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Abstract  9 

Elucidating ancestry-specific structures in admixed populations is crucial for comprehending population history 10 
and mitigating confounding effects in genome-wide association studies. Existing methods for elucidating the 11 
ancestry-specific structures generally rely on frequency-based estimates of genetic relationship matrix (GRM) 12 
among admixed individuals after masking segments from ancestry components not being targeted for 13 
investigation. However, these approaches disregard linkage information between markers, potentially limiting 14 
their resolution in revealing structure within an ancestry component. We introduce ancestry-specific expected 15 
GRM (as-eGRM), a novel framework for elucidating the relatedness within ancestry components between 16 
admixed individuals. The key design of as-eGRM consists of defining ancestry-specific pairwise relatedness 17 
between individuals based on genealogical trees encoded in the Ancestral Recombination Graph (ARG) and 18 
local ancestry calls and computing the expectation of the ancestry-specific relatedness across the genome. 19 
Comprehensive evaluations using both simulated stepping-stone models of population structure and empirical 20 
datasets based on three-way admixed Latino cohorts showed that analysis based on as-eGRM robustly 21 
outperforms existing methods in revealing the structure in admixed populations with diverse demographic 22 
histories. Taken together, as-eGRM has the promise to better reveal the fine-scale structure within an ancestry 23 
component of admixed individuals, which can help improve the robustness and interpretation of findings from 24 
association studies of disease or complex traits for these understudied populations. 25 

  26 

Introduction 27 

Genetic admixture, the exchange of genetic material of previously relatively isolated populations, results in 28 
haplotypes descended from multiple ancestral sources (Korunes & Goldberg 2021; Rius & Darling 2014; Yang & 29 
Fu 2018). This phenomenon is pervasive in human populations, exemplified by the genetic admixture 30 
experienced by native populations throughout the American continent due to the colonization by Europeans 31 
and the subsequent African slave trade (Moreno-Estrada et al. 2013; Conomos et al. 2016). Revealing ancestry-32 
specific structures in admixed populations is crucial for understanding population history and adjusting for 33 
population stratification in genome-wide association studies (GWAS). These structures provide insights into 34 
migration patterns and genetic diversity, improving our understanding of complex population histories 35 
(Moreno-Estrada et al. 2013; Browning et al. 2016). In GWAS, failure to account for population structure can 36 
lead to spurious associations or mask genuine genetic effects (Marchini et al. 2004; Martin et al. 2019; Sohail 37 
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et al. 2019). However, elucidating these structures presents significant challenges due to the intricate genetic 38 
composition of admixed individuals, particularly in cases of recent admixture or populations with multiple 39 
ancestral sources. 40 

 41 

The conventional approach for revealing population structure involves constructing a variance-standardized 42 
Genetic Relationship Matrix (GRM) and applying Principal Component Analysis (PCA), at times in conjunction 43 
with Uniform Manifold Approximation and Projection (UMAP), to the GRM (Price et al. 2006; Patterson et al. 44 
2006; Novembre et al. 2008; Chiang, Mangul, et al. 2018; Chiang, Marcus, et al. 2018; Diaz-Papkovich et al. 45 
2019; Sakaue et al. 2020; Diaz-Papkovich et al. 2021).  In the context of admixed populations, these approaches 46 
effectively average over the distribution of ancestral background at a genetic variant and across all loci in the 47 
genome, without incorporating ancestry information. Consequently, multiple components of ancestries could 48 
mask the finer-scale structure that may be of interest as inter-continental distances tend to dominate and 49 
explain the largest amount of variation in the GRM. Therefore, PCA or UMAP applied directly to GRM from 50 
admixed individuals tend to reveal structure driven by different proportions of ancestries, even among the 51 
lower PCs. 52 

 53 

To address this limitation, Moreno-Estrada et al. (Moreno-Estrada et al. 2013) proposed an ancestry-specific 54 
PCA method named ASPCA. ASPCA masks genomic components derived from non-target ancestral populations 55 
and then compute the subspace spanned by the first k PCs by finding a matrix decomposition that minimizes 56 
the reconstruction error (Johnson et al. 2011; Moreno-Estrada et al. 2013). After observing artifactual 57 
separation of clusters between reference and admixed individuals when using ASPCA, Browning et al. (Browning 58 
et al. 2016) proposed a variant of this ancestry-specific PCA method (we refer to this method as Browning’s 59 
Ancestry-Specific Multidimensional scaling, or AS-MDS), which applies MDS to a Euclidean distance matrix 60 
based on pairwise allelic differences between individuals after non-target ancestries are similarly masked. 61 
Finally, though not yet peer-reviewed, another ancestry-specific PCA method (Missing DNA PCA, mdPCA; 62 
https://github.com/AI-sandbox/mdPCA) is also available that constructs a covariance matrix that masks the 63 
components with non-target ancestries and then utilized multiple matrix denoising techniques and truncated 64 
singular value decomposition on the covariance matrix to compute ancestry-specific PCs. In all these methods 65 
linkage information was discarded, and thus these methods are expected to not fully utilize the genomic 66 
information for elucidating population structure. 67 

 68 

The entire genealogy of the DNA sequence of a sample of individuals can be represented by a series of 69 
genealogical trees connected through recombination events, collectively known as the ancestral recombination 70 
graph (ARG) (Hudson 1990; Griffiths & Marjoram 1996). With the recent ability to infer or approximate the ARG 71 
in thousands of individuals, multiple downstream ARG-based population and statistical genetic applications 72 
have been developed to enhance our understanding of the evolutionary history of a population (Lewanski et al. 73 
2024; Brandt et al. 2024; Nielsen et al. 2025). We previously developed an ARG-based framework, called eGRM, 74 
to infer the expected relatedness between pairs of individuals (Fan et al. 2022). eGRM utilizes the same 75 
variance-standardized framework as the canonical GRM but sums over the vector of haploid individuals for 76 
each branch, weighted by branch lengths. As this approach leverages haplotype information to infer the ARG, 77 
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it enhances robustness when working with incomplete genetic data and improves over canonical GRM in 78 
elucidating the population structure of a sample through PCA and UMAP. However, eGRM does not remove the 79 
components with non-target ancestries, limiting its application to detect ancestry-specific structure in admixed 80 
populations. 81 

 82 

In this study, we propose as-eGRM, a framework that integrates ARGs and local ancestry information to infer 83 
the expectation of pairwise genetic relatedness within ancestries in an admixed population. We show that PCA 84 
and UMAP applied to as-eGRM can outperform alternative methods such as AS-MDS and mdPCA in revealing 85 
ancestry-specific structures in admixed populations. We used simulated data of varying complexity to 86 
extensively evaluate the performance of as-eGRM on revealing the finer structure in admixed populations. 87 
Finally, we applied as-eGRM to a real-world dataset of admixed Latino populations from the HCHS/SOL dataset 88 
and the PAGE-Latin American dataset.  89 

 90 

Material and methods 91 

Expected pairwise genetic relatedness based on genealogical trees 92 

We first briefly review the definition and construction of the eGRM, which provides the pairwise genetic 93 
relatedness with a genealogical tree (Fan et al. 2022). Given a branch 𝑒 on a genealogical tree 𝑡 within an ARG 94 
𝐺, the eGRM defines the genetic relatedness, 𝑅𝑡, between a pair of haplotypes 𝑖 and 𝑗 on a single tree as, 95 

𝑅𝑡(𝑖, 𝑗) = ∑ 𝑤(𝑒)𝜇(𝑒)𝑒𝜖𝐸𝑡(𝑖,𝑗)                                                         (Equation 1) 96 

