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Abstract

Cancer cells utilize vitamin folate to fulfill their excessive demand for nucleotides and amino acids. Dihydrofolate

reductase (DHFR), an enzyme involved in folate metabolism converts dihydrofolate into tetrahydrofolate, which is

required for the de novo synthesis of purines, and certain amino acids. DHFR inhibitors are used as a chemotherapeutic

agent. Cancer sequencing analysis has identified additional enzymes in folate metabolism that are dysregulated in

cancer. Methylenetetrahydrofolate dehydrogenase 1 like (MTHFD1L), one such enzyme is overexpressed in bladder

cancer. MTHFD1L is a mitochondrial enzyme involved in the folate cycle by catalyzing the reaction of formyl-

tetrahydrofolate to formate and tetrahydrofolate (THF). THF is crucial for de novo purine and thymidylate synthesis and is

also involved in the regeneration of methionine. Cancer cells rely on purines derived from the de novo pathway for the

nucleotideswhereasnormalcells favor thesalvagepathway. In thisstudyweexaminedMTHFD1Lexpression inbladder

cancer. By usingpublicly available cancer transcriptomedata analysisweb-portal UALCAN,we foundoverexpressionof

MTHFD1L in bladder cancer and expression was associated with overall survival. RT-PCR and immunoblot analysis

confirmed the overexpression ofMTHFD1L inmuscle invasive bladder cancer tissues compared to normal urothelium.

Furthermore, our investigations suggested a critical role for MTHFD1L in bladder cancer cell proliferation, colony

formation and invasion. Thus, in this study, we show the significance of the folate metabolic enzyme MTHFD1L in

aggressive bladder cancers and suggest that being an enzyme, MTHFD1L serves as a valuable therapeutic target.
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Introduction
Bladder cancer is the most common malignancy of the urinary
tract with estimated 80,470 new cancer cases in 2019 in the USA
[1]. Bladder cancer most commonly manifests as superficial disease
with high recurrence rates. However about 10e15% of tumors
will progress to muscle invasive bladder cancer (MIBC) [2]. For
these tumors surgical removal with or without neoadjuvant
chemotherapy remains the standard treatment option [3,4].
Once metastatic, urothelial carcinoma of the bladder is generally
incurable by current chemotherapy and leads to early mortality
[5]. Immune checkpoint inhibitors (e.g. atezolizumab, nivolumab,
pembrolizumab) have recently provided durable benefits to a
minority (~20%) of post-platinum or selected untreated PD-L1
low cisplatin-ineligible patients and platinum-ineligible patients
[6e9]. Erdafitinib was recently approved for selected post-plati-
num patients with somatic FGFR2/3 alterations [10]. However,
these agents are not curative and benefits are modest, suggesting a
major role for new tolerable agents and combinations for this
elderly population.
Multiple molecular alterations play a role in the progression of this

aggressive disease. Recent studies have identified molecular subtypes
in MIBC with different sensitivities to frontline therapy suggesting
the heterogeneity in these tumors and the importance of molecular
characterization of MIBC to provide effective treatment [11e13].
Cancer cells harbor specific metabolic requirements due to their

enhanced proliferation rate [14e16]. One of the common
dysregulated pathways in this setting is folate metabolism. Inhibitors
of this pathway predominantly target dihydrofolate reductase (DHFR),
an enzyme that reduces folate to dihydrofolate and converts it to
tetrahydrofolate (THF). Methotrexate, a component of one of the
standard regimens used to treat metastatic urothelial carcinoma, i.e.
MVAC (methotrexate, vinblastine, doxorubicin, cisplatin), is a
DHFR inhibitor [17e20]. In the present study, we have identified
and characterized another folate metabolic enzyme methylenetetra-
hydrofolate dehydrogenase 1 like (MTHFD1L) in bladder cancer.
MTHFD1L is a mitochondrial enzyme that catalyzes the reaction of
formyl-tetrahydrofolate to formate and THF [21e23]. THF is
crucial for de novo purine and thymidylate synthesis and is also
involved in the regeneration of methionine [24]. Cancer cells rely on
purines derived from the de novo pathway for nucleotides whereas
normal cells favor the salvage pathway [25,26]. Our previous studies
have shown that PAICS, an enzyme involved in de novo purine
biosynthesis is overexpressed in bladder cancer and plays a critical role
in bladder cancer growth [27]. Similarly, targeting enzymes involved
in the associated folate pathway, like SHMT2, MTHFD2, and
MTHFD1L, may harbor a therapeutic potential [28,29].
MTHFD1L, being a potential therapeutic target overexpressed in
bladder cancer, warrants further investigation.
In this study we characterized the expression and investigated

