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Gary A Kane1, Gonçalo Lopes2, Jonny L Saunders3, Alexander Mathis1,4,
Mackenzie W Mathis1,4*

1The Rowland Institute at Harvard, Harvard University, Cambridge, United States;
2NeuroGEARS Ltd, London, United Kingdom; 3Institute of Neuroscience,
Department of Psychology, University of Oregon, Eugene, United States; 4Center
for Neuroprosthetics, Center for Intelligent Systems, & Brain Mind Institute, School
of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne,
Switzerland

Abstract The ability to control a behavioral task or stimulate neural activity based on animal

behavior in real-time is an important tool for experimental neuroscientists. Ideally, such tools are

noninvasive, low-latency, and provide interfaces to trigger external hardware based on posture.

Recent advances in pose estimation with deep learning allows researchers to train deep neural

networks to accurately quantify a wide variety of animal behaviors. Here, we provide a new

DeepLabCut-Live! package that achieves low-latency real-time pose estimation (within 15 ms,

>100 FPS), with an additional forward-prediction module that achieves zero-latency feedback, and

a dynamic-cropping mode that allows for higher inference speeds. We also provide three options

for using this tool with ease: (1) a stand-alone GUI (called DLC-Live!XGUI), and integration into (2)

Bonsai, and (3) AutoPilot. Lastly, we benchmarked performance on a wide range of systems so

that experimentalists can easily decide what hardware is required for their needs.

Introduction
In recent years, advances in deep learning have fueled sophisticated behavioral analysis tools

(Insafutdinov et al., 2016; Newell et al., 2016; Cao et al., 2017; Mathis et al., 2018b;

Pereira et al., 2019; Graving et al., 2019; Zuffi et al., 2019). Specifically, advances in animal pose

estimation–the ability to measure the geometric configuration of user-specified keypoints–have ush-

ered in an era of high-throughput quantitative analysis of movements (Mathis and Mathis, 2020).

One such state-of-the-art animal pose estimation package, DeepLabCut (DLC; Mathis et al.,

2018b), provides tailored networks that predict the posture of animals of interest based on video

frames, and can run swiftly in offline batch processing modes (up to 2500 FPS on standard GPUs;

Mathis et al., 2020a; Mathis and Warren, 2018). This high-throughput analysis has proven to be an

invaluable tool to probe the neural mechanisms of behavior (Mathis and Mathis, 2020; von Ziegler

et al., 2021; Mathis et al., 2020b). The ability to apply these behavioral analysis tools to provide

feedback to animals in real time is crucial for causally testing the behavioral functions of specific neu-

ral circuits.

Here, we describe a series of new software tools that can achieve low-latency closed-loop feed-

back based on animal pose estimation with DeepLabCut (Figure 1). Additionally, these tools make it

easier for experimentalists to design and conduct experiments with little to no additional program-

ming, to integrate real-time pose estimation with DeepLabCut into custom software applications,

and to share previously trained DeepLabCut neural networks with other users. First, we provide a
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marked speed and latency improvement from existing real-time pose estimation software

(Forys et al., 2020; Štih et al., 2019; Schweihoff et al., 2019). Although these tools are also built

on top of DeepLabCut, our software optimizes inference code and uses lightweight DeepLabCut

models that perform well not only on GPUs, but also on CPUs and affordable embedded systems

such as the NVIDIA Jetson platform. Second, we introduce a module to export trained neural net-

work models and load them into other platforms with ease, improving the ability to transfer trained

models between machines, to share trained models with other users, and to load trained models in

other software packages. Easy loading of trained models into other software packages enabled inte-

gration of DeepLabCut into another popular systems neuroscience software, Bonsai (Lopes et al.,

2015). Third, we provide a new lightweight DeepLabCut-Live! package to run DeepLabCut infer-

ence online (or offline). This package has minimal software dependencies and can easily be installed

on integrated systems, such as the NVIDIA Jetson platform. Furthermore, it is designed to enable

easy integration of real-time pose estimation using DeepLabCut into custom software applications.

We demonstrate this ability via integration of DeepLabCut-Live! into the new AutoPilot frame-

work (Saunders and Wehr, 2019).

Using these new software tools, we achieve low latency real-time pose estimation, with delays as

low as 10 ms using GPUs and 30 ms using CPUs. Furthermore, we introduce a forward-prediction

module that counteracts these delays by predicting the animal’s future pose. Using this forward-pre-

diction module, we were able to provide ultra-low latency feedback to an animal (even down to sub-

zero ms delay). Such short latencies have only been approachable in marked animals (Sehara et al.,

2019), but have not been achieved to the best of our knowledge previously with markerless pose

Figure 1. Overview of using DLC networks in real-time experiments within Bonsai, the DLC-Live! GUI, and AutoPilot.
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estimation (Zhao et al., 2019; Forys et al., 2020; Štih et al., 2019; Schweihoff et al., 2019;

Privitera et al., 2020).

Lastly, we developed a benchmarking suite to test the performance of these tools on multiple

hardware and software platforms. We provide performance metrics for ten different GPUs, two inte-

grated systems and five CPUs across different operation systems. We openly share this benchmark-

ing suite at https://github.com/DeepLabCut/DeepLabCut-live; Kane, 2020; copy archived at swh:1:

rev:02cd95312ec6673414bdc4ca4c8d9b6c263e7e2f so that users can look up expected inference

speeds and run the benchmark on their system. We believe that with more user contributions this

will allow the community to comprehensively summarize system performance for different hardware

options and can thus guide users in choosing GPUs, integrated systems, and other options for their

particular use case.

Results

Exporting DeepLabCut models
DeepLabCut enables the creation of tailored neuronal networks for pose estimation of user-defined

bodyparts (Mathis et al., 2018b; Nath et al., 2019). We sought to make these neural networks,

which are TensorFlow graphs, easily deployable by developing a model-export functionality. These

customized DeepLabCut models can be created from standard trained DeepLabCut models by run-

ning the export_model function within DeepLabCut (see Materials and methods), or models can

be downloaded from the new DeepLabCut Model Zoo.

The model export module utilizes the protocol buffer format (.pb file). Protocol buffers are a lan-

guage-neutral, platform-neutral extensible mechanism for serializing structured data (https://devel-

opers.google.com/protocol-buffers), which makes sharing models simple. Sharing a whole

(DeepLabCut) project is not necessary, and an end-user can simply point to the protocol buffer file

of a model to run inference on novel videos (online or offline). The flexibility offered by the protocol

buffer format allowed us to integrate DeepLabCut into applications written in different languages: a

new python package DeepLabCut-Live!, which facilitates loading DeepLabCut networks to run

inference; and into Bonsai, which is written in C# and runs DeepLabCut inference using TensorFlow-

Sharp (https://github.com/migueldeicaza/TensorFlowSharp).

A new python package to develop real-time pose estimation
applications
The DeepLabCut-Live! package provides a simple programming interface to load exported Deep-

LabCut models and perform pose estimation on single images (i.e., from a camera feed). By design,

this package has minimal dependencies and can be easily installed even on integrated systems.

To use the DeepLabCut-Live! package to perform pose estimation, experimenters must simply

start with a trained DeepLabCut model in the exported protocol buffer format (.pb file) and instanti-

ate a DLCLive object. This object can be used to load the DeepLabCut network and perform pose

estimation on single images:

from dlclive import DLCLive

my_live_ob ject = DLCLive(”/exportedmodel/directory”)

my_live_object.init_inference(my_image)

pose = my_live_object.get_pose(my_image)

On its own, the DLCLive class only enables experimenters to perform real-time pose estimation.

To use poses estimated by DeepLabCut to provide closed-loop feedback, the DeepLabCut-Live!

package uses a Processor class. A Processor class must contain two methods: process and save.

The process method takes a pose as an argument, performs some operation, such as giving a com-

mand to control external hardware (e.g. to give reward or to turn on a laser for optogenetic stimula-

tion), and returns a processed pose. The save method allows the user to save data recorded by the

Processor in any format the user desires. By imposing few constraints on the Processor object,

this tool is very flexible; for example, it can be used to read and write from a variety of commonly

used data acquisition and input/output devices, including National Instruments devices, Arduino and
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Teensy micro-controllers, as well as Raspberry Pis and similar embedded systems. An example Pro-

cessor object that uses a Teensy micro-controller to control a laser for optogenetics is provided in

the DeepLabCut-Live! package.

We also provide functionality within this package to test inference speed of DeepLabCut net-

works. This serves to find the bounds for inference speeds an end user can expect given their hard-

ware and pose estimation requirements. Furthermore, there is a method to display the DeepLabCut

estimated pose on top of images to visually inspect the accuracy of DeeplabCut networks.

Ultimately, this package is meant to serve as a software development kit (SDK): to be used to eas-

ily integrate real-time pose estimation and closed-loop feedback into other software, either that we

provide (described below), or integrated into other existing camera capture packages.

Inference speed using the DeepLabCut-Live! package
Maximizing inference speed is of utmost importance to experiments that require real-time pose esti-

mation. Some known factors that influence inference speed of DeepLabCut networks include (i) the

size of the network (Mathis et al., 2020b; Mathis et al., 2020a), (ii) the size of images (Mathis and

Warren, 2018), and (iii) the computational power of the hardware (Mathis and Warren, 2018).

The DeepLabCut-Live! package offers three convenient methods to increase inference speed

by reducing the size of images: static image cropping, dynamic cropping around keypoints, and

downsizing images (see Materials and methods). These methods are especially important tools, as

they enable experimenters to capture a higher resolution, larger ‘full frame’ view, but increase infer-

ence speed by either performing inference only on the portion of the image in which the animal is

present (i.e., dynamically crop the image around the animal), or if the entire image is needed, by

performing inference on an image with reduced resolution (i.e., a smaller image). To demonstrate

the effect of these factors on inference speeds using the DeepLabCut-Live! package, we mea-

sured inference speeds for two different architectures: DLC-ResNet-50v1 (Insafutdinov et al., 2016;

Mathis et al., 2018b; Mathis et al., 2020a) and DLC-MobileNetV2-0.35 (Mathis et al., 2020a) and

across a range of image sizes using the downsizing method. These tests were performed on a variety

of hardware configurations, ranging from NVIDIA GPUs to Intel CPUs on Linux, Windows, and

MacOS computers, as well as NVIDIA Jetson developer kits–inexpensive embedded systems with

on-board GPUs, and using two different sets of DeepLabCut networks: a dog tracking model with

20 keypoints and a mouse pupil and licking tracking model with eight keypoints.