𝜇(𝑒) = 𝑡(𝑒)𝑙(𝑒)𝑡(𝑒)                                                                   (Equation 2) 97 

where 𝐸𝑡(𝑖, 𝑗) denotes the set of the branches connecting haplotype 𝑖 to haplotype 𝑗 on tree 𝑡 and 𝑤(𝑒) is a 98 
weighting function that will be discussed further below. As the number of mutations occurring on each branch 99 
𝑒 of the tree is modeled as a Poisson process, its rate is 𝜇(𝑒), which is the product of 𝑡(𝑒), 𝑙(𝑒), and 𝑢(𝑒), 100 
denoting the length of branch 𝑒  in generations, the number of base pairs that the tree 𝑡  covers, and the 101 
mutation rate on this branch, respectively. 102 

 103 

We use 𝑥(𝑒) to denote the haplotype vector (vector of haploid individuals) associated with branch 𝑒, that is, 104 

𝑥𝑖(𝑒) = {
1, 𝑖𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 𝑖 𝑖𝑠 𝑎 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑎𝑛𝑡 𝑜𝑓 𝑒

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, 1 ≤ 𝑖 ≤ 𝑁                             (Equation 3) 105 

To computationally implement 𝑅𝑡, we traverse each branch 𝑒, compute 𝑤(𝑒)𝜇(𝑒) and add 𝑤(𝑒)𝜇(𝑒) to the 106 
elements in 𝑅𝑡 indexed by the descendant samples of branch 𝑒:  107 

𝑅𝑡 =  𝑅𝑡 + 𝑥(𝑒)𝑥(𝑒)𝑇𝑤(𝑒)𝜇(𝑒),                                                  (Equation 4) 108 

Therefore, across all haplotypes,  109 

𝑅𝑡 = ∑ 𝑥(𝑒)𝑥(𝑒)𝑇
𝑒∈𝐸𝑡 𝑤(𝑒)𝜇(𝑒),                                                 (Equation 5) 110 
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Finally, the relatedness measure is averaged across all trees in the ARG, 𝐺. With centering, the eGRM is finally 111 
defined as: 112 

𝑒𝐺𝑅𝑀 ≔  𝐶𝑁 (
1

𝜇(𝐺)
∑ 𝑅𝑡

𝑡∈𝐺
) 𝐶𝑁 113 

= 𝐶𝑁 (
1

𝜇(𝐺)
∑ 𝑥(𝑒)𝑥(𝑒)𝑇

𝑒∈𝐺

𝑤(𝑒)𝜇(𝑒)) 𝐶𝑁 114 

where 𝜇(𝐺) = ∑ 𝜇(𝑒)𝑒∈𝐺 , 𝐶𝑁 = 𝐼𝑁 −
1

𝑁
𝟏𝟏𝑇is a centering matrix, and 𝐼𝑁 is the 𝑁 × 𝑁 identity matrix. 115 

 116 

Expected pairwise genetic relatedness with ancestry-specific genealogical trees 117 

We define as-eGRM as the eGRM computed on ancestry-specific trees within 𝐺 (Figure 1A). By intersecting 118 
with the local ancestry information, we prune haplotypes from the tree 𝑡 that are not from the ancestry of 119 
interest and re-define the tree while setting those haplotypes as missing. In other words,  120 

𝑅𝑡(𝑖, 𝑗) = {
∑ 𝑤(𝑒)𝜇(𝑒)𝑒𝜖𝐸𝑡(𝑖,𝑗) , 𝑏𝑜𝑡ℎ 𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑝𝑟𝑢𝑛𝑒𝑑

𝑚𝑖𝑠𝑠𝑖𝑛𝑔, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
,                  (Equation 6) 121 

We denote the summing matrix across the ARG 𝐺 as 𝑅𝐺 = ∑ 𝑅𝑡
𝑡∈𝐺 . As each tree have different number of 122 

haplotypes set as missing due to deriving its local ancestry from non-targeted ancestries, instead of dividing 123 
the summing matrix by a constant 𝜇(𝐺), we divide the summing matrix by a 𝑁 × 𝑁 matrix (denoted 𝐷𝐺) to 124 
account for the differential missing level while taking into account the expected number of mutations occurring 125 
on each tree (Figure 1A). Each element 𝐷𝐺(𝑖, 𝑗) represents the sum of non-missing 𝜇(𝑒) at position (𝑖, 𝑗) across 126 
the 𝑅𝑡 (1 ≤ 𝑡 ≤ |𝐺|, where |𝐺| is the number of trees in 𝐺): 127 

𝑅𝐺(𝑖, 𝑗) =
1

𝐷𝐺(𝑖,𝑗)
∑ 𝑅𝑡(𝑖, 𝑗)𝑡∈𝐺                                                      (Equation 7) 128 

𝐷𝐺(𝑖, 𝑗) = ∑ 𝜏𝑡(𝑖, 𝑗)𝑡∈𝐺                                                                  (Equation 8) 129 

𝜏𝑡(𝑖, 𝑗) = {
∑ 𝜇(𝑒)𝑒∈𝐸𝑡(𝑖,𝑗) , 𝑖𝑓 𝑏𝑜𝑡ℎ 𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑟𝑒𝑚𝑜𝑣𝑒𝑑

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                      (Equation 9) 130 

 131 

Finally, we center 𝑅𝐺 as we would of a regular eGRM:  132 

𝑎𝑠 − 𝑒𝐺𝑅𝑀 ≔ 𝐶𝑁(
1

𝐷𝐺
∑ ∑ 𝑤(𝑒)𝑥(𝑒)𝑥(𝑒)𝑇

𝑒∈𝐸𝑡 𝜇(𝑒)𝑡∈𝐺 )𝐶𝑁                            (Equation 10) 133 

 134 

Choosing the weighting to better reveal recent population structure 135 

The weights on each branch, 𝑤(𝑒), was originally defined in eGRM as 𝑤1(𝑒) =
1

𝑥(𝑒)(1−𝑥(𝑒)
, which stem from the 136 

canonical GRM term to adjust for the binomial variance of variants across different frequencies (Fan et al. 2022). 137 
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As 𝑥(𝑒) is the haplotype vector associated with branch 𝑒, 𝑥(𝑒) denotes the proportion of the haplotypes under 138 
branch 𝑒. We found that in the context of a genealogical tree, this weight places higher weights on both recent 139 
branches (e.g. when 𝑥(𝑒) is small, near the leaves of the tree) as well as ancient branches (e.g. when 𝑥(𝑒) is 140 
large, near the root of the tree; Figure S1A). Because human population structures are likely established more 141 
recently and we tend to be much more interested in the population structure of the recent past (on an 142 
evolutionary scale), the original weighting scheme is suboptimal. Indeed, in a simple two-subpopulation two-143 
way admixture model (Figure S2), we observe that 𝑥(𝑒) tend to be large for ancient branches, and small for 144 
recent branches (Figure S1C). Thus, the original weight, 𝑤1(𝑒) , tend to place higher weights on the more 145 
ancient branches particularly when taking into account the longer branches and opportunities for mutations in 146 
those branches (Figure S1D). We thus experimented with different parametric weighting functions (Figure S3) 147 

and decided to use weighting function of the form 𝑤2(𝑒) =  
1−𝑥(𝑒)

𝑥(𝑒)
 to be effective in up-weighting the more 148 

recent past of the genealogical tree (Figure S1B, S1E) when computing the expected pairwise relatedness. The 149 
software as-eGRM (https://github.com/jitang-github/asegrm) allows users to input different functional forms 150 
of the weight. 151 

