signaling axis (Li et al., 2020; Mar-
angon and Lecca, 2023).

Accumulating evidence suggests that exosome-derived LINC00470 
are involved in glioma progression as autophagy inhibitors, and high 
expression LINC00470 often corresponds to low survival rates (Ma et al., 
2021).LINC 00470 can upregulate ELFN 2 levels by crosstalk with 
miR-101, thereby limiting glioma autophagy (Changhong et al., 2018). 
LINC00470 acts directly on FUS as an AKT activator to inhibit glioma 
autophagy (Changhong et al., 2018). LC3 II and PTEN are used as 
downstream targets of LINC 00470 to induce its attenuating effect on 
autophagy(Biyin and Wenwu, 2023).LINC00470 binding to miR-580–3p 
regulates the expression of WEE1, which inhibits autophagy by acti-
vating the PI3K/AKT/mTOR pathway 171].

In addition to the above lncRNAs,it is worth noting that lncRNA 
TUG1 enrichment can be found in exosomes released in a variety of 
tumor environments such as retinoblastoma nasopharyngeal carcinoma, 
and breast cancer (Wang et al., 2019). A large number of studies have 
confirmed that TUG1 is involved in the occurrence and development of 
glioma.The role of lncRNA TUG1 in glioma is still controversial.Most 
studies have shown that TUG1 is involved in the development of glioma 
as a oncogenic lncRNA.But at the same time, it has been confirmed that 
TUG1 can also act as a tumor suppressor lncRNA.This is due to the fact 
that different biological processes leading to specific functions.This is 
due to different biological processes leading to specific functions.In the 
cytoplasm, TUG1 coordinates self-renewal by spongylating miR-145 and 
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recruiting polycomb. In the nucleus, TUG1 is involved in locus-specific 
methylation of H3K27 after the formation of the PRC2-TUG1-YY1 
complex, inhibiting tumor self-renewal (Katsushima et al., 2016).The 
transwell invasion test and CCK-8 test showed that TUG1 affected the 
proliferation and invasion of glioma, resulting in cell cycle arrest in G 
0/G1 phase (Zhao et al).Li’s team found that lncRNA TUG1 promotes the 
activation of caspase-3 and caspase-9 in endogenous pathways, inhibits 
the BCL-2-regulated anti-apoptotic pathway, and is involved in the 
apoptosis of glioma cells (Simon et al., 2020).In glioblastoma tissues and 
cell lines, upregulated TUG 1 regulates VEGFA through sponging on 
miR-299. VEGFA is widely recognized to initiate endothelial cell pro-
liferation, migration, and angiogenesis, turning on the switch for 
glioblastoma-induced angiogenesis (Cai et al., 2017).

The sponge interaction of exosomal lncRNA and miRNA plays an 
important role in the development of glioma. A number of studies have 
confirmed that the sponge interaction of exosomal lncRNA ROR1-AS1 
and miR-4686, lncRNA ZEB1-AS1 and miR-577, and lncRNA GAS5- 
AS1 and miR-106b-5p is involved in the proliferation, migration and 
invasion of glioma cells (Fan and Zhou, 2024; Carelli et al., 2024; Sisakht 
and Malekan, 2023).

1.5. CircRNA

Circular RNA (circRNA) has recently emerged as a novel type of 
RNA, gaining widespread attention and research in recent years. 
CircRNAs are single-stranded RNAs characterized by their stable cova-
lent closed-loop structures (Xu et al., 2020).This characteristic is due to 
the lack of a free 5′ or 3′ end, allowing circular RNAs to resist degra-
dation by ribonucleases. Beilleri et al. also found that circRNAs are 
conserved and specific to tissues and developmental stages (Beilerli et 
al).Furthermore, based on their varying levels in different body fluids or 
exosomes, they provide new insights into the diagnosis and prognosis of 
cancer types. An increasing body of research indicates that circRNAs are 
abundantly present in neurons and are very stable in cells, exosomes, 
and body fluids, participating in the progression of neurological dis-
eases. Another characteristic of circRNAs is their functional diversity, 