As expected, inference speeds were faster for the smaller DLC-MobileNetV2-0.35 networks than

the larger DLC-ResNet-50v1 networks (Mathis et al., 2020a), faster with smaller images, and faster

when using more powerful NVIDIA GPUs compared to smaller GPUs or CPUs (Figure 2). For exam-

ple, with the NVIDIA Titan RTX GPU (24 GB) and the NVIDIA GeForce GTX 1080 GPU (8 GB), we

achieved inference speeds of 152 ± 15 and 134 ± 9 frames per second on medium sized images (459

� 349 pixels) using the MobileNetV2-0.35 DeepLabCut network. Full results are presented in Fig-

ure 2, Figure 2—figure supplement 1, and Table 1.

Inference speed, size vs. accuracy
Although reducing the size of images increases inference speed, it may result in reduced accuracy in

tracking if the resolution of the downsized image is too small to make accurate predictions, or if the

network is not trained to perform inference on smaller images. To test the accuracy of DeepLabCut

tracking on downsized images, we trained three DeepLabCut networks on a mouse open-field data-

set that has been previously used for DLC accuracy benchmarking (640 � 480 pixels; Mathis et al.,

2018b). Each network was trained on a different range of image sizes: the default (50–125% of the

raw image size), a wider range of image sizes (10–125%), or only on smaller images (10–50%). This

was achieved by altering the training scale parameters (‘scale_jitter_lo’ and ‘scale_jitter_hi’) in the

DeepLabCut training configuration file. We then tested the accuracy of predictions of each network

on test images with scale of 12.5–150%, and calculated the root mean square error (RMSE) of pre-

dictions compared to human labels (n = 571 images; 50% for train/test) for each test image scale on

each network (Figure 2—figure supplement 2). Note, that pixel units is the natural metric for

reporting accuracy, but in this dataset the width of length of the mouse was 115.7 ± 0.6 (mean ± s.e.

m., n = 571) to give the reader a sense of scale.
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Naturally, the best accuracy was achieved on the largest images using networks trained on large

images (RMSE = 2.90 pixels at image scale = 150% and training scales of 50–125% or 10–125%).

However, there was only minimal loss in accuracy when downsizing images to a scale of 25% of the

image size, and these errors were mitigated by using a network trained specifically on smaller

images (RMSE = 7.59 pixels at 25% scale with training scale = 10–50%; Figure 2—figure supple-

ment 2). However, for the smallest images tested (test scale = 12.5%), accuracy suffered on all net-

works (RMSE = 26.99–70.92; all RMSE reported as would be in the original image (640 � 480) for

comparability), likely because the mouse is only about 10 pixels long. Overall, this highlights that

downsizing does not strongly impact the accuracy (assuming the animal remains a reasonable size)

and that this is an easy way to increase inference speeds.

Dynamic cropping: increased speed without effects on accuracy
Another alternative is to not to downsize, but rather to process only the portion of the image that

contains the animal. Our approach, which we call ‘dynamic cropping’, can provide a speed boost

(Figure 2—figure supplement 3). Thereby the relevant part of the image is selected by taking

advantage of predictions from the previous frame, together with the intuition that the animal cannot

move arbitrarily fast. Specifically, this method analyzes the portion of the full-size image by calculat-

ing a bounding box based on all the body parts from the previous image as well as a margin (note

that if the animal is ‘lost’ in the next frame, the full frame is automatically analyzed). This method

captures the animal at it’s full resolution (the animal covers the same number of pixels as in the full

image), but still runs inference on a smaller image, increasing inference speed.

To examine the effect of dynamic cropping on both inference speed and tracking accuracy, we

performed benchmarking on the open source open-field dataset (n = 2330 images Mathis et al.,

Figure 2. Inference speed of different networks with different image sizes on different system configurations. Solid lines are tests using DLC-

MobileNetV2-0.35 networks and dashed lines using DLC-ResNet-50 networks. Shaded regions represent 10th-90th percentile of the distributions.

N = 1000–10,000 observations per point.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Inference speed of different networks with different image sizes with different system configurations, using CPUs for inference.

Figure supplement 2. Accuracy of DLC networks on resized images.

Figure supplement 3. Dynamic cropping increased inference speed with little sacrifice to accuracy.

Figure supplement 4. The number of keypionts in a DeepLabCut network does not affect inference speed.
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Table 1. Inference speed using the DeepLabCut-live package.

All values are mean ± standard deviation; Frames Per Second (FPS). See also: https://deeplabcut.github.io/DLC-inferencespeed-

benchmark/.

Dog

video Image size (pixels, w*h)

GPU type DLC model 75 � 133 150 � 267 300 � 533 424 � 754 600 � 1067

Linux Intel Xeon CPU MobileNetV2-0.35 62 ± 5 31 ± 1 14 ± 0 8 ± 0 4 ± 0

(3.1 GHz) ResNet-50 24 ± 1 11 ± 0 3 ± 0 2 ± 0 1 ± 0

GeForce GTX 1080 MobileNetV2-0.35 256 ± 51 208 ± 46 124 ± 19 80 ± 9 43 ± 1

ResNet-50 121 ± 15 95 ± 13 52 ± 3 33 ± 1 19 ± 0

TITAN RTX MobileNetV2-0.35 168 ± 29 144 ± 20 133 ± 14 115 ± 9 71 ± 3

ResNet-50 132 ± 14 113 ± 11 82 ± 4 56 ± 2 33 ± 1

Tesla V100-SXM2-16GB MobileNetV2-0.35 229 ± 13 189 ± 10 138 ± 11 105 ± 6 64 ± 3

ResNet-50 169 ± 7 133 ± 4 90 ± 4 65 ± 2 42 ± 1

Tesla P100-PCIE-16GB MobileNetV2-0.35 220 ± 12 179 ± 9 114 ± 7 77 ± 3 44 ± 1

ResNet-50 115 ± 3 91 ± 2 59 ± 2 45 ± 1 26 ± 1

Tesla K80 MobileNetV2-0.35 118 ± 4 105 ± 3 64 ± 4 47 ± 2 26 ± 1

ResNet-50 58 ± 2 43 ± 1 21 ± 1 13 ± 0 7 ± 0

Tesla T4 MobileNetV2-0.35 200 ± 17 166 ± 13 117 ± 10 86 ± 5 49 ± 2

ResNet-50 134 ± 8 99 ± 5 51 ± 3 33 ± 1 18 ± 0

Quadro P400 MobileNetV2-0.35 105 ± 4 76 ± 2 31 ± 1 18 ± 0 10 ± 0

ResNet-50 24 ± 0 16 ± 0 6 ± 0 4 ± 0 2 ± 0

Windows Intel Xeon Silver

CPU

MobileNetV2-0.35 28 ± 1 13 ± 0 6 ± 0 3 ± 0 1 ± 0

(2.1 GHz) ResNet-50 22 ± 1 9 ± 0 3 ± 0 2 ± 0 1 ± 0

GeForce GTX 1080 MobileNetV2-0.35 142 ± 17 132 ± 14 98 ± 5 69 ± 3 41 ± 1

with Max-Q Design ResNet-50 87 ± 3 77 ± 3 48 ± 1 31 ± 1 18 ± 0

GeForce GTX 1080 MobileNetV2-0.35 128 ± 11 115 ± 10 94 ± 7 72 ± 3 41 ± 1

ResNet-50 101 ± 5 86 ± 4 49 ± 1 32 ± 1 18 ± 0

Quadro P1000 MobileNetV2-0.35 120 ± 11 108 ± 10 58 ± 2 39 ± 1 20 ± 0

ResNet-50 54 ± 2 38 ± 1 17 ± 0 10 ± 0 5 ± 0

MacOS Intel Core i5 CPU MobileNetV2-0.35 39 ± 5 20 ± 2 11 ± 1 7 ± 1 4 ± 0

(2.4 GHz) ResNet-50 8 ± 1 4 ± 0 1 ± 0 1 ± 0 0 ± 0

Intel Core i7 CPU MobileNetV2-0.35 117 ± 8 47 ± 3 15 ± 1 8 ± 0 4 ± 0

(3.5 GHz) ResNet-50 29 ± 2 11 ± 1 3 ± 0 2 ± 0 1 ± 0

Intel Core i9 CPU MobileNetV2-0.35 126 ± 25 66 ± 13 19 ± 3 11 ± 1 6 ± 0

(2.4 GHz) ResNet-50 31 ± 6 16 ± 2 6 ± 1 4 ± 0 2 ± 0

Jetson Xavier MobileNetV2-0.35 68 ± 8 60 ± 7 54 ± 4 41 ± 1 25 ± 1

ResNet-50 46 ± 1 34 ± 1 17 ± 0 12 ± 0 6 ± 0

Tegra X2 MobileNetV2-0.35 37 ± 2 32 ± 2 13 ± 0 7 ± 0 4 ± 0

ResNet-50 18 ± 1 12 ± 0 5 ± 0 3 ± 0 2 ± 0

Mouse

Video image size (pixels, w*h)

GPU Type DLC Model 115 � 87 229 � 174 459 � 349 649 � 493 917 � 698

Linux Intel Xeon CPU MobileNetV2-0.35 61 ± 4 32 ± 1 15 ± 0 8 ± 0 4 ± 0

(3.1 GHz) ResNet-50 28 ± 1 11 ± 0 4 ± 0 2 ± 0 1 ± 0

GeForce GTX 1080 MobileNetV2-0.35 285 ± 24 209 ± 23 134 ± 9 86 ± 2 44 ± 1

Table 1 continued on next page
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2018a; Mathis et al., 2018b). We recorded the DeepLabCut estimated keypoints and inference

speed when analyzing the full image (640 � 480 pixels) and when dynamically cropping with a mar-

gin of 50, 25, or 10 pixels around the bounding box enclosing all bodyparts from the animal.

Dynamic cropping increased inference speed by 75% (full image: 59.6 ± 2.08; dynamic-50:

103.7 ± 19.8; dynamic-25: 110.8 ± 17.6; dynamic-10: 108 ± 25.2; mean ± standard deviation), and

resulted in only a small change in tracking performance, with RMSEs of 4.4, 5.5, and 20.6 for

dynamic cropping with 50, 25, and 10 pixel margins, respectively (Figure 2—figure supplement 3).

Qualitatively all predictions apart from the margin 10, looked comparable.