 152 

Simulation of admixed populations 153 

Three demographic models were used to simulate admixed populations: (1) a two-population split two-way 154 
admixture model, (2) a grid-like 3x3 stepping stone model, and (3) a three-way admixed Latino model. For all 155 
models we used msprime(version 1.2.0) (Baumdicker et al. 2022) to simulate genetic data with the 156 
recombination and mutation rates were set to 1e-8 per generation per base pair, a ploidy of 2 and 500 157 
haplotypes (each spanning 100Mb) per population. In the two-population split, two-way admixture model 158 
(Figure S2) and the grid-like stepping-stone model (see below), the effective population size was set to 10000 159 
for all populations, with no recent growth. A three-way admixed Latino model (see below) was based on a 160 
previously published model that fitted the admixture history model from self-reported Latino Americans from 161 
Los Angeles (Fan et al. 2023), but revised to include substructure. A visual representation and detailed 162 
parameter specifications are shown in the respective figures and supplementary figures. The commands for 163 
simulations are released with the as-eGRM software.  164 

 165 

Quality control of empirical data 166 

We tested as-eGRM and compared it to alternative approaches on empirical data from the HCHS/SOL and PAGE 167 
global reference datasets. The HCHS/SOL dataset were obtained from dbGAP (accession numbers 168 
phs000880.v1.p1 and phs000810.v1.p1). HCHS/SOL is a large US-based study of 16,415 Hispanic/Latino 169 
individuals, among whom 12,803 consented to genetic studies and were successfully genotyped on a genome-170 
wide SNP array (Sorlie et al. 2010). Quality control of genotypes was performed using PLINK (Chang et al. 2015), 171 
excluding variants that had a call rate < 99% or P value for Hardy–Weinberg equilibrium < 1.0 × 10−6, as well as 172 
individuals that has > 2% missingness. For the HCHS/SOL data, we retained only individuals whose four 173 
grandparents were self-reported to be from the same country and filtered out relatives by removing one 174 
individual in the pairs with kinship (calculated by PLINK) greater than 0.08 (corresponding to second-level 175 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 14, 2025. ; https://doi.org/10.1101/2025.01.10.632475doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.10.632475
http://creativecommons.org/licenses/by-nc-nd/4.0/


relatives or closer). After quality control filtering, we retained 2,036,821 variants and 8,260 individuals for 176 
analysis. Among the 8,260 individuals, 1,867 have an estimated Indigenous American ancestry proportion 177 
greater than 0.5, which we analyzed to be consistent with the filtering based on ancestry proportion that 178 
previous methods used (Browning et al. 2016). Additionally, we also analyzed 1,671 individuals from the 179 
Chicago recruitment site across the entire ancestry proportion spectrum, to illustrate the robustness of as-180 
eGRM to missing data for a dataset of similar scale. The PAGE global reference dataset were obtained from 181 
dbGAP (accession number phs001033.v1.p1). We extracted a subset of 630 Latin America individuals (from 182 
Peru, Venezuela, Mexico, Colombia, Brazil) from the global reference dataset and applied the same quality 183 
control filtering to retain 1,399,468 variants for analysis. HCHS/SOL and PAGE-Latin American data were 184 
combined with the ancestry reference (see below) and together phased by EAGLE (Loh et al. 2016). 185 

 186 

Inference of Ancestral Recombination Graphs and local ancestry calls 187 

We used Relate (version 1.2.0) (Speidel et al. 2019) to infer ARGs for both simulated and empirical datasets. For 188 
simulated data, recombination rate, mutation rate, and effective population size were set to match the 189 
simulation parameters. For the HCHS/SOL and PAGE-Latin American data, mutation rate and effective 190 
population size were set to the default values as suggested in the user manual, along with the HapMap Phase 191 
II genetic map (The International HapMap Consortium 2007) in hg38. For computational scalability when 192 
inferring the ARG on empirical datasets, we applied Relate on chunks of 10,000 SNP in parallel. The utility 193 
RelateFileFormats --mode ConvertToTreeSequence was used to convert Relate’s output to the tskit (Kelleher et 194 
al. 2018) format. 195 

 196 

RFMix (version 2) (Maples et al. 2013) was used to infer local ancestry segments in both simulated and empirical 197 
datasets. The ancestral references used in simulation are indicated in each respective simulation model. For 198 
running RFMix on the HCHS/SOL and PAGE-Latin American data, we used previously selected individuals based 199 
on gnomAD v3.1(Karczewski et al. 2020; Jeon et al. 2023) as the reference. In gnomAD’s nomenclature, we 200 
included 671 non-Finnish European (NFE) individuals for European ancestry, 716 African/African-American (AFR) 201 
individuals for African-ancestry, and 94 Admixed American (AMR) individuals (7 Colombian, 12 Karitianan, 14 202 
Mayan, 4 Mexican in Los Angeles, 37 Peruvian in Lima, Peru, 12 Pima, and 8 Surui) for Indigenous American 203 
ancestry.  204 

 205 

Implementation of previous methods to investigate population structure 206 

We compared PCA + UMAP on the as-eGRM to that based on the canonical GRM, the original eGRM, as well as 207 
Browning’s AS-MDS and mdPCA. For PCA on the canonical GRM, we pruned sites with minor allele frequency 208 
(MAF) < 0.01 and those in high linkage disequilibrium (LD) using PLINK with the command “--maf 0.01 --indep-209 
pairwise 50 5 0.2”. Then a variance-standardized GRM was computed on the pruned genotypes, followed by 210 
eigen-decomposition to derive principal components (PCs). For PCA on the eGRM, eGRM was constructed using 211 
the software package from https://github.com/Ephraim-usc/egrm, using the same ARG input as the as-eGRM. 212 
Eigen-decomposition was performed on the output of eGRM to compute PCs. For Browning’s AS-MDS and 213 
mdPCA, codes were downloaded from https://faculty.washington.edu/sguy/local_ancestry_pipeline/ and 214 
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https://github.com/AI-sandbox/mdPCA respectively, and executed per instructions from the user manuals. We 215 
applied the same MAF and LD pruning as in PCA of the canonical GRM. In particular, mdPCA proposed five 216 
different methods (Methods 1-5) for generating ancestry-specific PCs. All five methods were tested, and we 217 
found generally the best results were based on Method 1, which were presented in this study. For methods 218 
that leverage local ancestry segments (Browning’s AS-MDS, mdPCA, and as-eGRM), used the same local 219 
ancestry calls. Unless otherwise noted, UMAP was applied to the top 20 and 50 PCs from simulated and 220 
empirical data, respectively, using the Python package umap with default parameters (n_neighbors:15, 221 
min_dist:0.1, metric: Euclidean).  222 

 223 

We visually compare the PCA or PCA+UMAP results based on each method, plotting generally the top two 224 
components in a biplot. To quantify the degree of clustering effectiveness, we followed previous study and used 225 
the Separation Index (SI), which assess the proportion of nearest neighbors that are in the same population in 226 
multi-dimensional space (Fan et al. 2022). Intuitively, for each individual in a cluster of true size n, we compute 227 
the proportion of the n closest neighbor in the multidimensional space that are in the same cluster and average 228 
the proportion over all individuals in the dataset. SI is a real number between 0 and 1, indicating how well a 229 
multidimensional metric is capturing the true classification. In simulation, the true label is the deme or 230 
population membership of each individual. In empirical data, the self-reported country of origin based on 231 
grandparental birthplaces in HCHS/SOL or the provided country of origin for PAGE global reference were used 232 
as the true label. 233 