the role of MTHFD1L in bladder cancer. Our studies show
significant overexpression of MTHFD1L in primary bladder
cancer. Furthermore, knockdown of MTHFD1L in multiple
bladder cancer cells showed a decrease in cancer cell proliferation.
In addition, our studies also revealed a reduced colony forming and
invasion ability of bladder cancer cells upon MTHFD1L knock-
down indicating the therapeutic potential of targeting this gene.
Further studies are needed to target MTHFD1L with small
molecule inhibitors.
Materials and Methods

Gene Expression from The Cancer Genome Atlas (TCGA)
MTHFD1L gene expression levels in bladder cancer and normal

bladder were interrogated utilizing UALCAN [30], a web portal that
provides boxplots depicting each gene's expression based on 3
RNA-sequencing data from the TCGA transcriptome sequencing
datasets.

Benign and Bladder Cancer Tissue Samples for PCR and
Immunoblot Blot Analysis

Fresh frozen MIBC (�pT2 stage) tissue samples (T) with adjacent
normal tissue (N), were obtained from the Cooperative Human Tissue
Network (CHTN) based at the University of Alabama at Birmingham
(UAB). CHTN complies with federal human subjects regulations (The
“Common Rule;” 45 CFR part 46) to collect and distribute biospeci-
mens. Tumor samples were obtained from patients undergoing radical
cystectomy surgerywithout precedingneoadjuvant systemic therapy, snap
frozen and stored in liquid N02 tanks (23). Specimens underwent central
pathological assessment for confirmation of diagnosis. Then, macro-
dissection of tissue was conducted after histologic demarcation of tumor
and normal bladder epithelial tissue. The study was IRB approved
(IRB-120917005) at UAB.

Tissue Immunohistochemistry (IHC)
To evaluate MTHFD1L expression in bladder cancer and benign

urothelium formalin-fixed, paraffin-embedded tissue sections were
stained with rabbit polyclonal antibody against MTHFD1L
(#16113e1-AP, PTG Labs, Rosemont, IL). For antigen retrieval
tissue sections were boiled for 10 minutes in citrate buffer
(#C9999-1000ML, Sigma Aldrich, MO). Immunostaining was
performed using Vector Laboratories staining kit following the
manufacturer's protocol. Primary antibody was added in a 1:250
dilution for 1 h at room temperature according to dilution protocol
optimized in our laboratory. After washing with PBS, secondary
antibody (anti-rabbit, #MP-7401 Vector Laboratories, Burlingame,
CA) was added for 45 min at room temperature. Antibody signals
were detected using ImmPACT DAB (#SK-4105, Vector Labora-
tories, Burlingame, CA). Hematoxylin QS (# H-3404, Vector
Laboratories, Burlingame, CA) was used as a counterstain.

Cell Culture
RT-112 and VMCUB-1 cells were obtained from Leibniz Institut

DSMZ, Germany. HT-1376, 5637, HT-1197 and T24 were purchased
fromATCC.RT-112, 5637,VMCUB-1 cells were cultivated at 37 �C in
a humidified environment with 5% CO2 in RPMI medium (Gibco™
RPMI 1640 Medium, Life Technologies™), while HT-1376 and
HT-1197 were cultivated in MEM medium (Gibco MEM (1x), Life
Technologies™) and T24 in McCoy's 5a modified medium (Gibco™
McCoy's 5A (Modified) Medium, Life Technologies™). All media was
supplemented with 10% fetal bovine serum and 100 U/ml penicillin G
and 100 mg/ml streptomycin.