Number of keypoints does not affect inference speed
Lastly, we tested whether the number of keypoints in the DeepLabCut network affected inference

speeds. We modified the dog network to track only the dog’s nose (one keypoint), the face (seven

keypoints), the upper body (13 keypoints), or the entire body (20 keypoints). Similar to the bench-

marking experiments above, we trained a series of networks with both DLC-ResNet-50v1 and DLC-

ResNet-50 136 ± 8 106 ± 3 60 ± 1 35 ± 0 19 ± 0

TITAN RTX MobileNetV2-0.35 169 ± 28 145 ± 19 152 ± 15 124 ± 9 78 ± 3

ResNet-50 140 ± 16 119 ± 11 92 ± 3 58 ± 2 35 ± 1

Tesla V100-SXM2-16GB MobileNetV2-0.35 260 ± 12 218 ± 9 180 ± 18 121 ± 8 68 ± 3

ResNet-50 184 ± 6 151 ± 5 111 ± 6 75 ± 3 47 ± 2

Tesla P100-PCIE-16GB MobileNetV2-0.35 246 ± 12 198 ± 7 138 ± 8 79 ± 3 46 ± 1

ResNet-50 128 ± 3 103 ± 2 70 ± 3 46 ± 1 28 ± 1

Tesla K80 MobileNetV2-0.35 127 ± 6 119 ± 5 79 ± 4 52 ± 2 28 ± 1

ResNet-50 60 ± 2 45 ± 2 23 ± 1 13 ± 0 7 ± 0

Tesla T4 MobileNetV2-0.35 242 ± 21 197 ± 16 156 ± 14 101 ± 6 56 ± 2

ResNet-50 141 ± 7 102 ± 5 57 ± 3 34 ± 1 20 ± 0

Quadro P400 MobileNetV2-0.35 114 ± 5 84 ± 3 37 ± 1 20 ± 0 10 ± 0

ResNet-50 25 ± 0 16 ± 0 7 ± 0 4 ± 0 2 ± 0

Windows Intel Xeon Silver

CPU

MobileNetV2-0.35 28 ± 1 14 ± 0 6 ± 0 3 ± 0 1 ± 0

(2.1 GHz) ResNet-50 23 ± 1 9 ± 0 3 ± 0 2 ± 0 1 ± 0

GeForce GTX 1080 MobileNetV2-0.35 147 ± 17 136 ± 15 108 ± 6 73 ± 3 46 ± 1

with Max-Q Design ResNet-50 107 ± 5 93 ± 4 54 ± 2 32 ± 1 18 ± 0

GeForce GTX 1080 MobileNetV2-0.35 133 ± 15 119 ± 14 100 ± 9 77 ± 3 43 ± 1

ResNet-50 110 ± 5 94 ± 3 55 ± 1 34 ± 1 19 ± 0

Quadro P1000 MobileNetV2-0.35 129 ± 13 115 ± 11 72 ± 3 43 ± 1 22 ± 0

ResNet-50 57 ± 2 41 ± 1 19 ± 0 10 ± 0 6 ± 0

MacOS Intel Core i5 CPU MobileNetV2-0.35 42 ± 5 22 ± 2 12 ± 1 7 ± 1 4 ± 0

(2.4 GHz) ResNet-50 9 ± 1 4 ± 0 2 ± 0 1 ± 0 0 ± 0

Intel Core i7 CPU MobileNetV2-0.35 127 ± 10 48 ± 3 16 ± 1 9 ± 1 4 ± 0

(3.5 GHz) ResNet-50 30 ± 3 10 ± 2 3 ± 0 2 ± 0 1 ± 0

Intel Core i9 CPU MobileNetV2-0.35 178 ± 15 74 ± 16 19 ± 3 10 ± 1 6 ± 0

(2.4 GHz) ResNet-50 35 ± 8 14 ± 2 6 ± 1 4 ± 0 2 ± 0

Jetson Xavier MobileNetV2-0.35 79 ± 9 68 ± 9 59 ± 5 44 ± 2 27 ± 1

ResNet-50 46 ± 2 36 ± 1 19 ± 0 12 ± 0 7 ± 0

TX2 MobileNetV2-0.35 39 ± 2 30 ± 2 18 ± 1 9 ± 0 5 ± 0

ResNet-50 19 ± 1 11 ± 0 6 ± 0 4 ± 0 2 ± 0
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MobileNetV2-0.35 networks and tested inference speeds on a range of image sizes. The number of

keypoints in the model had no effect on inference speed (Figure 2—figure supplement 4).

Moreover, we created a website that we aim to continuously update with user input: one can sim-

ply export the results of these tests (which capture information about the hardware automatically),

and submit the results on GitHub https://github.com/DeepLabCut/DLC-inferencespeed-benchmark.

These results, in addition to the extensive testing we provide below, then become a community

resource for considerations with regard to GPUs and experimental design https://deeplabcut.

github.io/DLC-inferencespeed-benchmark/.

User-interfaces for real-time feedback
In addition to the DeepLabCut-live package that serves as a SDK for experimenters to write custom

real-time pose estimation applications, we provide three methods for conducting experiments that

use DeepLabCut to provide closed-loop feedback that do not require users to write any additional

code: a standalone user interface called the DLC-Live! GUI (DLG), and by integrating DeepLabCut

into popular existing experimental control softwares Autopilot (Saunders and Wehr, 2019) and Bon-

sai (Lopes et al., 2015).

DLC-Live! GUI
The DLG provides a graphical user interface that simultaneously controls capturing data from a cam-

era (many camera types are supported, see Materials and methods), recording videos, and perform-

ing pose estimation and closed-loop feedback using the DeepLabCut-Live! package. To allow

users to both record video and perform pose estimation at the fastest possible rates, these pro-

cesses run in parallel. Thus, video data can be acquired from a camera without delays imposed by

pose estimation, and pose estimation will not be delayed by the time spent acquiring images and

saving video data to the hard drive. However, if pose estimation is slower than the frame rate, which

will occur if acquiring images at a high frame rate with large images, or if inference is run on less

powerful GPUs users can see Figure 2 and Table 1 as a guide, image acquisition and pose estima-

tion will not be synchronized. If these processes are not synchronized (i.e. pose estimation is not run

as soon as the image is captured), then the delay from image acquisition to obtain the pose consists

not only of the time it takes DeepLabCut to perform pose estimation, but also the time from when

the image was captured until pose estimation begins. Thus, running image acquisition and pose esti-

mation asynchronously allows users to run pose estimation at the fastest possible rate, but it does

not minimize the time from when an image was captured until the pose is measured. If users prefer

to minimize the delay from image acquisition to pose estimation, the pose estimation process can

wait for the next image to be acquired. In this case, each time a pose is estimated, the pose estima-

tion process will choose to skip a frame to get back in sync with the image acquisition process. Wait-

ing to get back in sync with the pose estimation process will result in a slower rate of pose

estimation, and, over the course of an entire experiment, fewer estimated poses. DLG offers users a

choice of which mode they prefer: an ‘Optimize Rate’ mode, in which pose estimation is performed

at the maximum possible rate, but there may be delays from the time an image was captured to the

time pose estimation begins, and an ‘Optimize Latency’ mode, in which the pose estimation process

waits for a new image to be acquired, minimizing the delay from the time an image was acquired to

when the pose becomes available.

To measure the performance of DLG in both modes, we used a video of a head-fixed mouse per-

forming a task that required licking to receive a liquid reward. To simulate a camera feed from an

animal in real-time, single frames from the video were loaded (i.e. acquired) at the rate that the

video was initially recorded–100 frames per second. We measured three latency periods: (i) the delay

from image acquisition to obtaining the pose for each measured pose; (ii) the delay from one mea-

sured pose to the next measured pose; and (iii) for each pose in which the tongue was detected, the

delay from detecting an action (the mouse’s tongue was detected) to turn on an LED (if the tongue

was not detected, the LED was not turned on). The presence or absence of the tongue in any image

was determined using the likelihood of the tongue keypoint provided by DeepLabCut; if the likeli-

hood was greater than 0.5, the tongue was considered detected. To measure the time from lick

detection to turning on an LED, we used a Processor object that, when the likelihood of the

tongue was greater than 0.5, sent a command to a Teensy micro-controller to turn on an infrared
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LED. To determine that the LED had been activated, the status of the LED was read using an infra-

red photodetector. When the photodetector was activated, the Teensy reported this back to the

Processor. The delay from image acquisition to turning on the LED was measured as the difference

between the time the frame was acquired and the time that the photodetector had been activated.

This procedure was run under four configurations: pose estimation performed on full-size images

(352 � 274 pixels) and images downsized by 50% in both width and height (176 � 137 pixels); both

image sizes were run in ‘Optimize Rate’ and ‘Optimize Latency’ modes. These four configurations

were run on four different computers to span a range of options (to see how they generally perform,

please see Table 1): a Windows desktop with NVIDIA GeForce 1080 GPU, a Linux desktop with NVI-

DIA Quadro P400 GPU, a NVIDIA Jetson Xavier, and a MacBook Pro laptop with Intel Core-i7 CPU.

On a Windows system with GeForce GTX 1080 GPU, DLG achieved delays from frame acquisition

to obtaining the pose as fast as 10 ± 1 ms (mean ± sd) in the ‘Optimize Latency’ mode. Compared

to the ‘Optimize Latency’ mode, this delay was, on average, 4.38 ms longer (95% CI: 4.32–4.44 ms)

with smaller images and 4.6 ms longer (95% CI: 4.51–4.63 ms) with larger images in the ‘Optimize

Rate’ mode. As suggested above, the longer delay from frame acquisition to pose in the ‘Optimize

Rate’ mode can be attributed to delays from when images are acquired until pose estimation begins.

With a frame acquisition rate of 100 FPS, this delay would be expected to be 5 ms with a range from

0 to 10 ms, as observed.

Running DLG In the ‘Optimize Rate’ mode on this Windows system, the delay from obtaining one

pose to the next was 11 ± 2 ms (rate of 91 ± 11 poses per second) for smaller images and 12 ± 1 ms

(rate of 84 ± 9 poses per second) for larger images. Compared to the ‘Optimize Rate’ mode, the

“Optimize Latency“ mode was 7.7 ms (95% CI: 7.6–7.8 ms) slower for smaller images and 9.1 ms

(95% CI: 9.0–9.1 ms) for larger images. This increased delay from one pose to another can be attrib-

uted to time waiting for acquisition of the next image in the ‘Optimize Latency’ mode.