 234 

Results 235 

An overview of the design of as-eGRM 236 

To compute ancestry-specific expectation of genetic relatedness, we first create ancestry-specific trees from 237 
inferred genealogical trees. The mathematical formulations are described in detail in the Methods. We intersect  238 
the inferred genealogical trees with inferred local ancestry segments (in practice inferred from existing methods 239 
such as Relate (Speidel et al. 2019) and RFMix (Maples et al. 2013), respectively; Figure 1A, step 1). We remove 240 
the leaf nodes derived from non-target ancestral populations to generate ancestry-specific trees (Figure 1A, 241 
step 2). Further, for each of the ancestry-specific trees, we specify two 𝑁 × 𝑁  matrices (named 𝑅𝑡  and 𝜏𝑡 242 
respectively; Figure 1A, step3; see Methods). 𝑅𝑡  (the orange matrices in Figure 1A) scores all pairwise 243 
relatedness based on the corresponding tree 𝑡  in the ARG with positions indexed by one or both samples 244 
deriving ancestry from the non-target ancestries set to missing values. The pairwise relatedness is computed 245 
following the procedure illustrated in Figure 1B, which followed the principle of the original eGRM (Fan et al. 246 
2022) that treats mutations as random, and computes the expected relatedness summed across all branches 247 
connecting the two haplotypes weighted by the probability of a mutation occurring on the branch (i.e. 248 
proportional to the branch length; Methods). 𝜏𝑡 (the green matrices in Figure 1A) records the expected number 249 
of mutations on each tree corresponding to the non-missing cells in 𝑅𝑡 , thereby tracks the differential 250 
missingness between pairs of haplotypes due to different proportions of the non-target ancestries being 251 
masked across the genome. Across all trees in the ARG, we then take the element-wise sum of the two matrices 252 
respectively, producing two matrices 𝑅𝐺 and 𝐷𝐺(Figure 1A, step 4; see Methods). Finally, we take the element-253 
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wise ratio of the two summed matrices followed by mean-centering to generate the final as-eGRM (Figure 1A, 254 
step 5). 255 

 256 

 257 

Figure 1. Design of as-eGRM. (A) A visual schematic of the implementation of as-eGRM. See the text for detailed description. (B) 258 
A toy example of the computation of pairwise genetic relatedness. The details are described in the Method, Equation (5) under 259 
the section (Expected pairwise genetic relatedness based on genealogical trees). Here we show a tree with five haplotypes, 𝑠1 260 
to 𝑠5, connected through a tree with five branches, 𝑒1 to 𝑒5.  𝑟(𝑠𝑖 , 𝑠𝑗) denote the relatedness between 𝑠𝑖 and 𝑠𝑗 , 𝜇(𝑒𝑖) denote the 261 
expected number of mutations occurring on branch 𝑒𝑖, and 𝑥(𝑒𝑖) denote the proportion of the descendant samples under branch 262 
𝑒𝑖 in all the samples. Weights on each branch, 𝑤(𝑒𝑖), are calculated based on 𝑥(𝑒𝑖), and given the weights and the expected 263 
number of mutations we can compute 𝑟(𝑠𝑖 , 𝑠𝑗) using all branches that connect the two haplotypes. 264 

 265 

When computing the expectation of relatedness per branch, the original formuation from the eGRM included 266 
a weight based on the inverse of the binomial variance (see Methods). This stemmed from the practice in the 267 
canonical GRM in which the contribution from each variant is normalized to adjust for the binomial variance of 268 
variants across different allele frequencies. In other words, alleles with extremely low and high derived allele 269 
frequencies, corresponding to alleles that tend to be very young or very old, respectively, in the sample, will 270 
tend to be upweighted because of their low minor allele frequencies. The conceptual analog in the case of 271 
branches in a genealogical tree is that the (young) branches near the leaves and the (old) branches near the 272 
root will be upweighted in the eGRM (Figure S1A). We reasoned that this practice would negatively impact the 273 
ability of the eGRM to discern population structure. Structure in humans (and in most species in general) are 274 
likely established towards the leaves of the tree, perhaps within the last several hundred generations compared 275 
to the coalescent history of the sample, and thus ancient alleles or branches on the tree pre-dating the structure 276 
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of interests will likely carry little information and instead contribute to the relatedness shared across all 277 
individuals (Fan et al. 2022; Zaidi & Mathieson 2020). Indeed, we observed in simulations of a simple two sub-278 
population two-way admixture model (Figure S2) that branches connecting two individuals from the same 279 
subpopulations tend to be much more recent than branches shared by the two sub-populations (Figure 2A). 280 
However, in the original weight formulation, 𝑤1(𝑒) =

1

𝑥(𝑒)(1−𝑥(𝑒)
 , these branches are not up-weighted 281 

compared to branches connecting individuals across sub-populations, particularly after accounting for the 282 
expected number of mutations on these branches (Figure 2B). We thus experimented with different parametric 283 

weighting functions (Figure S3) and opted to use the weights of the form 𝑤2(𝑒) =  
1−𝑥(𝑒)

𝑥(𝑒)
 to be effective in up-284 

weighting the more recent past of the genealogical tree (Figure 2C). Indeed, the as-eGRM using the updated 285 
weight shows clearer contrast between individuals within the same sub-population compared to as-eGRM 286 
using the original weights, resulting in clearer demarcation of the two sub-populations on principal components 287 
analysis of the as-eGRM (Figure 2D). 288 

 289 

 290 
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Figure 2. Up-weighting recent branches enhances as-eGRM performance in revealing finer-scale structure in admixed 291 
populations. An admixed population with a two-subpopulation (labeled pop1 and pop2) structure was simulated using the model 292 
in Figure S2. (A) Population-common branches are more ancient than the population-specific branches. B1, B2, and B12 represent 293 
branches specific to pop1, pop2, and common to both, respectively. Population-specific branches and population-common 294 
branches are computationally defined as the branches with more than 80% of the descendants coming from one population (i.e. 295 
pop1 or pop2) and the branches with the descendants cover more than 40% of the individuals from each of pop1 and pop2, 296 
respectively. (B) 𝑤1(𝑒)  denotes the weighting function used by eGRM. When 𝜇(𝑒)  is weighted by 𝑤1(𝑒) , population-specific 297 
branches are not up-weighted relative to the population-common branches. (C) 𝑤2(𝑒) denotes the current weighting function 298 
used by as-eGRM. When weighted by 𝑤2(𝑒) , population-specific branches are upweighted when computing the expected 299 
relatedness between pairs of individuals because of the greater weight placed on recent branches. (D) as-eGRM resulting from 300 
the two different weighting functions show different levels of contrast between individuals from each of the sub-populations. as-301 
eGRM using 𝑤2(𝑒)  results in intra-population relatedness values that are significantly higher than inter-population values, 302 
facilitating PCA-based population separation. The as-eGRMs were visualized as heatmaps. To aid in visualization, we rescaled the 303 
middle 90% of the as-eGRM values to be within range of 0 to 1 and set the outlier to the boundary values. PCA was applied to the 304 
original, untransformed, as-eGRM.  305 