which can be generated in any region of the genome. Like lncRNAs, 
circRNAs serve as miRNA sponges in various human tumors, interacting 
with proteins, regulating gene splicing or transcription, translating 
proteins or peptides, and epigenetic regulation (Yuan et al., 2018; 
Hansen et al., 2013; Wang et al., 2023).Therefore, circular RNAs have 
become the subject of research for clinical diagnostic biomarkers, par-
ticipants in disease progression, and prognostic assessment(Different 
types of cirRNA and their mechanisms of action are summarized in 
Table 3).

Expert Xia used microarray methods to screen three significantly 
elevated circRNAs in plasma exosomes of glioma patients: circ-0055202, 
circ-0074920, and circ-0043722. After inhibiting the expression of these 
three circRNAs in the U87 cell line, it was found that the proliferative 
activity of glioma was also impaired, and it is speculated that the above 
circRNAs could be used as feasible biomarkers for the detection of GBM 
(Lou and Yan, 2024).Stella and colleagues screened from the ExoRBase 
database and compared the differences in circ-RNA within exosomes 
between healthy individuals and glioma patients, discovering that the 
tumor suppressor gene circSMARCA5 and the oncogene circHIPK3 are 
statistically significant and can serve as diagnostic biomarkers for GBM 
(Stella et al., 2021).CircSMARCA5 can modulate the SRSF1/SRSF3/PTB 
signaling pathway to exert an inhibitory effect on the migration of gli-
oma cells (Davide et al., 2018).Exosome-derived circ-HIPK3 has been 
identified as a key factor in glioma growth. This circRNA acts as a sponge 
for miR-421, which inhibits the availability of ZIC5, thereby driving 
tumor cells towards a more aggressive tumor phenotype (Han et al., 
2020).In addition, the sponge effect of circRNA-HIPK3 with miR-124–3p 
can accelerate the proliferation,invasion,and epithelial-mesenchymal 
transition of gliomas (Wei and Shi, 2022).Circ-AHCY is a novel glioma 
exosomal RNA discovered by Li’s team, which can isolate miR-1294 to 
activate the Wnt/β-catenin signaling pathway, positively regulate the 
transcription factor MYC of CTNNB1, and ultimately accelerate tumor 
cell proliferation (Li et al., 2023).Glioma cell-derived exosomes 
circCMTM3 can promote tumor neovascularization.The target is 
STAT5A, whose degradation is hindered, and its phosphorylation is 
enhanced (Wang et al., 2024).After polarization, M2 microglia from 
glioblastoma patients can release exosomal circKIF18A, which promotes 
angiogenesis in GBM by transporting KIF18A, binding to FOXC2, and 
activating the PI3K/AKT signaling pathway (Jiang et al., 2022).High 
levels of circ101491 can be detected in both the exosomes of tumor 
tissues and plasma samples from patients with gliomas. Through in vivo 
and in vitro experiments, Zhang demonstrated that upregulated 
circ101491 is not only associated with the TNM stage of the tumor,but 
also enhances the vitality and migration of glioma cells, accompanied by 
the sponging of miR-125b-5p and the upregulation of EDN1 (Zhang 
et al., 2023).Studies have shown that exosomal circRNA 0001445 can 
act as a sponge to adsorb miRNA-127–5p, thereby relieving the inhibi-
tory effect of miRNA-127–5p on SNX5. When SNX5 is suppressed, the 
proliferation and invasion of glioma are enhanced. Therefore, exosomal 
circRNA 0001445 promotes the malignant progression of glioma by 
regulating the miRNA-127–5p/SNX5 axis (Han et al., 2024).Geng’s team 
discovered that the expression of circWDR 62 is upregulated in exo-
somes derived from TMZ-resistant glioma cells, and elevated levels of 
circWDR 62 are correlated with a unpromising prognosis in glioma. The 
circWDR 62/miR-370–3p/MGMT signal pathwaypromotes tumor cell 
proliferation, migration, and infiltration (Geng et al., 2024).In Zhang’s 
in vitro research assay, high levels of circZNF800 were detected in gli-
oma stem cell-like cell exosomes. The sponge interaction of circZNF800 
with miR-139–5p activates the PIEZO1/Akt axis, reduces GBM cell 
apoptosis, and increases GBM cell proliferation and metastasis. Further 
studies have found that silencing circZNF800 is able to rescue the sur-
vival rate of GBM transplant models (Zhang and Wu, 2024).The War-
burg effect is a unique metabolic phenomenon in tumor cells that can 
promote the release of exosomal circ-0072083 from glioma cells. 
Quantitative reverse transcription polymerase chain reaction (qRT-PCR) 
and protein blotting have confirmed that circ-0072083 is upregulated in 