Lastly, the delay from acquiring an image in which the tongue was detected until the LED could

turned on/off includes the time needed to obtain the pose, plus additional time to determine if the

tongue is present and to execute the control signal (send a TTL pulse to the LED). To determine the

additional delay caused by detection of the tongue and sending a TTL signal to the LED, we com-

pared the delay from image acquisition to turning on the LED with the delay from image acquisition

to obtaining a pose in which the LED was not triggered. Detecting the tongue and sending a TTL

pulse only took an additional 0.4 ms (95% CI: 0.3–0.6 ms). Thus, the delay from image acquisition to

turn on the LED can be almost entirely attributed to pose estimation. Full results from all four tested

systems can be found in Figure 3 and Table 2.

DeepLabCut models in Bonsai
Bonsai is a widely used visual language for reactive programming, real-time behavior tracking, syn-

chronization of multiple data streams and closed-loop experiments (Lopes et al., 2015). It is written

in C#, thus provides an alternative environment for running real-time DeepLabCut and also test the

performance of native TensorFlow inference outside of a Python environment. We developed equiv-

alent performance benchmarks for testing our newly developed Bonsai-DLC plugin https://github.

com/bonsai-rx/deeplabcut. This plugin allows loading of the DeepLabCut exported .pb files directly

in Bonsai.

We compared the performance of Bonsai-DLC and DeepLabCut-Live! on a Windows 10 com-

puter with GeForce GTX 1080 with Max-Q design GPU and found that the performance of running

inference through Bonsai-DLC was comparable to DeepLabCut-Live! inference (Figure 4), sug-

gesting that, as expected, inference speed is limited primarily by available CPU/GPU computational

resources rather than by any native language interface optimizations. Moreover, we found the

latency to be 34 ms ± 9.5 ms (median, IQR, n = 500) tested at 30 Hz with 384 � 307 pixels, which is

equivalent to what was found with DLG above.

We then took advantage of the built-in OpenGL shader support in Bonsai to assess how external

load on the GPU would impact DLC inference performance, as would happen when running closed-

loop virtual reality simulations in parallel with video inference. To do this, we implemented a simula-

tion of N-body particle interactions using OpenGL compute shaders in Bonsai, where we were able

to vary the load on the GPU by changing the number of particles in the simulation, from 5120 up to

51,200 particles. This is a quadratic problem as each particle interacts with every other particle, so it

allows us to easily probe the limits of GPU load and its effects on competing processes.
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Figure 3. Pose estimation latency using the DLC-Live!-GUI. Top: A lick sequence from the test video with eight

keypoints measured using the DLC-Live!-GUI (using Windows/GeForce GTX 1080 GPU). Image timestamps are

presented in the bottom-left corner of each image. Bottom: Latency from image acquisition to obtaining the pose,

from the last pose to the current pose, and from image acquisition when the mouse’s tongue was detected to

Figure 3 continued on next page
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Overall, we found that as the number of particle interactions increased the GPU load, there was a

corresponding drop in DLC inference speeds (Figure 4). The effects of load on inference were non-

linear and mostly negligible until the load on the GPU approached 50%, then started to drop as

more and more compute banks were scheduled and used, likely due to on-chip memory bottlenecks

in the GPU compute units (Hill et al., 2017). Nevertheless, as long as GPU load remained balanced,

there was no obvious effect on inference speeds, suggesting that in many cases, it would be possible

to combine closed-loop accelerated DeepLabCut-live inference with real-time visual environments

running on the same GPU (Lopes et al., 2020).

Distributed DeepLabCut with Autopilot
Autopilot is a Python framework designed to overcome problems of simultaneously collecting multi-

ple streams of data by distributing different data streams over a swarm of networked computers

(Saunders and Wehr, 2019). Its distributed design could be highly advantageous for naturalistic

experiments that require large numbers of cameras and GPUs operating in parallel.

Thus, we integrated DeepLabCut-Live! into Autopilot in a new module of composable data

transformation objects. As a proof of concept, we implemented the minimal distributed case of two

computers: one Raspberry Pi capturing images and one NVIDIA Jetson TX2, an affordable embed-

ded system with an onboard GPU, processing them (see Materials and methods, Table 3).

We tested the performance of this system by measuring the end-to-end latency of a simple light

detection task (Figure 4A). The Raspberry Pi lit an LED while capturing and streaming frames to the

Jetson. Autopilot’s networking modules stream arrays by compressing them on-the-fly with blosc

(Alted et al., 2020) and routing them through a series of ‘nodes’– in this case, each frame passed

through four networking nodes in each direction. The Jetson then processed the frames in a chain of

Transforms that extracted poses from frames using DLC-Live! (DLC-MobileNetV2-0.35) and

returned a Boolean flag indicating whether the LED was illuminated. True triggers were sent back

to the Raspberry Pi which emitted a TTL voltage pulse to the LED on receipt.

Experiments were performed with differing acquisition frame rates (30, 60, 90 FPS), and image

sizes (128 � 128, 256 � 256, 512 � 416 pixels; Figure 5B). Frame rate had a little effect with smaller

images, but at 512 � 416, latencies at 30 FPS (median = 161.3 ms, IQR = [145.6–164.4], n = 500)

were 38.6 and 52.6 ms longer than at 60 FPS (median = 122.7 ms, IQR = [109.4–159.3], n = 500) and

90 FPS (median = 113.7 ms, IQR = [106.7–118.5], n = 500), respectively.

Figure 3 continued

turning on an LED. The width of the violin plots indicate the probability density – the likelihood of observing a

given value on the y-axis.

Table 2. Performance of the DeepLabCut-live-GUI (DLG).

F-P = delay from image acquisition to pose estimation; F-L = delay from image acquisition to turning on the LED; FPS (DLG) = Rate of

pose estimation (in frames per second) in the DeepLabCut-live-GUI; FPS (DLCLive) = Rate of pose estimation for the same exact con-

figuration directly tested using the DeepLabCut-live benchmarking tool. All values are mean ± STD.

176 � 137 pixels 352 � 274 pixels

GPU type Mode

F-P F-L FPS FPS F-P F-L FPS FPS

(ms) (ms) (DLG) (DLCLive) (ms) (ms) (DLG) (DLCLive)

Windows GeForce GTX 1080 Latency 10 ± 1 11 ± 1 56 ± 16 123 ± 16 12 ± 2 12 ± 2 48 ± 6 112 ± 12

Rate 15 ± 3 16 ± 3 91 ± 11 16 ± 3 17 ± 3 84 ± 9

Linux Quadro P400 Latency 11 ± 1 11 ± 1 63 ± 19 105 ± 4 20 ± 1 21 ± 1 42 ± 7 52 ± 1

Rate 15 ± 3 16 ± 3 93 ± 9 27 ± 4 27 ± 4 47 ± 4

Jetson Xavier Latency 13 ± 1 14 ± 1 48 ± 3 84 ± 7 13 ± 1 14 ± 1 48 ± 3 73 ± 9

Rate 18 ± 3 18 ± 3 75 ± 5 18 ± 3 18 ± 3 74 ± 5

MacOS CPU Latency 29 ± 5 29 ± 4 29 ± 5 62 ± 6 79 ± 19 79 ± 22 12 ± 2 21 ± 3

Rate 34 ± 7 35 ± 6 35 ± 4 91 ± 19 92 ± 22 12 ± 2
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Frame rate imposes intrinsic latency due to asynchrony between acquired events and the cam-

era’s acquisition interval: for example if an event happens at the beginning of a 30 FPS exposure,

the frame will not be available to process until 1/30 s = 33.3 ms later. If this asynchrony is distributed

uniformly then a latency of half the inter-frame interval is expected for a given frame rate. This quan-

tization of frame rate latency can be seen in the multimodal distributions in Figure 5B, with peaks

separated by multiples of their inter-frame interval. The inter-frame interval of inference with Deep-

LabCut-Live! imposes similar intrinsic latency. The combination of these two sources of periodic

latency and occasional false-negatives in inference gives a parsimonious, though untested, account

of the latency distribution for the 512 � 416 experiments.

Latency at different image sizes were primarily influenced by the relatively slow frame processing

of the Jetson TX2 (See Figure 2). WIth smaller images (128 � 128 and 256 � 256), inference time

(shaded areas in Figure 5B) was the source of roughly half of the total latency (inference/median

total latency, n = 1500 each, pooled across frame rates. 128 � 128: 32.2/64.6 ms = 49.7%. 256 x

256: 34.5/65.1 ms = 53.0%). At 512 � 416, inference time accounted for between 50% and 70% of

Figure 4. Inference speed using the Bonsai-DLC Plugin. Dashed Lines are ResNet-50, solid lines are MobileNetV2-0.35 (A) Overview of using

DeepLabCut within Bonsai. Both capture-to-write or capture to detect for real-time feedback is possible. (B) Top: Direct comparison of the inference

speeds using Bonsai-DLC plugin vs. the DeepLabCut-Live! package across image sizes from the same computer (OS: Windows 10, GPU: NVIDIA

Ge-Force 1080 with Max-Q Design). Bottom: Inference speeds using the Bonsai-DLC plugin while the GPU was engaged in a particle simulation. More

particles indicates greater competition for GPU resources.

Table 3. Materials for Autopilot tests.

Tool Version

Raspberry Pi 4, 2 GB

Autopilot 0.3.0-2f31e78

Jetson TX2 Developer Kit

Camera FLIR CM3-U3-13Y3M-CS

Spinnaker SDK 2.0.0.147

Oscilloscope Tektronix TDS 2004B
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Figure 5. Latency of DeepLabCut-Live with Autopilot. (A) Images of an LED were captured on a Raspberry Pi 4

(shaded blue) with Autopilot, sent to an Nvidia Jetson TX2 (shaded red) to process with DeepLabCut-Live and

Autopilot Transforms, which triggered a TTL pulse from the Pi when the LED was lit. (B) Latencies from LED

illumination to TTL pulse (software timestamps shown, points and densities) varied by resolution (color groups)

and acquisition frame rate (shaded FPS bar). Processing time at each stage of the chain in (A) contributes to

latency, but pose inference on the relatively slow TX2 (shaded color areas, from Figure 2) had the largest effect.