 306 

as-eGRM outperforms alternative methods in extensive simulation 307 

We used a two-split two-way admixed demographic model to simulate an admixed population with structure 308 
for evaluating the performance of as-eGRM in revealing fine-scale structure (Figure 3A). In this model, there is 309 
a first population split 2000 generations ago, separating the orange ancestry (anc2) from the blue ancestry. A 310 
second split then occurred at 100 generations ago, creating anc1 population as well as a 3x3 stepping stone 311 
model with bi-directional migration with rate 0.01 with neighboring demes to establish a grid-like spatial 312 
structure. Finally, 20 generations ago there is a single pulse admixture from anc2 to the 9 demes, with varying 313 
proportions (Figure 3B). We assessed the performance of as-eGRM using the Separation Index (SI) (Fan et al., 314 
2022), which quantifies the proportion of nearest neighbors belonging to the same subpopulation in the 315 
simulated "ground truth" multi-dimensional space. A higher SI indicates better performance. When we applied 316 
PCA+UMAP to the canonical GRM from the simulated data, we observed the appearance of approximately 9 317 
demes, though there are clear misclassifications of individuals that are driven by similar ancestry proportions 318 
(Figure 3C, Figure S4; r = -0.43 and -0.54 between ancestry proportions and UMAP1 and UMAP2, respectively). 319 
When PCA+UMAP was applied to the eGRM without taking into account local ancestry information, there is 320 
again little power to differentiate the structure specific to the blue ancestry (anc1; SI = 0.21). While UMAP 321 
applied to the result of AS-MDS or mdPCA showed some improvement (SI = 0.36-0.38) over the result from 322 
eGRM, the resolution is limited (Figure 3C). In contrast, as-eGRM was able to clearly delineate the 9 demes, 323 
completely free from the influence of admixture from anc2 (Figure 3C).  324 

 325 

We also investigated the impact of different admixture proportions from anc2 as well as the timing of the split 326 
to establish the 3x3 grid structure on each method’s ability to discern population structure. Greater admixture 327 
from the non-target ancestry would reduce the portion of the genome that are informative for fine-scale 328 
structure in the ancestry of interest, and more recent structure would also mean less differentiation among the 329 
demes, making fine-scale structure less discernable. We thus conducted additional simulations and evaluations 330 
with setting the admixture proportions m1-m9 to 0.2~0.4 and 0.4~0.6 and setting structure ages t_split to 50 331 
and 300, separately. As expected, the performance for AS-MDS and mdPCA decreased with increasing 332 
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admixture proportions from anc2 (Figure S5) or more recent onset of the grid-like structure (Figure S6) both 333 
visually in biplots and by SI. The performance for both ancestry-specific approaches also improved when 334 
admixture proportions from anc2 decreased, or when the grid-like structure persisted for longer (Figure S5, S6; 335 
SI = 0.74-0.86). In all scenarios, as-eGRM consistently outperforms the alternatives, with near perfect 336 
delineation of the nine demes (Figure S5, S6). The consistently poor performance of eGRM across scenarios 337 
highlights the benefits of the modifications implemented in as-eGRM. 338 

 339 

 340 

 341 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 14, 2025. ; https://doi.org/10.1101/2025.01.10.632475doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.10.632475
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3. as-eGRM outperforms alternative methods when applied to an admixed population with a grid-like spatial structure. 342 
(A) The demographic model for simulating an admixed population with a 3*3 grid-like subpopulations structure. anc1 and anc2 343 
represent ancestral populations, and were used as the reference for local ancestry inference. m1-m9 specify the proportions of 344 
genomic components derived from anc2 for the individuals in the nine demes, respectively. t_split and t_admix specify the time 345 
the nine subpopulations split and the time the admixture event happened, respectively. Recent migration (rate: 0.01) between 346 
neighboring demes has occurred over the last 10 generations (B) Ancestry proportions of the individuals in the nine 347 
subpopulations, as inferred by RFMix. (C) The performance of PCA followed by UMAP applied to the canonical GRM, the eGRM, 348 
the as-eGRM, as well as UMAP applied to AS-MDS and mdPCA. 20 PCs were projected down to 2 dimensions by UMAP, as shown 349 
in biplots. Data points represent individuals, with colors indicating population membership. Axes for UMAP plots are not labeled 350 
as distances are meaningless after UMAP transformation. 351 

 352 

We further evaluated as-eGRM on a more realistic three-way admixed Latino demographic history previously 353 
fitted from the inferred genealogical trees from array genetic data of Latinos residing in Los Angeles, CA (Fan et 354 
al. 2023). We modified this model to include recent population split at 50, 100, or 300 generations ago (Figure 355 
4A). Both subpopulations recived same amount of introgression from two other ancestries (10.7% from an 356 
“African-like” ancestry and 44.2% from an “European-like” ancestry) at 25 generations ago (Figure 4B). Again, 357 
as-eGRM outperformed the canonical GRM and eGRM in discerning the population structure in PCA (Figure 358 
4C), including scenarios with more recent structure (Figure S7). 359 
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 360 

Figure 4. as-eGRM outperforms alternative methods when applied to simulated Latino populations. (A) The demographic model 361 
for simulating a Latino population with a two-subpopulation structure. Recent migration (rate: 0.01) between the two 362 
subpopulations has occurred over the last 10 generations. The model is adapted from (Fan et al. 2023). The ancestral populations 363 
African, European, and Indigenous American were used as the reference for local ancestry inference. (B) The ancestry proportions 364 
of the individuals in the two subpopulations, as inferred by RFMix. (C) The performance of PCA followed by UMAP applied to the 365 
canonical GRM, eGRM, and as-eGRM, and UMAP applied to AS-MDS and mdPCA, on revealing the two-subpopulation structure. 366 
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10 PCs were projected down to two dimensions by UMAP, shown as biplots. Data points represent individuals, with shape and 367 
color denoting population membership and ancestry proportions, respectively, as annotated in the lower right corner. In this 368 
figure, t_split=100 was used in simulation; see Figure S7 for the scenarios where t_split = 50 or 300. Axes for UMAP plots are not 369 
labeled as distances are meaningless after UMAP transformation. 370 

 371 

as-eGRM outperforms alternative methods in empirical data 372 

We applied as-eGRM to genotyping array data of individuals from Latin America to evaluate its ability to 373 
delineate fine-scale population structure in empirical analysis. Many of the Latino individuals have admixed 374 
genomes consisting of three predominant continental ancestries: Indigenous American (IA; primarily of South 375 
and Central America, Mexico, and the Caribbean islands), European as a result of colonization, and African as a 376 
result of slave transport from West Africa (Conomos et al. 2016). We focused on visualizing the fine-scale 377 
structure from the IA ancestry component. 378 

 379 

We first examined the Latino populations from the Population Architecture using Genomics and Epidemiology 380 
(PAGE) study (Wojcik et al. 2019). We take the country of origin as the truth, hypothesizing that different 381 
countries across the Central and South America will be correlated with the fine-scale structure within the IA 382 
ancestry component. We found that PCA or PCA followed by UMAP approaches generally can discern the 383 
population structure in this dataset, though PCA based on the canonical GRM or the eGRM appears to be driven 384 
by ancestry proportions (Figure S8, left column; r = -0.79 and -0.73 for PC1 of canonical GRM and eGRM, 385 
respectively; r = -0.12 and 0.21 for PC2 of canonical GRM and eGRM, respectively). All ancestry-specific methods 386 
(i.e. AS-MDS, mdPCA, and as-eGRM) outperform PCA on canonical GRM and eGRM and are relatively free from 387 
bias by global ancestry (r = -0.05 to 0.33 across methods). Based on the separation index, as-eGRM produced 388 
slightly more accurate clustering (based on grouping individuals from different country of origin), though the 389 
differences are small (SI = 0.85 for as-eGRM vs. 0.81 or 0.82 for AS-MDS and mdPCA; Figure S8). All methods 390 
performed similarly by separation index when UMAP is applied to the PCs (Figure S8). The general ability for 391 
each method to delineate the population structure may be due to the relatively high level of Indigenous 392 
American ancestry in this sample (Figure S9). The fact that PCA based on the canonical GRM or eGRM can also 393 
somewhat elucidate the IA-specific structure suggests that the IA component across individuals in this dataset 394 
may be sufficiently differentiated and correlated with country of origin. 395 