Table 3 
Summary of exosomal circRNA in glioma.

Biomarker Target or Axis Function References

circCMTM3 STAT5A， Neovascularization (Wang et al., 2024)
circKIF18A KIF18A,FOXC2, 

PI3K/AKT
(Jiang et al., 2022)

circGLIS3 Ezrin 
Phosphorylation

(Li et al., 2021)

circSMARCA5 SRSF1/SRSF3/PTB 
Signal pathway

Proliferation, 
migration, 
invasion

(Davide et al., 
2018)

circHIPK3 miR− 421 sponge, 
inhibiting ZIC5

(Wei and Shi, 
2022)

circ101491 miR− 125b− 5p 
sponging and EDN1

(Zhang et al., 
2023)

circ0001445 miRNA− 127–5p/ 
SNX5 axis

(Han et al., 2024)

circWDR62 circWDR 62/ 
miR− 370–3p/ 
MGMT Signal 
pathway

(Geng et al., 2024)

circNEIL3 GF2BP3 (EWSR1-induced, 
2022)

circBTG2 miR− 25–3p/PTEN 
Signal pathway

(Shi et al., 2022)

circ-HIPK3 miR− 124–3p 
sponge

(Wei and Shi, 
2022)

circ-AHCY Wnt/β-catenin 
/CTNNB1

(Li et al., 2023)

circZNF800 miR− 139–5p/ 
PIEZO1/Akt

(Zhang and Wu, 
2024)

circMMP1 miR− 433/ 
HMGB3,29b− 3p/ 
MTSS1/DNMT3B

Apoptosis (Wu et al., 2023; 
Zhang and Guan, 
2022)
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glioma tissues and cells. Knockdown of circ-0072083 can reduce glioma 
proliferation, invasion and increase apoptosis (Ding et al., 2020).In 
glioma exosomes, high levels of circ MMP1 are important anti-apoptotic 
mediators. The activation of the circMMP1/miR-433/HMGB3 signal 
axis is involved. The circ MMP1/29b-3p/MTSS1/DNMT3B signaling 
axis is also a well-known anti-apoptotic pathway (Wu et al., 2023; Zhang 
and Guan, 2022).CircGLIS3 is overexpressed in highly malignant gli-
oma, and secreted into the microenvironment by tumor cells via exo-
somes.CircGLIS3 enhances angiogenic capacity and invasiveness by 
regulating the phosphorylation of Ezrin at T567, thereby promoting the 
progression of gliomas (Li et al., 2021).CircNEIL3 is packaged into 
exosomes of glioma cells through hnRNPA2B1 and is transferred to 
infiltrating macrophages. CircNEIL3 induces immune escape and ex-
pands glioma invasion by stabilizing IGF2BP3. Therefore, the mea-
surement of circNEIL3 in exosomes is a highly potential biomarker for 
the diagnosis of glioma (EWSR1-induced, 2022).Conversely, in the gli-
oma microenvironment, macrophage-derived exosomal circBTG2 acts as 
a tumor suppressor gene to hinder the progression of tumors. Specif-
ically, exosomal circBTG2 inhibits the proliferation and invasion of 
glioma by targeting the miR-25–3p/PTEN signaling pathway (Shi et al., 
2022).