Individual measurements (n = 500 each condition) cluster around multiples of the inter-frame interval (eg. 1/30

FPS = 33.3 ms).
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total latency (512 � 416, 30 FPS: 79.9/161.3ms = 49.5%, 90 FPS: 79.9/113.7 ms = 70.3%). Minimizing

instrument cost for experimental reproducibility and scientific equity is a primary design principle of

Autopilot, so while noting that it would be trivial to reduce latency by using a faster GPU or the

lower-latency Jetson Xavier (i.e. see above sections), we emphasize that DeepLabCut-Live! in

Autopilot is very usable with $350 of computing power (TX2 with education discount: $299, Jetson

TX2 with NVIDIA Exclusive Education Discount: https://web.archive.org/web/20200723081533/;

https://www.nvidia.com/en-us/autonomous-machines/jetson-tx2-education-discount/; Raspberry Pi 4

2 GB RAM: $35, Raspberry Pi from Adafruit: https://web.archive.org/web/20200426114340/;

https://www.adafruit.com/product/4292).

Autopilot, of course, imposes its own latency in distributing frame capture and processing across

multiple computers. Subtracting latency that is intrinsic to the experiment (frame acquisition asyn-

chrony and GPU speed), Autopilot has approximately 25 ms of overhead (median of latency - mean

DeepLabCut inference time - 1/2 inter-frame interval = 25.4 ms, IQR = [14.7–37.9], n = 4500). Auto-

pilot’s networking modules take 6.9 ms on average to route a message one-way (Saunders and

Wehr, 2019) and have been designed for high-throughput rather than low-latency (message batch-

ing, on-the-fly compression).

Real-time feedback based on posture
Lastly, to demonstrate practical usability of triggering a TTL signal based on posture, we performed

an experiment using DLG on a Jetson Xavier in which an LED was turned on when a dog performed

a ‘rearing’ movement (raised forelimbs in the air, standing on only hindlimbs; Figure 6). First, a

DeepLabCut network based on the ResNet-50 architecture (DLC-ResNet-50v1) was trained to track

20 keypoints on the face, body, forelimbs, and hindlimbs of a dog (see Materials and methods).

Next, the Jetson Xavier running DLG was used to record the dog as she performed a series of ‘rear-

ing’ movements in response to verbal commands, with treats given periodically by an experimenter.

Video was recorded using a Logitech C270 webcam, with 640 � 480 pixel images at 30 FPS. Infer-

ence was run on images downsized by 50% (320 � 240 pixels), using the ‘Optimize Rate’ mode in

DLG.

The dog was considered to be in a ‘rearing’ posture if the vertical position of at least one of the

elbows was above the vertical position of the withers (between the shoulder blades). Similar to the

mouse experiment, a Processor was used to detect ‘rearing’ postures and control an LED via com-

munication with a Teensy micro-controller (Figure 6A). The LED was turned on upon the first image

in which a ‘rearing’ posture was detected, and subsequently turned off upon the first image in which

the dog was not in a ‘rearing’ posture (for a fully closed-loop stimulus) (Figure 6B).

This setup achieved a rate of pose estimation of 22.417 ± 0.928 frames per second, with an image

to pose latency of 61 ± 10 ms (N = 1848 frames) and, on images for which the LED was turned on or

off, an image to LED latency of 59 ± 11 ms (N = 9 ‘rearing’ movements). However, using DLG, if the

rate of pose estimation is slower than video acquisition, not all images will be used for pose estima-

tion (N = 2433 total frames, 1848 poses recorded). To accurately calculate the delay from the ideal

time to turn the LED on or off, we must compare the time of the first frame in which a ‘rearing’ pos-

ture was detected from all images recorded, not only from images used for pose estimation. To do

so, we estimated the pose on all frames recorded offline using the same exported DeepLabCut

model and calculated the ideal times that the LED would have been turned on or off from all avail-

able images. According to this analysis, there was a delay of 70 ± 23 ms to turn the LED on or off

(consistent with estimates on Jetson systems shown above, see Figure 3).

As shown above, there are two methods that could reduce these delays: (i) training a DeepLab-

Cut model based on the MobileNetV2 architecture (DLC-MobileNetV2-0.35 vs DLC-ResNet-50v1) or

(ii) using more computationally powerful GPU-accelerated hardware for pose estimation (see Fig-

ure 2). However, no matter how fast the hardware system, there will be some delay from acquiring

images, estimating pose, and providing feedback. To overcome these delays, we developed another

method to reduce latency for highly sensitive applications–to perform a forward prediction, or pre-

dict the animal’s future pose before the next image is acquired and processed. Depending on the

forward prediction model, this could potentially reach zero-latency feedback levels (or below)– a

dream for experimentalists who aim to study timing of causal manipulations in biological systems.

To reduce the delay to turn on the LED when the dog exhibited a ‘rearing’ movement, we imple-

mented a Kalman filter that estimated the position, velocity, and acceleration of each keypoint, and
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Figure 6. Real-time feedback based on posture. (A) Diagram of the workflow for the dog feedback experiment. Image acquisition and pose estimation

were controlled by the DLC-Live! GUI. A DeepLabCut-live Processor was used to detect ‘rearing’ postures based on the likelihood and y-coordinate of

the withers and elbows and turn an LED on or off accordingly. (B) An example jump sequence with LED status, labeled with keypoints measured offline

using the DeepLabCut-live benchmarking tool. The images are cropped for visibility. (C) Example trajectories of the withers and elbows, locked to one

jump sequence. Larger, transparent points represent the true trajectories – trajectories measured offline, from each image in the video. The smaller

opaque points represent trajectories measured in real-time, in which the time of each point reflects the delay from image acquisition to pose

estimation, with and without the Kalman filter forward prediction. Without forward prediction, estimated trajectories are somewhat delayed from the

true trajectories. With the Kalman filter forward prediction, trajectories are less accurate but less delayed when keypoints exhibit rapid changes in

position, such as during a rearing movement. (D) The delay from the time the dog first exhibited a rearing posture (from postures measured offline) to

the time the LED was turned on or off. Each point represents a single instance of the detection of a transition to a rearing posture or out of a rearing

posture.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure 6 continued on next page

Kane et al. eLife 2020;9:e61909. DOI: https://doi.org/10.7554/eLife.61909 15 of 29

Tools and resources Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.61909


used this information to predict the position of each keypoint at the current point in time (i.e., not

the time at which the image was acquired, but after time had been taken to process the image). For

example, if the image was acquired 60 ms ago, the Kalman filter ‘Processor’ predicted keypoints 60

ms into the future.

Thus, in another set of experiments, we recorded as the dog performed a series of ‘rearing’

movements, this time using a Processor that first forward-predicted the dog’s pose, then detected

‘rearing’ movements and controlled an LED accordingly. Using the Processor with a Kalman filter

reduced inference speed compared to the Processor without the Kalman filter, due to the time

required to compute Kalman filter updates (15.616 ± 0.332 frames per second). The image to pose

latency was 81 ± 10 ms (N = 1187 frames), and image to LED latency of 82 ± 11 ms (N = 9 ‘rearing’

movements). However, compared to the ideal times to turn the LED on or off calculated from pose

estimation performed on all available images, the Kalman filter ‘Processor’ achieved a delay of

�13 ± 61 ms. In this case, the Kalman filter turned the LED on or off 13 ms prior to the point at which

the first rearing posture was detected (Figure 6D). These results indicate the potential to perform

zero or negative latency feedback based on posture.

To better understand the utility and limitations of the Kalman filter predictor, we tested the Kal-

man filter Processor offline on two additional datasets: a mouse reaching dataset that exhibited

movements on a similar timescale to dog ‘rearing’ movements (on the order of a few hundred milli-

seconds), but that was recorded with a higher frame rate (150 FPS), and a mouse open-field dataset

that was recorded at the same frame rate as the dog ‘rearing’ experiment (30 FPS), but exhibited

slower, smoother movements. To simplify these analyses, we focused on a single point in both data-

sets: the ‘back of the hand’ coordinate involved in the reaching movement, and the ‘snout’ in the

open-field dataset. We examined the accuracy of the Kalman filter when predicting 1–7 frames into

the future ( 7–47 ms for the mouse reaching or 33–233 ms for the open field) into the future com-

pared to the accuracy of using the DLC pose that was obtained after a delay of 1–7 frames.

For the mouse reaching dataset, similar to the dog ‘rearing’ experiment, the Kalman filter predic-

tions eliminated the lag that is present in the delayed pose, but the Kalman filter became more noisy

and less accurate as it predicted the position of the back of the hand further into the future (Fig-

ure 6—figure supplement 1). To quantitatively examine the tracking errors when using the DLC

estimated pose delayed by 1–7 frames vs. the Kalman filter predicted pose, we calculated the error

as the euclidean distance between the delayed pose or Kalman filter predicted pose and the true

DLC estimated pose for each frame throughout an entire experimental session (n = 153,279 frames).

We then compared the cumulative distribution function (CDF) of errors (Figure 6—figure supple-

ment 1). The CDF indicates the percentage of frames that have errors less than or equal to a particu-

lar error value, where a greater percentage of frames at a given error level indicates better

performance (or more frames with errors that are smaller than this value). When predicting 4 frames/

27.6 ms or further into the future, the delayed pose distribution had a greater percentage of frames

with smaller errors at all error values, indicating that the Kalman filter produced larger errors than

using the delayed pose when predicting 4 or more frames into the future. However, when predicting

1 frame/6.7 ms, 2 frames/13.3 ms, or 3 frames/20 ms into the future, the Kalman filter predicted

back of the hand coordinate had more frames with errors smaller than 0.18, 0.85, and 2.94 pixels,

respectively. This finding indicates that the Kalman filter predictor reduced the number of frames

with larger errors, improving tracking performance when predicting up to 20 ms into the future.

The same analysis of the cumulative distribution of errors was performed on the open field data-

set (n = 2330 frames), with similar results (Figure 6—figure supplement 2). When predicting 4

frames/133 ms or more into the future, the delayed pose distribution had a greater percentage of

frames with smaller errors at nearly all error values. But when predicting 2 frames/67 ms or 3 frames/

100 ms into the future, the Kalman filter predicted snout coordinate had more frames with errors

smaller than 28.61 and 18.34 pixels, respectively, and when predicting 1 frame/33 ms into the future,

the Kalman filter predictions had a greater percentage of frames with smaller errors across the entire

Figure 6 continued

Figure supplement 1. The Kalman filter predictor reduces errors when predicting up to three frames into the future in a mouse reaching task.