 396 

We then studied the Latino population from the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). 397 
Previous studies applied the AS-MDS to the HCHS/SOL data and identified fine-scale structure within the IA 398 
ancestry that is consistent with grandparental country of origin (Browning et al. 2016). Given that individuals 399 
with low levels of IA ancestry will have limited genetic data after masking, thereby adding noise to the PCA, 400 
previous studies also restricted their analysis to only individuals with at least 50% of their genomes derived 401 
from the ancestry of interest. Indeed, when we restricted our analysis to the subset of individuals with 402 
estimated IA ancestry > 0.5 (across all recruitment center), all ancestry-specific methods were able to delineate 403 
the population structure better than PCA on the canonical GRM and eGRM (SI = 0.88-0.96 vs. 0.65 and 0.67 on 404 
canonical GRM and eGRM, respectively; Figure S10, left column). When examining the distribution of IA 405 
ancestry across individuals, all methods except the as-eGRM show substantial correlation with IA ancestry on 406 
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either of the first two PCs (Figure S10, left column; |Pearson’s correlation r| = 0.72-0.78). Applying UMAP on 407 
the top 50 PCs to collapse them down to 2-dimensions further improved the delineation of population structure 408 
for all methods (SI = 0.84 to 0.97 across all methods; Figure S10, right column).  Consistent with previous report 409 
(Browning et al. 2016), we observed clearly 3 to 4 clusters in this dataset, corresponding to Latinos from 410 
northern part of Central America (Mexico), southern part of Central America (Costa Rica, El Salvador, Guatemala, 411 
Honduras, and Nicaragua), and Southern America (Argentina, Colombia, Ecuador, and Peru).  412 

 413 

However, when we applied each method to HCHS/SOL data spanning the entire spectrum of IA ancestry (Figure 414 
S11), the advantage from as-eGRM become apparent. In this most inclusive scenario, we found that neither of 415 
the frequency-based approach (AS-MDS and mdPCA) nor the non-ancestry-specific approach (PCA on canonical 416 
GRM and eGRM) could appropriately delineate the structure as defined by grandparental country of origin 417 
(Figure 5) that was more apparent when only analyzing the subset of individuals with high IA ancestry (Figure 418 
S10). Any pattern that was discernable from PCA were strongly correlated with global ancestry, particularly the 419 
European ancestry (Figure 5, left column; |Pearson’s correlation r| = 0.7-0.86). In contrast, as-eGRM 420 
significantly outperformed all alternatives; it showed clearer separation by major grandparental country of 421 
origin in PCA, which is not confounded by proportion of global ancestry (Figure 5). Applying UMAP on the top 422 
50 PCs somewhat improved the clustering (Figure 5, right column). However, while the expected clusters based 423 
on northern Central America, southern Central America, and South America may start to separate in analysis 424 
using the canonical GRM, eGRM, or AS-MDS and mdPCA, they are far from the clean distinct clusters when as-425 
eGRM was used. 426 
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 429 

Figure 5. as-eGRM outperforms alternative methods in revealing the Indigenous American ancestry-specific structure in the 430 
Hispanic/Latino population using HCHS/SOL data. Analysis focused on 1671 individuals from the Chicago recruitment site only 431 
but spanned the entire spectrum of ancestry proportions. Plots showed PCA or PCA+UMAP results (column annotations) of each 432 
analytical approach (row annotations). Points represent individuals, colored by ancestry proportions (left column) or 433 
grandparental country of origin (middle and right columns, see bottom box for annotation). The r in the left upper corner of the 434 
left column represents the Pearson correlation coefficients between the proportions of Indigenous American ancestry and PC1 435 
(the first number) or PC2 (the second number), respectively. The Separation Index (SI) in the left upper corner of the right two 436 
columns is calculated using grandparental country of origin as (presumed) true labels. Axes for UMAP plots are not labeled as 437 
distances are meaningless after UMAP transformation. 438 

 439 

Discussion 440 

In this study, we introduced as-eGRM, a framework that leverages genealogical trees and local ancestry 441 
information to reveal ancestry-specific structures in admixed populations.  The key advancements of as-eGRM 442 
include defining ancestry-specific pairwise relatedness between individuals based on genealogical trees and 443 
local ancestry callsets across the genome accounting for missing data (due to masked non-target ancestry), as 444 
well as a modified weighting of branch on the trees to up-weight recent branches more informative of recent 445 
population structure. Through extensive evaluation using multiple simulated and empirical datasets, we 446 
demonstrated that as-eGRM consistently outperforms alternative metrics or methods in revealing ancestry-447 
specific population structure across various demographic scenarios and missing data proportions.  448 

 449 

In this study, we opted to illustrate the power of our method using individuals from Latin America from the 450 
HCHS/SOL dataset as the empirical example. Latinos are known to exhibit substantial heterogeneity in the 451 
distribution of their genetic ancestry across Latin America (Price et al. 2007; Gravel et al. 2013), or even across 452 
geographical locations within the United States (Bryc et al. 2015). Yet, Latinos across geographical space tend 453 
to be aggregated for analysis. Combined with heterogeneous exposure through the environment, such 454 
aggregation has been shown to mask differences in the phenotype distribution, efficacy of polygenic risk score, 455 
and evaluation of interaction between ancestry and environment (Sharma et al. 2024). These differences can 456 
become more apparent in a stratified analysis even if just based on the self-reported ethnicity or country of 457 
origin (Sharma et al. 2024). Furthermore, the definition of the Indigenous American component of genetic 458 
ancestry tend to also aggregate putative reference individuals across Latin America, again masking the allele 459 
frequencies difference that arise in ancestral Indigenous American populations across the Americas due to their 460 
unique migration history (Skoglund & Reich 2016; Scheib et al. 2018). Indeed, previous assessment of 461 
population structure in Latin America have also shown the fine-scale differentiation within a broad umbrella 462 
term of Indigenous American ancestry (Moreno-Estrada et al. 2013; Sohail et al. 2023). The as-eGRM thus 463 
stands to improve these investigations leveraging the genetic linkage information. By providing a more nuanced 464 
view of genetic variation within (somewhat arbitrarily defined) ancestry components, as-eGRM help re-define 465 
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or re-interpret genetic ancestry, improve our understanding of population history, and may lead to more robust 466 
and interpretable findings in studies of diseases and complex traits. This advancement could pave the way for 467 
more precise and equitable genetic research, ultimately contributing to better health outcomes for diverse 468 
populations. 469 