Immunoblot Analyses
For immunoblot analysis, protein samples were separated on

SDSePAGE (NuPAGE 4e12%, # WG1402BOX, Thermo
Fischer Scientific, Waltham, MA). Equal amounts of proteins
were loaded and transferred for 2 h at 0.35 A onto an
Immobilon1-P PVDF membrane (EMD Millipore, Billerica,



Tr
an

sc
rip

t p
er

 m
illi

on

Normal
(n=19)

Neuronal
(n=20)

Basal
squamous

(n=142)

Luminal
(n=26)

Luminal
Infiltrated
(n=78)

Luminal
Papillary
(n=142)

-10

0
10
20
30
40
50
60

B

C

++++
+
+

+

++

+++
++

++++++
+
+
++++

+
+

+++

+ +
+ + + ++++

+ + + + + + + + + +

+++++++
++++++++++

++++
+
+

+
+++++++++++++++++++++

++++++++++++++++++++++++++++
++++++++

+
+++++++

++++++++++++++++++++++++ ++

+++++ ++++ +++
++++ ++++++++ +

+ +++
++
+++++ + ++ ++ +

+ +
++

+

+ + + +++ +

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000 5000
Time in days

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Expression Level
High expression (n=102)
Low/Medium−expression (n=304)

p<0.05

D

Normal
(n=19)

Stage1
(n=2)

Stage2
(n=129)

Stage3
(n=137)

Stage4
(n=132)

-10

0

10

20

30

40

50

Tr
an

sc
rip

t p
er

 m
illi

on

Tr
an

sc
rip

t p
er

 m
illi

on

Normal
(n=19)

Primary tumor
(n=408)

-10

0

10

20

30

40

50
A

Tr
an

sc
rip

t p
er

 m
illi

on

Normal
(n=19)

Caucasian
(n=320)

African-
american
(n=22)

Asian
(n=44)

-10

0

10

20

30

40

50

E

p <  0.05

p <  0.05

p <  0.05

p <  0.05

Figure 1. The folate metabolic pathway enzyme MTHFD1L is overexpressed in bladder urothelial carcinoma and predicts poor patient survival.
(A) Expression of MTHFD1L in normal bladder and primary tumor samples using TCGA data analyzed by the UALCAN web portal.
(B) Boxplots of MTHFD1L expression analyzed by stage. (C) Boxplots represent MTHFD1L expression level across normal bladder
and molecular bladder cancer subtypes. (D) Analysis of MTHFD1L expression by race. (E) Overall survival analysis of patients with
high vs low/medium MTHFD1L expression.
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MA). To block non-specific binding, the membrane was incubated
for 1 h in blocking buffer (Tris-buffered saline, 0.1% Tween 20
[TBS-T], 5% nonfat dry milk) followed by incubation overnight at
4 �C with the primary antibody. After two washes with TBS-T for
5 min, the blot was incubated with horseradish peroxidase-conju-
gated secondary antibody (1:5000) for 1 h at room temperature.
The membrane was again washed with TBS-T and TBS twice for 5
min each and signals were visualized by LuminataTM Forte
Western HRP Substrate (#WBLUF0500, EMD Millipore, Bill-
erica, MA) as per manufacturer's protocol. b-actin served as a
loading control. Antibodies were implemented as follows:
anti-MTHFD1L: #16113e1-AP (1:1000; PTG Labs, Rosemont,
IL), antieHRP-b-actin: # HRP-60008 (1:200000; PTG Labs,
Rosemont, IL), and anti-rabbit IgG HRP: # SA00001e2 (1:5000;
PTG Labs, Rosemont, IL). All antibodies were employed at
dilutions optimized in our laboratory.



Table 1. Clinical and demographic characteristics of TCGA Bladder urothelial carcinoma (BLCA)
samples categorized based on MTHFD1L expression level (Clinical and demographic information
are not available for few samples)

Clinical/demographic
parameters

TCGA BLCA samples with
high MTHFD1L
expression (n¼ 102)

TCGA BLCA samples
with low/medium
MTHFD1L
expression (n¼ 304)

Gender Male 76 (74.51%) 219 (72.04%)
Female 26 (25.49%) 79 (25.99%)

Race Caucasian 89 (87.25%) 230 (75.66%)
African American 5 (4.9%) 17 (5.59%)
Asian 4 (3.92%) 39 (12.83%)

Pathologic N N0 61 (59.8%) 175 (57.57%)
N1 11 (10.78%) 25 (8.22%)
N2 14 (13.73%) 32 (10.53%)
N3 13 (12.75%) 62 (20.39%)
NX 1 (0.98%) 6 (1.97%)