Figure supplement 2. The Kalman filter predictor reduces errors when predicting up to three frames into the future in a mouse open-field task.
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distribution. These data indicate that the Kalman filter is effective at predicting further into the future

on tracking problems that involve slower, more gradual movements.

Discussion
Providing event-triggered feedback in real-time is one of the strongest tools in neuroscience. From

closed-loop optogenetic feedback to behaviorally-triggered virtual reality, some of the largest

insights from systems neuroscience have come through causally testing the relationship of behavior

to the brain (Kim et al., 2017; Chettih and Harvey, 2019; Jazayeri and Afraz, 2017). Although

tools for probing both the brain and for measuring behavior have become more advanced, there is

still the need for such tools to be able to seamlessly interact. Here, we aimed to provide a system

that can provide real-time feedback based on advances in deep learning-based pose estimation. We

provide new computational tools to do so with high speeds and low latency, as well as a a full

benchmarking test suite (and related website: https://deeplabcut.github.io/DLC-inferencespeed-

benchmark/), which we hope enables ever more sophisticated experimental science.

Related work
DeepLabCut and related animal pose estimation tools reviewed in Mathis and Mathis, 2020 have

become available starting in early 2018, and two groups have built tools around real-time applica-

tions with DeepLabCut. However, the reported speed and latencies are slower than what we were

able to achieve here: Forys et al., 2020 achieved latencies of 30 ms using top-end GPUs, and this

delay increases if the frame acquisition rate is increased beyond 100 frames per second.

Schweihoff et al., 2019 also achieve latencies of 30 ms from frame acquisition to detecting a behav-

ior of interest (round-trip frame to LED equivalent was not reported). We report a 2–3x reduction in

latency (11 ms/16 ms from frame to LED in the ‘Optimize Latency’/‘Optimize Rate’ mode of DLG) on

a system that uses a less powerful GPU (Windows/GeForce GTX 1080) compared to these studies,

and equivalent performance (29 ms/35 ms from frame to LED in the ‘Optimize Latency’/‘Optimize

Rate’ mode of DLG) on a conventional laptop (MacBook Pro with Intel Core-i7 CPU). Although we

believe such tools can use the advances presented in this work to achieve higher frame rates and

lower latencies, our new real-time approach provides an improvement in portability, speed, and

latency.

Animal pose estimation toolboxes, like DeepLabCut, have all benefited from advances in human

pose estimation research. Although the goals do diverge (reviewed in Mathis and Mathis, 2020) in

terms of required speed, the ability to create tailored networks, and accuracy requirements, compet-

itions on human pose estimation benchmarks such as PoseTrack (Andriluka et al., 2018) and COCO

Lin et al., 2014 have advanced computer vision. Several human pose estimation systems have real-

time options: OpenPose (Cao et al., 2017) has a real-time hand/face pose tracker available, and Pif-

Paf (Kreiss et al., 2019) reaches about 10 Hz on COCO (depending on the backbone; Lin et al.,

2014). On the challenging multi-human PoseTrack benchmark (Andriluka et al., 2018), LightTrack

(Ning et al., 2020) reaches less than 1 Hz. However, recent work achieves 3D multi-human pose esti-

mation at remarkable frame rates (Chen et al., 2020), in particular they report an astonishing 154

FPS for 12 cameras with four people in the frame. State of the art face detection frameworks, based

on optimized architectures such as BlazeFace can achieve remarkable speeds of >500 FPS on GPUs

of cell phones (Bazarevsky et al., 2019). The novel (currently unpublished) multi-animal version of

DeepLabCut can also be used for feedback, and depending on the situation, tens of FPS for real-

time applications should be possible. Inference speed can also be improved by various techniques

such as network pruning, layer decomposition, weight discretization or feed-forward efficient convo-

lutions (Zhang et al., 2019). Plus, the ability to forward predict postures, as we show here, can be

used to compensate for hardware delays.

Scalability, affordability, and integration into existing pipelines
If neuroscience’s embrace of studying the brain in its natural context of complex, contingent, and

open-ended behavior (Krakauer et al., 2017; Mathis and Mathis, 2020; Datta et al., 2019) is

smashing the champagne on a long-delayed voyage, the technical complexity of the experiments is

the grim spectre of the sea. Markerless tracking has already enabled a qualitatively new class of

data-dense behavioral experiments, but the heroism required to simultaneously record natural
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behavior from 62 cameras (Bala et al., 2020) or electrophysiology from 65,000 electrodes

(Sahasrabuddhe et al., 2020), or integrate dozens of heterogeneous custom-built components

(Findley et al., 2020) hints that a central challenge facing neuroscience is scale.

Hardware-intensive experiments typically come at a significant cost, even if the pose estimation

tools are ‘free’ (developed in laboratories at a non-significant expense, but provided open source).

Current commercial systems are expensive–up to $10,000–and they have limited functionality; these

systems track the location of animals but not postures or movements of experimenter-defined points

of the animal, and few to none offer any advanced deep learning-based solutions. Thus, being able

to track posture with state-of-the-art computer vision at scale is a highly attractive goal.

DeepLabCut-Live! experiments are a many-to-many computing problem: many cameras to

many GPUs (and coordinated with many other hardware components). The Autopilot experiment we

described is the simplest 2-computer case of distributed applications of DeepLabCut-Live!, but

Autopilot provides a framework for its use with arbitrary numbers of cameras and GPUs in parallel.

Autopilot is not prescriptive about hardware configuration, so for example if lower latencies were

needed users could capture frames on the same computer that processes them, use more expensive

GPUs, or use the forward-prediction mode. Along with the rest of its hardware, experimental design,

and data management infrastructure, integration of DeepLabCut in Autopilot makes complex

experiments scalable and affordable.

Thus, here we presented options that span ultra-high performance (at GPU cost) to usable,

affordable solutions that will work very well for most all applications (i.e. up to 90 FPS with zero to

no latency if using our forward-prediction mode). Indeed, the Jetson experiments that we performed

used simple hardware (inexpensive webcam, simple LED circuit) and either the open source DLC-

Live! GUI or AutoPilot.

In addition to integration with Autopilot, we introduce integration of real-time DeepLabCut into

Bonsai, a popular framework that is already integrated into many popular neuroscience tools such as

OpenEphys (Siegle et al., 2017), BonVision (Lopes et al., 2020), and BpodDeveloped by Sanworks:

https://www.sanworks.io/index.php. The merger of DeepLabCut and Bonsai could therefore allow

for real-time posture tracking with sophisticated neural feedback with hardware such as NeuroPixels,

Miniscopes, and beyond. For example, Bonsai and the newly released BonVision toolkit

(Lopes et al., 2020) are tools for providing real-time virtual reality (VR) feedback to animals. Here,

we tested the capacity for a single GPU laptop system to run Bonsai-DLC with another computa-

tional load akin to what is needed for VR, making this an accessible tool for systems neuroscientists

wanting to drive stimuli based on potentially sophisticated postures or movements. Furthermore, in

our real-time dog-feedback utilizing the forward-prediction mode we utilized both posture and kine-

matics (velocity) to be able to achieve sub-zero latency.

Sharing DLC models
With this paper we also introduce three new features within the core DeepLabCut ecosystem. One,

the ability to easily export trained models without the need to share project folders (as previously);

two, the ability to load these models into other frameworks aside from DLC-specific tools; and three,

we modified the code-base to allow for frozen-networks. These three features are not only useful for

real-time applications, but if users want to share models more globally (as we are doing with the

DeepLabCut Model Zoo Project Mathis et al., 2020b), or have a easy-install lightweight DeepLab-

Cut package on dedicated machines for running inference, this is an attractive option. For example,

the protocol buffer files are system and framework agnostic: they are easy to load into TensorFlow

(Abadi et al., 2016) wrappers based on C++, Python, etc. This is exactly the path we pursued for

Bonsai’s plugin via a C#-TensorFlow wrapperTensorFlowSharp: (https://github.com/migueldeicaza/

TensorFlowSharp). Moreover, this package can be utilized even in offline modes where batch proc-

essing is desirable for very large speed gains (Mathis and Warren, 2018; Mathis et al., 2020a).

Benchmarking DeepLabCut-Live! GUI performance
Importantly, the DLG benchmarking data described above was collected by loading images from a

pre-recorded video at the same rate that these images were originally acquired, effectively simulat-

ing the process of streaming video from a camera in real-time. This method was chosen for a few

reasons. First, using a pre-recorded video standardized the benchmarking procedure across different
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platforms – it would have been extremely difficult to record nearly identical videos across different

machines. Second, reading images from the video in the same exact manner that a video would be

recorded from a physical camera in real-time exposed the same delays in DLG as we would observe

when recording from a camera in real-time. The delays that we report all occur after images are

acquired. Thus, if the desired frame rate is achieved, these benchmarking results are exactly equiva-

lent to the delays that would be observed when recording from a physical camera. The possible

frame rates that can be achieved by different cameras are documented by camera manufacturers

and the software used to record video from cameras relies on libraries provided by camera manufac-

turers (e.g. The Imaging Source, The Imaging Source Libraries on GitHub: https://github.com/TheI-

magingSource) or well-documented open-source projects (e.g. OpenCV,https://github.com/opencv/

opencv and Aravis, https://github.com/AravisProject/aravis; Bradski, 2000). Additional delays

caused by recording from a physical camera are therefore specific to each individual type of camera.

Finally, by making the videos used for benchmarking available, DLG users can replicate our bench-

marking results, which will help in diagnosing the cause of performance issues.