 470 

We also opted to utilize UMAP to complement in exploring the population structure of our simulated and 471 
empirical datasets. There has been recently well-known discussion on social media regarding PCA and UMAP, 472 
in the context of their applications to represent the genetic diversity of the All-of-Us cohort (The All of Us 473 
Research Program Genomics Investigators et al. 2024). While the majority of the criticism (Pachter 2024) 474 
centered on the conflation of genetic ancestry and self-reported race and ethnicity through questionable use 475 
of color and labels, UMAP was also suggested to contribute towards forcing a discrete nature of genetic diversity 476 
in an inherently continuous space (as visualized by PCA plots). Indeed, while the admixture process in humans 477 
is modeled as an inherently linear process, UMAP does not preserve the distances in its transformation but 478 
instead accentuate the distinctiveness of the majority subgroups. However, both PCA and UMAP, when applied 479 
to genetic data, are dimensional reduction approaches to reduce the high-dimensional genetic data down to 480 
visualizable 2- or 3-dimensions for exploratory analysis. The representation of the genetic data will not be loss-481 
less through any form of dimensional reduction techniques, and the appropriate usage may depend on the 482 
context. The appropriate use of UMAP on human data is continually being explore (Diaz-Papkovich et al. 2023), 483 
and it may be more suitable in the context of exploring isolated islands where significant drift may occur, for 484 
instance (Ioannidis et al. 2021). In our context, simulated data assumed a discrete nature (e.g. the 9-deme 485 
model; Figure 3) and UMAP could be more powerful in identifying these clusters. Similarly, in our empirical 486 
application, we targeted the Indigenous American ancestry and assumed that the fine-scale structures of 487 
interests are more discrete in nature. Such assumption is made whenever one operates under a generally 488 
discrete view of genetic ancestry (when reference ancestral populations are presumed when modeling 489 
admixture history, for instance). This may or may not reflect the reality, but we note that UMAP is applied as 490 
one potential approach to explore the data and generate additional hypothesis of the history of these 491 
populations, to complement the visualization through PCA, which we also show. 492 

 493 

On a technical level, we found that population structure analysis based on the as-eGRM excels over previous 494 
methods (AS-MDS or mdPCA) when the proportion of admixture from non-target ancestry is high. For instance, 495 
as the non-target ancestry increased from 0.2-0.4 to 0.4-0.6 in the nine-deme stepping stone model (Figure S5), 496 
mdPCA progressively performed worse in elucidating population structure (SI = 0.74 to 0.15), while as-eGRM 497 
maintained sensitivity (Figure S5). This may also underlie the observation that AS-MDS and mdPCA performed 498 
comparably to as-eGRM on the PAGE-Latin American dataset (Figure S8; mean IA ancestry proportion = 0.68) 499 
or the HCHS/SOL data when filtering on individuals with estimated IA ancestry > 0.5 (Figure S10). One reason 500 
for this observation is the impact due to missing data. As admixture proportions from non-target ancestry 501 
increases, the proportion of the genomes between a pair of individuals that are not masked by AS-MDS or 502 
mdPCA decreases, reducing the information available to compute genetic similarity between the pair. Similar 503 
issue with pervasive missingness in the GRM had been discussed in literature, particularly when using data from 504 
ultra-low coverage sequencing data or ancient DNA (aDNA). Common approaches to deal with missingness 505 
when inferring population structure includes filtering of individuals with high missingness or impute the 506 
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missingness by mean genotype values (Arteaga & Ferrer 2002; Patterson et al. 2006; Galinsky et al. 2016; 507 
Abraham et al. 2017), though both approaches could introduce bias in population structure inference. Other 508 
approaches, such as those based on an expectation-maximization algorithm to iteratively impute frequency of 509 
missing genotypes (Meisner et al. 2021), or based on matrix denoising techniques and truncated SVD as used 510 
by mdPCA, have also been proposed to deal with the non-random missingness in the data. In our as-eGRM 511 
framework, we did not explicitly deal with missingness in the construction of as-eGRM; we also simply ignored 512 
the regions of genome between pairs of individuals where one or both individuals have non-target ancestries. 513 
Indeed, we found that the variance in our estimates of ancestry-specific relatedness to be relatively small, 514 
oftentimes one order of magnitude lower than the estimates themselves even when missingness is around 90% 515 
(Figure S12). While our approach appears to be robust to increased admixture proportions, its ability to 516 
elucidate population structure may still suffer when investigating structure within a minor ancestry component, 517 
or when ancestry segments are not randomly distributed in the genome (e.g. in presence of adaptive 518 
introgression). We would also expect the variance of the relatedness estimates to be larger if the ARG 519 
reconstruction is less accurate, or if less genetic information is available for ARG reconstruction (e.g. array 520 
genotypes were used). Therefore, future improvements may focus on evaluating and implementing approaches 521 
to ensure robustness across the spectrum of missing information. 522 

  523 

The current implementation of as-eGRM has some limitations and future direction for improvement. First, we 524 
found that up-weighting recent branches is crucial for revealing contemporary fine-scale structures. This finding 525 
suggests that selectively weighting of branches from different parts of the trees could enable the detection of 526 
structures from specific time periods. While our current approach empirically determines the weighting 527 
function for recent branches, future research should explore systematic methods to derive optimal weighting 528 
functions for both recent and temporally specific structures. Second, as-eGRM’s reliance on ARG-reconstruction 529 
makes it computationally intensive for datasets exceeding a few thousand individuals. ARG-reconstruction 530 
methods scalable to biobank level data are available (Wohns et al. 2022; Zhang et al. 2023), though its accuracy 531 
can still be improved (Y. C. Brandt et al. 2022; Fan et al. 2022; Peng et al. 2024). We chose to use Relate as the 532 
best combination of accuracy and scalability and also expect that rapid advances in ARG-reconstruction 533 
methods will likely improve both the accuracy and scalability, which will benefit the as-eGRM framework. Third, 534 
our method cannot yet be applied to aDNA data, as the quality of aDNA data cannot yet be used in local ancestry 535 
inference (as the target or the reference), and its incorporation into the ARG is still in development. 536 
Nevertheless, their incorporation into population structure analysis may be illuminating for both understanding 537 
the history of a modern admixed population or in interpreting or re-defining the ancestries of an admixed 538 
individual. For the time being, allelic-based approaches for incorporating aDNA may still be most reliable. In 539 
fact, the explicit reliance of defining a high-quality reference panel and inference of discrete local ancestry 540 
labels is a strong limitation of the current approach. While it may be clearer to define ancestral populations for 541 
continentally admixed populations, the notion of ancestry is complicated by both geographical location and 542 
temporal reference (Mathieson & Scally 2020). Genealogical trees potentially enable a continuous view of 543 
population structure and ancestry across time, moving beyond traditional discrete ancestry classifications. 544 
Therefore, future development may also move towards a more fluid definition of ancestries and investigate the 545 
population structure at multiple levels within a cross section of time. 546 

 547 
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 548 

Data and code availability 549 

We have implemented the algorithms related to as-eGRM in a python package, asegrm, which is publicly 550 
available in PyPI. Documentation of this package as well as the codes for reproducing the analyses in this study 551 
can be found on its GitHub page (https://github.com/jitang-github/asegrm). 552 
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 833 

Figure S1. The comparison of the weighting functions used by eGRM and as-eGRM. (A) The weighting 834 
function 𝑤1(𝑒)  used by eGRM up-weights the branches with a low or high 𝑥(𝑒) , which represents the 835 
proportion of the descendants under branch 𝑒 in all descendants. Inset shows the same function but with 836 
y-axis capped at 20. (B) The weighting function 𝑤2(𝑒) used by as-eGRM up-weights the branches with a 837 
low 𝑥(𝑒). Inset shows the same function but with y-axis capped at 20. (C) In a simulation of 500 individuals 838 
over a 100Mb region based on the demographic history of Figure S2, we stratified all branches 𝑒 into four 839 
time bins. The more ancient time bins tend to have higher value of 𝑥(𝑒) . (A-C) indicate that 𝑤1(𝑒)  up-840 
weighs both recent and ancient branches, while 𝑤2(𝑒) up-weights only recent branches. (D) Multiplied by 841 
𝜇(𝑒), the expected number of mutations occurring on branch 𝑒, to account for the expected number of 842 
mutations given the branch length, 𝑤1(𝑒) assigns relatively bigger values to more ancient branches. (E) 843 
But 𝑤2(𝑒), on the other hand, would assigns comparable values to different ages of branches in the same 844 
construct. 845 
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 846 