Pathologic T T0 0 1 (0.33%)
T1 1 (0.98%) 2 (0.66%)
T2 5 (4.9%) 32 (10.53%)
T2a 3 (2.94%) 22 (7.24%)
T2b 16 (15.69%) 40 (13.16%)
T3 14 (13.73%) 29 (9.54%)
T3a 17 (16.67%) 52 (17.11%)
T3b 29 (28.43%) 52 (17.11%)
T4 4 (3.92%) 6 (1.97%)
T4a 6 (5.88%) 37 (12.17%)
T4b 0 5 (1.64%)
TX 0 1 (0.33%)

Stage Stage I 0 2 (0.66%)
Stage II 26 (25.49%) 102 (33.55%)
Stage III 45 (44.12%) 92 (30.26%)
Stage IV 31 (30.39%) 100 (32.89%)

Histology Papillary 21 (20.59%) 109 (35.86%)
Non-papillary 78 (76.47%) 193 (63.49%)
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MTHFD1L Knockdown in Bladder Cancer Cells
MTHFD1L (siGenome SMARTpool, # M-009949-01-0005) and

non-targeting small interfering RNA (siRNA) were obtained from
Dharmacon (Lafayette, CO) and transfection experiments were
performed following the manufacture's protocol. For transfection
Lipofectamine RNAiMAX reagent (#13778150, Thermo Fisher,
Waltham, MA) was applied. Cells were seeded 1 x 105 in a 6-well
plate and simultaneously transfected with MTHFD1L siRNA and
control non-targeting siRNA. Cells were harvested 72 h after
transfection for RNA isolations and immunoblot experiments.

RNA Extraction and qRT-PCR
Total RNA from bladder cancer cells was extracted by using the

Direct-zolRNAMiniPrepPlus kit (#R2071,ZymoResearch, Irvine,CA)
according tomanufacturer's protocol. For bladder cancer tissue RNAwas
harvested by employing the Qiagen RNAeasy kit. Each sample was
transcribed into complementary DNA by using Superscript III Reverse
Transcriptase (#18080093, Thermo Fischer Scientific, Waltham, MA).
For each qRT-PCRamplification, 2ml of the cDNAproduct (200ng/ml),
5ml SYBR green PCRMasterMix (Applied Biosystems,Waltham,MA),
1ml primer solution, and 2ml of DNAse/RNAse free water was added for
a final volume of 10 ml. Thermocycling conditions were as suggested by
the manufacturer: 95� for 10 min to activate the polymerase followed by
40 cycles of 95� for 15 sec and 60� for 1 min. SYBR green was used to
determine the mRNA expression level of a gene of interest. Levels were
normalized to beta-Actin and analyzed using the DDCT method. All
primers for SYBR green were synthesized by Integrated DNA
Technologies (Coralville, IA). Primer sequences are: MTHFD1L:
forward primer, TGTGCCAAGGGACTTCATCT and reverse primer,
AGTCCTGGCATGGTGCTC, ACTB: forward primer, GCACA-
GAGCCTCGCCTT, and reverse primer, GTTGTCGACGAC-
GAGCG. All PCR reactions were performed in triplicates.

Cell Proliferation Assays
Cell proliferation was measured by cell counting. For this, transient

MTHFD1L knockdowns cells were used. Non-targeting siRNA and
untreated cells served as control. After 48 hours of transfection using
pooled siRNA, the cells were trypsinized and seeded at a density of
1500 cells/well in 12-well plates. Then, the cells were trypsinized and
counted at specified time points by Z2 Coulter particle counter
(Beckman Coulter, Brea, CA). Each experiment was performed with
three replicates.

Matrigel Invasion Assay
For Matrigel Invasion assay cells in medium without fetal bovine

serum were seeded onto Corning BioCoat Matrigel matrix (# 354480,
Corning, New York, NY) in the upper chamber of a 24-well culture
plate. The lower chamber containing adequate medium was supple-
mented with 10% fetal bovine serum as a chemoattractant. After 48
hours, the non-invading cells and Matrigel matrix were gently removed
with a cotton swab. Invasive cells located on the lower side of the
chamber were fixed with 10% (v/v) glutaraldehyde (#BP25471, Fisher
Scientific, Pittsburg, PA) for 15minutes and stainedwith crystal violet (#
HT901-8FOZ, Sigma-Aldrich, St. Louis, MO) for 15 minutes and
photographed using an inverted microscope (4�).