Choosing to optimize pose estimation rate vs. latency in the
DeepLabCut-Live! GUI
When using DLG, if the rate of pose estimation is faster than the rate of image acquisition, pose esti-

mation will run in synchrony with image acquisition (in parallel processes). However, if the pose esti-

mation rate is slower than image acquisition, users have the choice of one of two modes: ‘Optimize

Rate’ or ‘Optimize Latency.’ In the ‘Optimize Rate’ mode, pose estimation and image acquisition

are run asynchronously, such that pose estimation is run continuously, but pose estimation for a

given image does not necessarily start at the time the image was acquired. Thus, the delay from

image acquisition to pose estimation is the delay from image acquisition until pose estimation

begins plus the time it takes DeepLabCut to estimate the pose. In the ‘Optimize Latency’ mode,

after the pose estimation process finishes estimating the pose on one frame, it will wait for the next

frame to be acquired to get back in sync with the image acquisition process. This minimizes the

latency from image acquisition to pose estimation, but results in a slower rate of pose estimation,

and over course of an experiment, fewer estimated poses. Because the ‘Optimize Latency’ mode

results in fewer estimated poses, we recommend using the ‘Optimize Rate’ mode for most applica-

tions. However, the ‘Optimize Latency’ mode may be particularly useful for applications in which it is

critical to minimize delays to the greatest extent possible and it is not critical to sometimes miss the

behavior of interest. One example in which a user may consider the ‘Optimize Latency’ mode could

be to stimulate neural activity upon detecting the tongue exiting the mouth on a subset of trials in a

licking task. In this example, the ‘Optimize Latency’ mode will provide a lower latency from when

the image that detects the tongue was acquired to stimulating neural activity. However, the slower

pose estimation rate will make it more likely that, on a given trial, the first image in which the tongue

is present will not be analyzed. Thus, the ‘Optimize Latency’ mode will provide the shortest delays

on trials in which this image is analyzed, and users can choose to not stimulate on trials in which the

tongue is too far outside of the mouth when it is first detected by DeepLabCut.

Feedback on posture and beyond
To demonstrate the feedback capabilities of DeepLabCut-Live! we performed a set of experi-

ments where an LED was triggered based on the confidence of the DeepLabCut network and the

posture of the animal (here a dog, but as is DeepLabCut, this package is animal and object agnos-

tic). We also provide a forward-prediction mode that utilizes temporal information via kinematics to

predict future postural states. In this demonstration, we used a Kalman filter to obtain filtered esti-

mates of the position, velocity and acceleration at each point in time, and then predicted the future

pose via quadratic approximation. We chose this approach for a few reasons: (i) it requires no prior

training and (ii) with simple modifications to 2–3 parameters, it can be tailored to suit a wide variety

of applications. Since this approach relies on a quadratic approximation, it can be successfully

applied to any application for which it is possible to obtain accurate measurements of the position,

velocity, and acceleration using a Kalman filter. The performance of the Kalman filter predictor will

critically depend on how far into the future one wishes to predict and how quickly the velocity and

acceleration of the keypoints change. If there are substantial changes in the velocity or acceleration
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of the keypoint within the time frame of the forward prediction, or if a keypoint is not present in

most images but suddenly appears (e.g. detecting the appearance of the tongue during a lick

sequence), the forward prediction will be inaccurate. This was evident in the dog feedback experi-

ment where we were predicting » 80 ms into the future during a rapid movement. Using a mouse

reaching dataset with movements on a similar timescale, but with video recorded at a much higher

rate (150 FPS for mouse reaching vs. 30 FPS for dog), and a mouse open field dataset with video

recorded at the same rate as the dog ‘rearing’ experiment, but with slower movements, we demon-

strated that the Kalman filter works extremely well in predicting the future pose at a shorter time-

scale, and demonstrated the way in which it’s predictions become inaccurate as it predicts the pose

further into the future. However, despite the inaccurate predictions when the time to predict is lon-

ger than the timescale at which velocity and acceleration are changing, the Kalman filter still pro-

vides great promise to improve the time to detect the onset of rapid movements.

Additionally, we would like to emphasize that the Kalman filter is only one possible approach to

predict the future pose. In addition to demonstrating its utility for forward prediction, the source

code for the Kalman filter Processor provides a blueprint for implementing different methods of

forward prediction using the DeepLabCut-Live! framework tailored for the specific tracking problem.

For instance, one can imagine applications to rhythmic movements, where one predicts future

behavior from many past cycles. Other time series models such as LSTMs, or neural networks can

also be integrated in the predictor class. Furthermore, the simple comparison of the position of 2–3

keypoints is only one possible strategy for detecting the time to trigger peripheral devices. For

example, one can build Processor objects to trigger on joint angles, or more abstract targets such

as being in a particular high dimensional state space. We believe the flexibility of this feedback tool,

plus the ability to record long-time scale videos for ‘standard’ DeepLabCut analysis makes this

broadly applicable to many applications.

Conclusions
We report the development of a new light-weight Python pose estimation package based on Deep-

LabCut, which can be integrated with behavioral control systems (such as Bonsai and AutoPilot) or

used within a new DLC-Live! GUI. This toolkit allows users to do real-time, low-latency tracking of

animals (or objects) on high-performance GPU cards or on low cost, affordable and scalable systems.

We envision this being useful for precise behavioral feedback in a myriad of paradigms.

Materials and methods
Alongside this publication we developed several software packages that are available on GitHub.

Links are listed in n Table 4 and Table 5 and details provided throughout the paper.

Animals
All mouse work were carried out under the permission of the IACUC at Harvard University (#17-07-

309). Dog videos and feedback was exempt from IACUC approval (with conformation from IACUC).

Mice were surgically implanted with a headplate as in Mathis et al., 2017. In brief, using aseptic

technique mice were anesthetized to the surgical plane, a small incision in the skin was made, the

skull was cleaned and dried and a titanium headplate was placed with Metabond. Mice were allowed

7 days to recover and given burphrenorphine for 48 hr post-operatively. Mice used in the licking

Table 4. Software packages presented with this paper.

Name URL

DeepLabCut-Live! SDK GitHub Link

Benchmarking Submission GitHub Link

Benchmarking Results Website Link

DLC-Live! GUI GitHub Link

Bonsai - DLC Plugin GitHub Link

AutoPilot - DLC GitHub Link
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task were trained to lick at fixed intervals (details will be published elsewhere). Mice used in the

reaching task were trained as in Mathis et al., 2017.

The dog used in this paper was previously trained to perform rearing actions for positive rein-

forcement, and therefore no direct behavioral manipulation was done for this study.

DeepLabCut
The mouse DeepLabCut model was trained according to the protocol in Nath et al., 2019;

Mathis et al., 2020a. Briefly, the DeepLabCut toolbox (version 2.1.6.4) was used to (i) extract frames

from selected videos, (ii) manually annotate keypoints on selected frames, (iii) create a training data-

set to train the convolutional neural network, (iv) train the neural network, (v) evaluate the perfor-

mance of the network, and (vi) refine the network. This network was trained on a total of 120 labeled

frames.

The dog model was initially created based on the ‘full_dog’ model available from the DeepLab-

Cut Model Zoo (ResNet-50, with ADAM optimization and imgaug augmentation Jung et al., 2020;

currently unpublished, more details will be provided elsewhere). Prior to running the DLG feedback

experiments, initial training videos were taken, frames from these videos were extracted and

labeled, and the model was retrained using imgaug with the built in scaling set to 0.1–0.5 to opti-

mize network accuracy on smaller images. This network was re-trained with 157 labeled frames.

After training, DeepLabCut models were exported to a protocol buffer format (.pb) using the

new export model feature in the main DeepLabCut package (2.1.8). This can be performed using

the command line:

dlc model-export /path/to/config.yaml

or in python:

import deeplabcut as dlc

dlc .export_model(”/path/to/config.yaml’)

DeepLabCut-Live! package
The DeepLabCut-Live code was written in Python 3 (http://www.python.org), and distributed as

open source code on GitHub and on PyPi. It utilizes TensorFlow (Abadi et al., 2016), numpy

(Svd et al., 2011), scipy (Virtanen et al., 2020), OpenCV (Bradski, 2000), and others. Please see

GitHub for complete, platform-specific installation instructions and description of the package.

The DeepLabCut-live package provides a DLCLive class that facilitates loading DeepLabCut mod-

els and performing inference on single images. The DLC-Live class also has built in image pre-proc-

essing methods to reduce the size of images for faster inference: image cropping, dynamic image

cropping around detected keypoints, and image downsizing. DLC-Live objects can be instantiated in

the following manner:

from dlclive import DLCLive

my_live_object = DLCLive(”/path/to/exported/model/directory’)

# base instantiation

my_live_object = DLCLive(”/path/to/exported/model/directory’)

# use only the first 200 pixels in both width and height dimensions of image

Table 5. Relevant DLC updates.

Feature DLC version Pub. link

DLC-ResNets 1, 2.0+ Mathis et al., 2018b; Nath et al., 2019

DLC-MobileNetV2s 2.1+ Mathis et al., 2020a

Model Export Fxn 2.1.8+ this paper

DeepLabCut-live new package this paper
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my_live_object = DLCLive(”/path/to/exported/model/directory’,

cropping=[0, 200, 0, 200])

# dynamically crop image around detected keypoints, with 20 pixel buffer

my_live_object = DLCLive(”/path/to/exported/model/directory’,

dynamic=(True, 0.5, 20))

# resize height and width of image to 1/2 its original size

my_live_object = DLCLive(”/path/to/exported/model/directory’,

resize = 0.5)

Inference speed tests were run using a benchmarking tool built into the DeepLabCut-Live pack-

age. Different image sizes were tested by adjusting the pixels parameter, which specifies the total

number of pixels in the image while maintaining the aspect ratio of the full-size image. For all

options of the benchmarking tool, please see GitHub or function documentation. Briefly, this tool

can be used from the command line:

dlc—live—benchmark /path/to/model/directory/ path/to/video/file -o /path/to/

output/directory

or from python:

from dlclive import benchmark_videos

benchmark_videos (”/path/to/model/directory”,

”/path/to/video”,

output=”/path/to/output/directory”)

When using dynamic tracking within the DeepLabCut-Live! package, if the DeepLabCut

reported likelihood of a keypoint is less than the user-defined likelihood threshold (i.e. it is likely that

the keypoint was ‘lost’ from the image), the bounding box around the following image may not

include that keypoint. Thus, for the dynamic cropping accuracy analysis, we only analyzed the accu-

racy of tracking for keypoints that had a likelihood greater than 0.5 on the previous image. This

resulted in the exclusion of 2.9%, 7.6%, and 27.6% of all individual keypoints across all images,

respective to the bound box size (50, 25, 10).

DLC-Live! GUI software
The DLC-Live! GUI (DLG) code was also written in Python 3 (http://www.python.org), and distributed

as open source code on GitHub and on PyPi. DLG utilizes Tkinter for the graphical user interface.

Please see GitHub for complete installation instructions and a detailed description of the package.

DLG currently supports a wide variety of cameras across platforms. On Windows, DLG supports

The Imaging Source USB cameras and OpenCV compatible webcams. On MacOS, DLG supports

OpenCV webcams, PlayStation Eye cameras (https://github.com/bensondaled/pseyepy) and USB3

Vision and GigE Vision cameras (https://github.com/AravisProject/aravis). On Linux, DLG supports

any device compatible with Video4Linux drivers using OpenCV, and USB3 Vision and GigE Vision

devices using the Aravis Project.