 847 

Figure S2. A two-population two-way admixed demography. This simulated scenario was used to explore the 848 
effect of different weighting functions in computing the ancestry-specific pairwise relatedness. (A) The 849 
demographic model for simulating an admixed population with a two-subpopulation structure. anc1 and anc2 850 
represent ancestral populations, and were used as the reference for local ancestry inference. m1 and m2 specify 851 
the proportions of genomic components from anc2 for the individuals in pop1 and pop2, respectively. t_split 852 
and t_admix denote the time of pop1 and pop2 splitting and the admixture event, respectively. Recent 853 
migration (rate: 0.01) between pop1 and pop2 has occurred over the last 10 generations.  (B) The ancestry 854 
proportions of the individuals in the two sub populations, as inferred by RFMix. 855 
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 856 

Figure S3. The performance of the candidate weighting functions for up-weighting recent branches. In order 857 
to up-weight the recent branches of each genealogical tree to accentuate the recent structure, we searched for 858 
a function that increases monotonically as the input branch age decreased. We empirically tried multiple 859 
functions with different monotonically increasing slopes, computed and visualized the as-eGRM based on the 860 
simulated demography from Figure S2, and applied the PCA on the as-eGRM to assess the performance in 861 
separating the two sub-populations. The as-eGRMs were visualized as heatmaps. To aid in visualization, we 862 
rescaled the middle 90% of the as-eGRM values to be within range of 0 to 1 and set the outlier to the boundary 863 
values. PCA was applied to the original, untransformed, as-eGRM. The scatter plots show the top 2 PCs. Based 864 
on the performance of these functions, we chose the function 𝑤2(𝑒) in this study. 865 
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 866 

Figure S4. The distribution of the individuals in the PCA+UMAP applied to the canonical GRM is driven by 867 
ancestry proportions. 20 PCs were projected down to 2 dimensions by UMAP, as shown in the biplot. Data 868 
points represent individuals, with colors indicating the ancestry proportion of the population targeted for 869 
investigation. The r in the left upper corner represents the Spearman’s rank order correlation coefficients 870 
between the ancestry proportions of the population targeted for investigation and UMAP1 (the first number) 871 
or UMAP2 (the second number), respectively. These populations were simulated using the demographic model 872 
in Figure 3A. Axes for UMAP plots are not labeled as distances are meaningless after UMAP transformation. 873 
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Figure S5. as-eGRM outperforms the alternatives when applied to an admixed population with a grid-like 875 
spatial structure across different admixture proportions. 20 PCs were projected down to two dimensions by 876 
UMAP, shown as biplots. Data points represent individuals, with colors indicating population membership. 877 
These populations were simulated using the demographic model in Figure 3A with the admixture proportions 878 
set to the values annotated by the grids on the top row. The other demographic parameters were kept the same 879 
as in Figure 3A. Axes for UMAP plots are not labeled as distances are meaningless after UMAP transformation. 880 
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Figure S6. as-eGRM outperforms the alternatives when applied to an admixed population with a grid-like 882 
spatial structure across different structure ages. 20 PCs were projected down to two dimensions by UMAP, 883 
shown as biplots. Data points represent individuals, with colors indicating population membership. The 884 
populations were simulated by the model in (Fig. 3A) with the structure ages set to the values annotated by the 885 
column names. The other demographic parameters are specified in (Fig. 3A). Axes for UMAP plots are not 886 
labeled as distances are meaningless after UMAP transformation. 887 
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Figure S7.  as-eGRM outperforms the alternatives when applied to a simulated Latino population with a two-890 
subpopulation structure across different structure ages. 10 PCs were projected down to two dimensions by 891 
UMAP, shown as biplots. Data points represent individuals, with colors indicating ancestry proportions based 892 
on the key, and shape of the symbol indicating population membership, as annotated in the bottom box. The 893 
populations were simulated by the model in Figure 4A with the timing of the onset of structure set to the values 894 
annotated by the column names. The other demographic parameters were kept fixed to that in Figure 4A. Axes 895 
for UMAP plots are not labeled as distances are meaningless after UMAP transformation. 896 
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Figure S8. as-eGRM outperforms alternative methods on revealing the Indigenous American ancestry-specific 899 
structure in Latin America population using the PAGE data. PCA or PCA+UMAP result (column annotations) for 900 
each method (row annotations) when applied to the PAGE global reference panel. Points represent individuals, 901 
colored by ancestry proportions (left column) or country of origin (middle and right columns, see bottom box 902 
for annotation). The r in the left upper corner of the left column represents the Pearson correlation coefficients 903 
between the proportions of Indigenous American ancestry and PC1 (the first number) or PC2 (the second 904 
number), respectively. The Separation index (SI) in the left upper corner is calculated assuming the self-reported 905 
country of origin as the true labels. Axes for UMAP plots are not labeled as distances are meaningless after 906 
UMAP transformation.  907 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 14, 2025. ; https://doi.org/10.1101/2025.01.10.632475doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.10.632475
http://creativecommons.org/licenses/by-nc-nd/4.0/


 908 

Figure S9. The ancestry proportions of the Latin Americans in the PAGE data by the countries of origin. The 909 
numbers below the country names represent the mean of the Indigenous American ancestry proportions. The 910 
ancestry proportions were computed with the local ancestry calls inferred by RFMix. 911 
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Figure S10. The as-eGRM replicates the Indigenous American (IA) ancestry-specific structure in the 914 
Hispanic/Latino population as demonstrated by AS-MDS using the HCHS/SOL data. PCA or PCA+UMAP result 915 
(column annotations) for each method (row annotations) when applied to a subset of 1867 HCHS/SOL 916 
individuals across all recruitment centers with estimated IA ancestry proportion > 0.5. Points represent 917 
individuals, colored by ancestry proportions (left column) or country of origin (middle and right columns, see 918 
bottom box). The r in the left upper corner of the left column represents the Pearson correlation coefficients 919 
between the proportions of Indigenous American ancestry and PC1 (the first number) or PC2 (the second 920 
number), respectively. The Separation index (SI) in the left upper corner is calculated assuming the self-reported 921 
country of origin as the true labels. Axes for UMAP plots are not labeled as distances are meaningless after 922 
UMAP transformation.  923 
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 924 

Figure S11. The ancestry proportions of the Hispanic/Latino individuals of Chicago recruitment site in the 925 
HCHS/SOL data. The lowest row annotates the countries where the four grandparents were self-reported to 926 
be from. The ancestry proportions were computed with the local ancestry calls inferred by RFMix. 927 

 928 

 929 

 930 

Figure S12. The Coefficient of variation of the relatedness estimated by as-eGRM. In data simulated by 931 
demographic history from the two-population split two-way admixture model (Figure S2), we estimated the 932 
variation in the relatedness estimates by as-eGRM through 100 bootstrap samples. The distribution of the 933 
coefficient of variation as function of missingness between all pairs of individuals are shown. In general, the 934 
standard error is within 10% of the relatedness estimates themselves and empirically we have shown that as-935 
eGRM is robust to missingness when applied to datasets with individuals across entire spectrum of ancestry 936 
proportions (Figure 5). 937 
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