Colony Formation Assay
After 48 hours of transfection, the various test cells were counted and

seeded at a density of 1000 cells per 1 well of 6-well plates (triplicates)
and incubated at 37 �C, 5% CO 2 for 6 days. Colonies were fixed with
10% (v/v) glutaraldehyde (#BP25471, Fisher scientific, Pittsburg, PA)
for 15 minutes and stained with crystal violet (#HT901-8FOZ,
Sigma-Aldrich, St. Louis, MO) for 15 minutes. Then, the photographs
of the colonies were taken using Amersham Imager 600RGB (GE
Healthcare Life Sciences, Pittsburgh, PA).

Statistical Analysis
To determine significant differences between two groups, the

Wilcoxon rank sum test was applied for continuous variables using
JMP® 13.1.0. For paired samples the pairwise t-test was utilized. P
values <.05 were considered significant.

Results

The Mitochondrial Folate Enzyme MTHFD1L is Over-
expressed in Bladder Cancer and Its Expression Predicts Poor
Patient Survival

Transcriptome sequence analysis of the TCGA bladder cancer
dataset revealed an overexpression of MTHFD1L in bladder cancer
(Figure 1A). This overexpression was observed in all stages
(Figure 1B). Looking at the molecular TCGA subtypes described
by Robertson et al. [13], demonstrated higher MTHFD1L levels in
the basal/squamous and neuronal subtypes (Figure 1C) and in
patients with African American and Caucasian race compared to
patients of Asian race (Figure 1D). Furthermore, KaplaneMeier
survival analysis indicated decreased overall survival in patients whose
tumors expressed higher MTHFD1L levels (Figure 1E). The clinical
and demographic characteristics of the bladder cancer samples from
TCGA are given in Table 1.
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Figure 2. MTHFD1L expression in bladder cancer tissue and cell lines.(A) QRT-PCR analysis in normal bladder and primary bladder
urothelial carcinoma. (B) MTHFD1L mRNA levels in cases with available matched normal bladder and tumor tissues. (C)
Immunoblot analysis showing MTHFD1L expression in matched normal bladder and tumor tissues. b-actin served as a loading
control. (D) MTHFD1L mRNA and protein levels in various bladder cancer cell lines by qRT-PCR and immunoblot analysis.
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Next, we validated these in silico findings by performing
additional analysis. We used bladder cancer tissue and adjacent
normal bladder tissue for further analysis. qRT-PCR and immuno-
blot analysis of bladder tissue using a specific antibody showed
overexpression of MTHFD1L in bladder cancer compared to
normal bladder tissue (Figure 2, A and C). We found that in all cases
with available corresponding uninvolved tissue, MTHFD1L mRNA
expression and protein levels to be higher in the malignant tissue
compared to normal tissue (Figure 2, B and C). Similarly, elevated
levels of MTHFD1L were observed in bladder cancer cell lines
compared to normal bladder tissue (Figure 2D). To visualize the
localization of MTHFD1L in bladder cancer and paired benign
tissue, we performed IHC showing a granular cytoplasmic staining
pattern (Figure 3).
Knockdown of MTHFD1L Inhibits Bladder Cancer Cell
Proliferation

Since folate metabolism is a critical requirement for the cancer cells,
we went on to evaluate the role of MTHFD1L using multiple bladder
cancer cell lines. To investigate the role of MTHFD1L in bladder
cancer cell proliferation, we performed RNA interference using highly
specific pooled siRNA in the bladder cancer cell lines 5637, RT112,
HT1376, and VMCUB-1. The knockdown efficiency of MTHFD1L
was evaluated by performing immunoblot analysis (Figure 4A).
Proliferation experiments were performed over a period of 6 days.
Our results indicated a dramatic decrease in cancer cell growth upon
knockdown in all four bladder cancer cell lines (Figure 4B). This
experiment clearly shows the requirement of MTHFD1L for cancer
cell proliferation.
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Figure 3. Immunohistochemical analysis of MTHFD1L in urothelial carcinoma of bladder. Overview (A) and detailed photo micrographic (B)
depiction of MTHFD1L imunnohistochemical staining in invasive urothelial carcinoma and paired benign urothelium.
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MTHFD1L Regulates Bladder Cancer Cell Colony Formation
and Invasion
Next, in order to further investigate the role of MTHFD1L in