DLG uses the multiprocess package (McKerns et al., 2012) to run image acquisition, writing

images to disk and pose estimation in separate processes from the main user-interface. Running

these processes in parallel enables users to record higher frame rate videos with minimal sacrifice to

pose-estimation speed. However, there are still some delays when running image acquisition and

pose-estimation asynchronously: if these processes are run completely independently, the image

may not have been acquired immediately before pose-estimation begins. For example, if images are

acquired at 100 frames per second, the image will have been acquired with a range of 0–10 ms prior

to running pose-estimation on the image. If the pose-estimation process waits for a new image to

be acquired then there will be a delay between completing pose-estimation on one image and

beginning pose-estimation on the next one. Accordingly, DLG allows users to choose between two

modes: (i) the Latency mode, in which the pose-estimation process waits for an a new image to
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reduce the latency between image acquisition and pose-estimation and (ii) the Rate mode, in which

the pose-estimation process runs independently of image acquisition. In this mode, there will be lon-

ger latencies from image acquisition to pose-estimation but the rate of pose-estimation will be faster

than in the Latency mode.

To test the performance of DLG, we used a video of a mouse performing a task that required lick-

ing to receive reward in the form of a drop of water. Video was collected at 100 frames per second

using a The Imaging Source USB3 camera (model number: DMK 37AUX287) and Camera Control

software (Kane and Mathis, 2019).

We tested the performance of DLG under four conditions– on full-size images (352 � 274 pixels)

and downsized images (176 � 137 pixels), both image sizes in Latency mode and Rate mode. All

four conditions were tested on four different computers (see Table 2 for specifications). The mouse

licking video used for this test was different from the mouse licking video used for the inference

speed benchmarking of the DeepLabCut-Live! package (a video with larger images was used in

the DeepLabCut-Live! benchmark). Across all DLG benchmarking experiments, a single outlier

frame-to-LED data point was removed from the Windows OS, GeForce 1080 GPU, 352 � 274 pixel

size configuration. This one point had a time frame-to-LED delay of 3 s, nearly 10 times that of the

next longest delay under any configuration, likely due to misalignment of the infrared LED and

photodetector.

Inference speed, size vs. accuracy and dynamic cropping
For the analyses regarding the size and accuracy dependency (Figure 2—figure supplement 2 and

Figure 2—figure supplement 3), we used the 640 � 480 pixel images available at Zenodo

(Mathis et al., 2018a) from Mathis et al., 2018b.

Postural feedback experiment
Prior to conducting the dog feedback experiment, the dog was extensively trained to ‘rear’ upon

the verbal command ‘jump’ and the visual cue of a human’s arm raised at shoulder height. ‘Rearing’

was reinforced by manually providing treats for successful execution. Prior to recording videos for

tracking and feedback, the dog routinely participated in daily training sessions with her owners.

There was no change to the dog’s routine when implementing sessions in which feedback was

provided.

To conduct the feedback experiment, we used the DLG software on a Jetson Xavier developer

kit. Pose estimation was performed using an exported DeepLabCut model (details regarding training

provided above). Feedback was provided using a custom DeepLabCut-Live! Processor that

detected ‘rearing’ movements and controlled an LED via serial communication to a Teensy

microcontroller.

The dog was considered to be in a ‘rearing’ posture if (a) the likelihood of the withers and at least

one elbow was greater than 0.5 and (b) the vertical position of at least one elbow, whose likelihood

was greater than 0.5, was above the vertical position of the withers (i.e., yelbow<ywithers, with the top

of the image as y ¼ 0 and bottom of image as y ¼ image height). For each pose, the Processor

determined whether the dog was in a ‘rearing’ posture, queried the current status of the LED from

the Teensy microcontroller, and if the current status did not match the dog’s posture (i.e. if the LED

was off and the dog was in a ‘rearing’ posture), sent a command to the Teensy to turn the LED on or

off.

In this experiment, we recorded the time at which images were accessed by DLG, the time at

which poses were obtained by DLG after processing, and the times that the LED was turned on or

off by the Processor. We calculated the pose estimation rate as the inverse of the delay from

obtaining one pose to the next, the latency from image acquisition to obtaining the pose from that

image, and, for poses in which the Processor turned the LED on or off, the latency from image

acquisition to sending the command to turn the LED on or off.

As not all images will be run through pose estimation using DLG, to assess the delay from behav-

ior to feedback, we performed offline analyses to determine the ideal time to turn the LED on or off

given all the acquired images. Using the DeepLabCut-Live! benchmarking tool, we obtained the

pose for all frames in the acquired videos by setting the save_poses flag from the command line:
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dlc -live-benchmark /path/to/model/directory /path/to/video/file –save-poses -

n 0

This command can also be run from python:

from dlclive import benchmark_videos

benchmark_videos (”/path/to/model/directory”,

”/path/to/video/file”,

n_frames = 0,

save_poses = True)

We then ran this full sequence of poses through the ‘rearing’ detection Processor, and com-

pared these times – for each ‘rearing’ movement, the time at which the first frame that showed a

transition to a ‘rearing’ posture and out of a ‘rearing’ posture was acquired – with the times that the

LED was turned on or off during real-time feedback.

The videos analyzed in this experiment were different from the dog videos used in the DeepLab-

Cut-Live! benchmarking experiment. For that experiment, a video with longer duration and differ-

ent aspect ratio was used.

Forward prediction using a Kalman filter
To implement the forward-predicting Kalman filter, we used a Processor object that first used a

Kalman filter to estimate the position, velocity, and acceleration of each keypoint; then used the

position, velocity, and acceleration to predict the position of the limb into the future. The Kalman fil-

ter was defined by the state vector X, consisting of the x and y position, x and y velocity, and x and

y acceleration of each keypoint; the forward transition matrix F; and the measurement matrix H. An

example of the full state vector with n keypoints is:

X ¼ ½x1; :::;xn;y1; :::;yn; :::; _x1; :::; _xn; _y1; :::; _yn;€x1; :::;€xn;€y1; :::;€yn�
T

For simplicity, we will consider a Kalman filter for a DeepLabCut network with one keypoint:

X ¼ ½x1;y1; _x1; _y1;€x1;€y1�
T

F ¼

1 0 dt 0
dt2

2
0

0 1 0 dt 0
dt2

2

0 0 1 0 dt 0

0 0 0 1 0 dt

0 0 0 0 1 0

0 0 0 0 0 1

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

H ¼

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

Importantly, performance of the Kalman filter depended on three user-defined scalar variance

parameters: the initial variance in state estimates s
2

init, process noise Q, and measurement noise R.

The initial covariance matrix in state estimates was defined as P¼ s
2

initI.

At each time step, we calculated the estimated pose Xp and estimated covariance Pp based on

the previous state:

Xp ¼ FX

Pp ¼ FPFT þQ
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We noticed that predictions tended to be inaccurate when the predicted velocity and accelera-

tion were very high. To encourage lower estimates of velocity and acceleration in the estimated state

vector Xp, we introduced a priori assumption that, at any given timestep, velocity and acceleration

will have a zero mean with a user-defined variance B. We incorporated this prior assumption using

Bayes rule, such that the velocity and acceleration components of Xp were the weighted mean of 0

and Xp. The weight depended on the ratio of the variance in the estimate of Xp (the diagonals of the

covariance matrix P, referred to as Pd) and the variance of the prior given by B:

Xp ¼
1

P�1

d þB�1
�
X

Pd

The observation vector y consisted of the observed position, velocity, and acceleration. The

observed position was taken as the pose returned by the DeepLabCut network, the observed veloc-

ity was calculated as the change in position from the observed position and position components of

the latest state vector X, and the acceleration was calculated as the change between the observed

velocity and the velocity components of the latest state vector X. Next, we updated the state vector

X and covariance matrix P according to the Kalman gain K:

K ¼ PpH
T
.ðHPpH

T þRÞ�1

X ¼ Xp þKðy�HXpÞ

P¼ ðI�KHTÞPp

Given this estimate of the current position, velocity and acceleration (the state vector X), we used

the forward transition matrix F to calculate the predicted future state Xf . In the dog feedback experi-

ment, the amount of time we predicted into the future depended on the delay for that image

(dt ¼ prediction time ¼ current time � image acquisition time):

Xf ¼ FX

To obtain the future pose, we extracted the position elements from Xf , and discarded the velocity

and acceleration components. Lastly, the Processor checked if the dog was in a ‘rearing’ posture

and controlled the LED accordingly.

Source code for the base Kalman filter Processor and the dog rearing Processor can be found on

Github. Additionally, the Kalman filter predicting Processor is in the main DeepLabCut-Live!

package, and can be used as follows:

from dlclive .processor import KalmanFilterPredictor

Details of AutoPilot setup
Latencies were measured using software timestamps and confirmed by oscilloscope. Software meas-

urements could be gathered in greater quantity but were reliably longer than the oscilloscope

latency measurements by 2.8 ms (median of difference, n = 75, IQR=[2.4–3.4]), thus we use the soft-

ware measurements noting they are a slightly conservative estimate of functional latency.

Autopilot experiments were performed using the DLC_Latency Task and the Transformer ‘Child’

(see Saunders and Wehr, 2019 for terminology).

Separate DLC-MobileNetV2-0.35 models tracking a single point were trained for each capture

resolution (128 � 128, 256 � 256, 512 � 416 pixels). Training data was labeled such that the point

was touching the LED when it was on, and in the corner of the frame when the LED was off. Frames

were processed with a chain of Autopilot Transform objects like:

from autopilot import transform as t

# create transformation object

tfm =t.image.DLC(”/model/path’) + \
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t.selection

t.logical.Condition(

minimum = [min_x, min_y],

maximum = [max_x, max_y]

)

# process a frame, yielding a bool

# true/false == LED on/off

led_on =tfm.process(frame)

where min_x,Xmin_y, etc. defined a bounding box around the LED.

Data analysis and visualization
Autopilot data were analyzed with Pandas (1.0.5; McKinney et al., 2010) in Python and Tidyverse

(1.3.0; Wickham et al., 2019) in R. Data were visualized with ggplot2 (3.3.0; Wickham, 2016) and

ggridges (0.5.2; Wilke, 2020).

Acknowledgements
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