2. PiRNA and SiRNA

Although the research on miRNA, lncRNA, and circRNA in glioma- 
derived exosomes has been relatively thorough, there is less research 
on piRNA. One reason is that piRNA sequences are extremely complex, 
with each biological species having a large number of unique piRNA 
sequences. Another reason is that piRNA detection methods face diffi-
culties, not as mature and standardized as those for miRNA (Tamtaji and 
Behnam, 2020). Although a few studies have shown that piRNA is 
associated with the onset of gliomas, it is not yet clear whether exosomes 
play a role in this (Xiaobai et al., 2018; Leng et al., 2018; Shen et al., 
2017).

SiRNA is often studied in the field of disease treatment because it can 
specifically degrade mRNA molecules that are complementary to it, 
thereby preventing the expression of specific genes (Ubanako et al., 
2024).In actual research work in gliomas, scholars have found multiple 
reasons that lead to siRNA delivery obstacles, including short blood 
half-life, difficulty penetrating the blood-brain barrier, high intracellular 
degradation, and low uptake efficiency of naked siRNA (Teng et al., 
2022). In vitro, mesenchymal stem cell-derived exosomes can success-
fully deliver siRNA to glioma cells, then targeting F3-T3 and suppress 
the vitality of tumor cells (Kerrigan et al., 2020).In similarly designed 
experiments with mesenchymal stem cell (MSC) exosomes, exosomes 
engineered to carry siRNAs against MALAT1 have demonstrated the 
ability to inhibit the growth and invasion of glioblastoma (GBM) cells 
(Fattahi et al., 2024).Fu’s team reprogrammed mouse livers using 
plasmid DNA, inducing the synthesis of siRNA within the liver and its 
self-assembly into secretory exosomes. The assembled siRNA targeted 
brain tissue, silenced EGFR/TNC, and ultimately exerted a therapeutic 
effect on glioma (Fu et al., 2021)(The Summary of exosomal siRNA 
applied to Glioma shows in Table 4).Overall, exosomal siRNA therapy 
for glioma has not been extensively researched and applied. One reason 
is the low yield of exosomes isolated from cells. More inevitably, 

endogenous miRNAs have multiple target genes, while exogenous 
miRNAs may exhibit "off-target effects",so the side effects of siRNA 
therapy limit its application.

2.1. Exosomal ncRNAs and treatment resistance

The currently accepted treatment plan for glioma is still surgery 
supplemented by radiotherapy and chemotherapy, with the DNA alky-
lating agent temozolomide (TMZ) being the preferred chemotherapeutic 
drug (Zhang et al., 2024).Multidrug resistance (MDR) remains an irre-
placeable cause of treatment failure in high-grade glioblastoma, with 
specific mechanisms including upregulation of MDR transporters, 
apoptosis, immune stress, DNA repair defects, enhanced repair of cancer 
stem cell damage, abnormal expression of oncogenes and tumor sup-
pressor genes, and epithelial-mesenchymal transition. Exosomal ncRNA 
has a dual effect between sensitivity and resistance in glioma treatment 
(Luo et al., 2023).