other oncogenic phenotypes, we performed cancer cell colony
formation and invasion assays. MTHFD1L knockdown resulted in
formation of fewer colonies compared to non-targeting and untreated
cells (Figure 5A). Boyden Chamber Matrigel invasion assay
(Figure 5B) showed reduced cancer cell invasion upon MTHFD1L
knockdown suggesting potential role of MTHFD1L in bladder
cancer invasion and metastasis.
Discussion
Alterations in cancer cell energetics and metabolism is one of the
emerging hallmarks in cancer [14]. It is a field of active investigations
in cancer and serves as an avenue to establish new treatment options.
Cancer cells have a higher metabolic rate than benign cells [14,15].
Due to increased growth rates and proliferation, tumor cells show an
increased demand for nucleotides and amino acids. One of the main
pathways that provide these nutrients is the folate cycle (also known
C1 metabolism or one carbon metabolism), which helps to supply
cells with one-carbon (C1) groups needed for amino acids and
nucleotide synthesis [29,31]. In the initial step of folate metabolism
folate is converted to dihydrofolate (DHF) and further to
tetrahydrofolate (THF) by the enzyme dihydrofolate reductase
(DHFR) [32]. THF can then be used for DNA synthesis. Many
chemotherapeutics, such as methotrexate act by compromising the
folate metabolism through inhibition of DHFR. However, given that
normal cells also require THF, these dugs cause non-specific toxicity
in both cancer cells and in non-cancerous cells. As C1 metabolism has
a mitochondrial and cytoplasmic component, studies have hypothe-
sized that targeting only the mitochondrial pathways could potentially
cause less side effects, as a parallel pathway in the cytoplasm exists
[32]. The mitochondrial enzymes involved in the folate cycle are
MTHFD1L, ALDH1L2, SHMT2, AMT and MTHFD2 [24,33].

In our study, by performing in silico analysis, we show a significant
upregulation of MTHFD1L in bladder cancer. We validated these
findings by performing RT-PCR, immunoblot and immunohistochem-
istry using bladder cancer tissue mRNA and protein lysates. The TCGA
cancer RNA sequencing data using the UALCAN web portal indicated
decreased overall survival in bladder cancer patients with high
MTHFD1L expression [30]. To investigate the biological significance
of MTHFD1L we conducted proliferation, colony formation and
invasion assays by knocking down MTHHFD1L in bladder cancer cell
lines. We showed that knockdown of MTHFD1L resulted in decreased
proliferation, reduced colony forming and invasion, all of which suggest a
critical role of this enzyme in regulating bladder cancer growth and
invasion. Earlier studies have shown that MTHFD1L is upregulated in
esophageal squamous cell carcinoma [34]. Investigations in hepatocellular
carcinoma (HCC) indicated that MTHFD1L is transcriptionally
upregulated through nuclear factor (erythroid-derived2)-like 2 (NRF2),
which is a key player in the activation of antioxidant genes under oxidative
stress. This suggests that metabolic reprogramming in cancer cells
produce antioxidants for neutralizing high levels of reactive oxygen species
(ROS) [24,35]. Furthermore, the folate cycle was shown to be a major
supplier of nicotinamide adenine dinucleotide phosphate (NADPH)
which is an important antioxidant [36,37]. Thus inhibition of the folate
cycle resulted in reduced ROS anti-oxidant production, which induces
intracellular oxidative stress and was shown to inhibit HCC growth [36].
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Through its involvement in the folate cycle MTHFD1L is not only
involved in purine and thymidylate synthesis but also helps cells in
the methionine cycle [24]. S-Adenosylmethionine (SAM) is an
important methyl donor utilized by histone and DNA methyltrans-
ferases [38]. In prostate cancer the availability of SAM was shown to
lead to aggressive prostate cancer [39]. Thus, reduced THF levels
through MTHFD1L inhibition potentially impair cells not only by
reducing de novo purine and thymidine synthesis, but also through its
involvement in the methionine cycle.
In summary we found that overexpression of MTHFD1L in

bladder cancer portends to decreased overall survival. Furthermore,
our studies show that MTHFD1L plays a critical role in bladder
cancer growth and invasion, which suggests its potential as a valuable
therapeutic target. Future studies will focus on rationally developing
small molecule inhibitor to target MTHFD1L, as single agents and in
combination with chemotherapy and checkpoint inhibitors, in
biomarker selected patients with high tumor MTHFD1L expression.
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