Exosomes miRNA-93 and − 193 downregulate Cyclin D1 expression 
and reduce cell cycle arrest and induce TMZ resistance (Munoz et al., 
2019).After miR-9-carrying mesenchymal stem cells exosome reached 
glioma cells, miR-9 acted on the efflux transporter P-glycoprotein, and 
then the caspase activity and TMZ sensitivity increased (Munoz et al., 
2013).Upon arrival of miR-1238-loaded exosomes in TMZ-sensitive 
cells, the CAV1/EGFR axis is activated, and TMZ sensitivity is lost 
(Jianxing and Yin, 2019).Highly metastatic tumours transport miR-1246 
via EVs to induce drug resistance in endothelial cells, a phenomenon not 
only in gliomas but also in breast cancer and melanoma (Wang et al., 
2021).MiR-151a enhances the susceptibility of glioblastoma (GBM) cells 
to TMZ by repressing the activity of XRCC4, a protein involved in DNA 
repair. By elevating the levels of exosomal miR-151a, the resistance of 
GBM cells to TMZ can be effectively reversed (Jiang et al., 2022).Exo-
somal miRNAs not only self-regulate TMZ resistance, but can also 
participate in the resistance effect of sponge circRNA and lncRNA. 
HOTAIR is a significantly increased lncRNA in exosomes from 
TMZ-resistant glioma cells, and the HOTAIR/miR-519a-3p/RRM1 axis 
and HOTAIR/miR-125/HK2 axis both mediate TMZ resistance (Zhang 
et al., 2023; Han et al., 2024).H19 knockdown significantly increases 
TMZ sensitivity (Geng et al., 2024; Ding et al., 2020).After TMZ treat-
ment for glioma, a screening of the whole genome expression profile 
revealed that MALAT1 is one of the most significantly overexpressed 
genes. Further research found that MALAT1 promotes TMZ resistance 
through its crosstalk with miRNA-101 and miRNA-203. MALAT1 re-
duces the sensitivity of glioblastoma cells to TMZ by upregulating 
EMT-associated proteins.Moreover, downregulating MALAT1 can in-
crease the sensitivity of glioma to radiotherapy (Li et al., 2021; 
EWSR1-induced, 2022; Shi et al., 2022; Tamtaji and Behnam, 2020; 
Xiaobai et al., 2018; Leng et al., 2018).Acid hydrolase acts as a mediator 
to assist the exosome circ-0042003 in shuttling between TMZ-resistant 
and sensitive glioma cells, constituting a mechanism for glioma resis-
tance to TMZ chemotherapy (Shen et al., 2017).A variety of exosomal 
ncRNAs play a role in the sensitivity and resistance of temozolomide, 
and regulating the expression of exosomal ncRNAs to enhance drug 
sensitivity may become a new therapeutic approach.

Radiation resistance also leads to a poor prognosis. After irradiation 
therapy intervention in the co-culture system of glioblastoma cells and 
microglia, the expression of circ-0012381 derived from glioblastoma 
cells is upregulated. Subsequently,this circRNA enters microglia,act on 
the miR-340–5p/ARG1 axis and induce M2 polarization. The pheno-
typically altered microglia then feedback on glioblastoma cells via the 
CCL2/CCR2 axis, inhibiting their phagocytosis and promoting their 
growth. In comparison to the sole application of radiotherapy, the 
suppression of exosomes has been found to markedly curtail the prolif-
eration of glioblastoma cells that have been exposed to radiation within 
a zebrafish model (Ubanako et al., 2024).The sponge effect between 
circATP8B4 and miR-766 may be involved in radiation resistance in 
glioma (Zhang et al., 2024).Similarly,exosomal circMETRN has been 

Table 4 
Summary of exosomal siRNA applied to glioma.

Source Target Function References

Mesenchymal stem 
cells

F3-T3 Inhibit tumor cell 
vitality

(Kerrigan et al., 
2020)

Mesenchymal stem 
cells

MALAT1 Inhibit growth and 
invasion

(Fattahi et al., 
2024)

Liver cells EGFR/ 
TNC

Therapeutic effect (Fu et al., 2021)
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identified to participate in the radiation resistance of glioblastoma. 
Further research has elucidated its specific mechanism to be the regu-
latory effect of circMETRN on the miR-4709–3p/GRB14/PDGFRα axis 
(Teng et al., 2022). These exosomal circRNAs may be an effective entry 
point for clinical improvement of radiation resistance.

2.2. Exosomal ncRNAs and personalized treatment

The inherent properties of exosomes make them highly promising in 
therapeutic applications. Genetically modifying exosomes, which in-
volves transferring their contents to specific targets, can endow exo-
somes with high selectivity. The presence of membrane proteins allows 
exosome components to evade degradation by proteases and RNA hy-
drolases, thereby enhancing the stability of exosomes. Good tissue 
compatibility corresponds to low toxicity of exosomes. Lastly, their 
nanoscale size facilitates the penetration of the blood-brain barrier, 
making exosomes as carriers more promising for the treatment of gli-
omas,provide targeted treatment strategies (Rana and Devi, 2025).

Exploring the role of exosomes as carriers in the treatment of gli-
omas，the research mainly focuses on two directions: one is to load 
drugs onto exosomes, including temozolomide O6-benzylguanine dual 
receptor exosomes (Cunha Silva and Branco, 2024), doxorubicin, and 
paclitaxel (Yang et al., 2015).The other one is a genetic engineering 
approach that guides exosomes carrying specific gene sequences to 
target cells(The specific process is shown in Fig. 3).Exosomes derived 
from glioma stem cells(gsc) containing miRNAs play a key role in the 
treatment of gliomas. Exosomes derived from gsc containing miR-944 
can inhibit the expression of VEGFC, interfere with the information 
transmission of the AKT/ERK signaling axis, and block the angiogenesis 
process of gliomas, serving as a targeted therapeutic effect (Jiang et al., 
2021).MiR-29a-3p acts as a tumor suppressor with reduced levels in 
glioma tissues, inhibiting glioma angiogenesis and migration by tar-
geting ROBO1. Based on this mechanism, Zhang’s team utilized human 
mesenchymal stem cells (MSCs) to prepare exosomes overexpressing 
miR-29a-3p, ultimately confirming that these exosomes can exert a 
definite therapeutic effect on glioma (Yang et al., 2024).Expert Lang also 
uses mesenchymal stem cells as a factory for preparing exosomes car-
rying specific genes, producing exosomes enriched with miR-124a, 
which can inhibit tumor cell vitality and proliferation effects after 
acting on gliomas (Hu et al., 2024).miR-512–5p has also been 

extensively studied for its tumor suppressive effects. Exosomes derived 
from BMSCs carrying miR-512–5p act on the glioma U87 cell line, tar-
geting and downregulating JAG1 to induce cell cycle arrest (Peng et al., 
2021).Exosomes derived from mesenchymal stem cells transfected with 
microRNA-584 also play a therapeutic role, as these 
microRNA-584-loaded exosomes can promote the apoptosis of glioma 
cells and inhibit their invasion (Song et al., 2024).Looking forward to 
the future, engineered exosomes equipped with non-coding RNA will 
become a promising entry point for precision targeted therapy for gli-
oma, and targeted therapy will be used to accurately intervene in gli-
oma. It is also possible to make exosomes a tool to carry chemotherapy 
drugs through more complete means, so that chemotherapy drugs can 
play a greater role through the blood-brain barrier.

3. Conclusion and future outlook

In summary, we have elucidated the characteristics of various exo-
somal ncRNAs, summarized the targets and signaling pathways regu-
lating glioma apoptosis, angiogenesis, proliferation, migration, and 
invasion mediated by exosomal non-coding RNAs, and introduced the 
mechanisms of exosomal non-coding RNAs in glioma therapy and drug 
resistance. Our understanding of the types and functions of exosomal 
ncRNAs continues to expand, and our knowledge of their roles in the 
development of glioma is becoming more profound. Exosomal ncRNAs 
can serve as diagnostic biomarkers or prognostic evaluation indicators. 
After clarifying their targets and mechanisms of action, targeted in-
terventions for specific ncRNAs can be developed. Based on current 
research, exosomal ncRNAs are a promising target in the field of glioma 
therapy, but achieving clinical application remains a challenging task.
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