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Abstract: Obesity-induced adipose tissue dysfunction and disorders of glycolipid metabolism have
become a worldwide research priority. Zfp217 plays a crucial role in adipogenesis of
3T3-L1 preadipocytes, but about its functions in animal models are not yet clear. To explore the role of
Zfp217 in high-fat diet (HFD)-induced obese mice, global Zfp217 heterozygous knockout (Zfp217+/−)
mice were constructed. Zfp217+/− mice and Zfp217+/+ mice fed a normal chow diet (NC) did not
differ significantly in weight gain, percent body fat mass, glucose tolerance, or insulin sensitivity.
When challenged with HFD, Zfp217+/− mice had less weight gain than Zfp217+/+ mice. Histological
observations revealed that Zfp217+/− mice fed a high-fat diet had much smaller white adipocytes in
inguinal white adipose tissue (iWAT). Zfp217+/− mice had improved metabolic profiles, including
improved glucose tolerance, enhanced insulin sensitivity, and increased energy expenditure com-
pared to the Zfp217+/+ mice under HFD. We found that adipogenesis-related genes were increased
and metabolic thermogenesis-related genes were decreased in the iWAT of HFD-fed Zfp217+/+ mice
compared to Zfp217+/− mice. In addition, adipogenesis was markedly reduced in mouse embryonic
fibroblasts (MEFs) from Zfp217-deleted mice. Together, these data indicate that Zfp217 is a regulator
of energy metabolism and it is likely to provide novel insight into treatment for obesity.
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1. Introduction

Obesity is a key risk factor for many chronic diseases, including type 2 diabetes,
cardiovascular disease, and cancer [1–4]. When energy intake exceeds energy expenditure,
the body stores energy mainly as triglycerides, which leads to excessive growth of adipose
tissue [5]. Principal characteristics of obesity are adipocyte hypertrophy and hyperplasia [6].
With the worldwide obesity epidemic, it remains important to study adipocyte growth and
development, adipose tissue regulation of energy homeostasis, and glucose homeostasis.

Adipose tissue is an important metabolic organ, whose main function is an en-
ergy storage site under conditions of energy excess [7] and can also secrete several en-
docrine hormones such as adiponectin [7,8]. Adipose tissue mediates the regulation of
glucose lipid homeostasis and is essential for systemic insulin sensitivity and energy
balance [9,10]. Adipose tissue consists mainly of adipocytes, which undergo a multi-step
directed process to generate pre-adipocytes when they encounter stimuli, which are sub-
sequently activated by many regulatory factors (signaling pathways and transcription
factors) under lipogenesis-inducing conditions to differentiate into adipocytes [11–13].
Several reviews have systematically summarized the molecular regulatory mechanisms of
adipogenesis and constructed a transcriptional cascade regulatory network [14–16]. There
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are two major adipogenic factors at the core of this network, PPARγ and C/EBPα, which
play a key role in systemic lipid and glucose metabolism [17–19].

Numerous studies have shown that zinc finger protein (ZFP) has an essential role in fat
biology [20]. For example, KLF5 knockout mice are protected against high-fat diet-induced
obesity, with impaired adipogenesis in mouse embryonic fibroblasts (MEFs) of KLF5+/−

mice [21,22]. Zfp407 regulates glucose homeostasis and insulin sensitivity by regulating
GLUT4 transcript levels and PPARγ activity in response to insulin stimulation [23]. Zinc
Finger Protein 217 (Zfp217) belongs to the Krüppel-type transcription factors [24]. Recent
studies have revealed that Zfp217 is also involved in adipogenesis, through interaction with
histone methylation enzyme EZH2 to promote adipogenesis by influencing cell cycle [25];
through the interaction of Zfp217 and m6A methyltransferase METTL3 or demethylase
FTO, the m6A modification level of related downstream target genes is influenced and me-
diates post-transcriptional modifications of m6A in a YTHDF2-dependent manner, thereby
affecting adipocyte differentiation, suggesting that Zfp217 could play an important role
in adipogenesis at the level of transcription and post-transcriptional modifications [26,27].
However, the function of Zfp217 in in vivo animal models is largely unknown.

In the present study, using a novel heterozygous mouse model, we observed that
partial deficiency of Zfp217 mice fed high-fat diets presented less body weight accompanied
by improved glucose tolerance, increased insulin sensitivity, and energy expenditure.
Accordingly, these data show that Zfp217 functions as a regulator of systemic energy
metabolism in a live animal model.

2. Results
2.1. Generation of Zfp217 Heterozygote Mice

To elucidate the physiological role of Zfp217 in vivo, whole-body Zfp217-knockout
mice were generated using the CRISPR/Cas9 system (Figure 1A). We also performed a test
for the probability of sgRNA off-target before the start of the experiment. Results from
agarose gel electrophoresis showed no genome editing in any of the five most probable
off-target sites (Figure S4). To generate homozygous Zfp217 knockout mice, we inter-
crossed heterozygous Zfp217+/− mice in the earlier experiments. Unfortunately, we found
Zfp217 homozygous null mice are embryonically lethal and no live mice were detected.
According to the previous literature, we learned that knockout Zfp217 has effects on exiting
from pluripotency in embryonic stem cell (ESC) differentiation, possibly because Zfp217
expression is rapidly decreased and METTL3 is released to maintain of m6A methyla-
tion of pluripotent transcripts, which causes embryonic stem cell differentiation [28], or
NuRD mediates H3K27 acetylation and PCR2 mediates H3K27 trimethylation to silence
the ESC differentiation-related gene [29]. The causes of lethality in Zfp217 homozygous
null embryos, however, remain unclear. To circumvent this problem, we used Zfp217+/−

mice in the present study. Inter-crossing of heterozygote mice with WT (wild type) mice
yielded Zfp217 knockout (Zfp217+/−) and WT (Zfp217+/+) littermates. Genotypes of mice
were identified through PCR (Figure 1B). The distribution of genotypes was in accordance
with the Mendelian ratio, and the appearance of the newborns was normal. Subsequently,
quantitative real-time PCR analysis on inguinal white adipose tissue (iWAT), epididymal
white adipose tissue (eWAT), brown adipose tissue (BAT), and liver showed that Zfp217
mRNA levels were approximately 50% lower in the Zfp217+/− mice compared to Zfp217+/+

littermates (Figure 1C). These results showed that the model of Zfp217 systemic knockout
mice was generated successfully.
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Figure 1. Generation of whole-body Zfp217 knockout mice. (A) Schematic of a gene-targeting 
strategy to create Zfp217 KO mice. (B) PCR-based genotyping of Zfp217 KO and WT alleles. (C) 
Quantitative real-time PCR analysis of Zfp217 mRNA expression in inguinal white adipose tissue 
(iWAT), epididymal white adipose tissue (eWAT), brown adipose tissue (BAT), and liver of 
Zfp217+/+ and Zfp217+/− mice (n = 8 per group). For all statistical plots, data are presented as the 
mean ± SEM. ** p < 0.01. 

2.2. Zfp217+/− Mice Exhibit a Similar Phenotype to Zfp217+/+ Mice under a normal chow diet(NC) 
When maintained under a normal chow diet (NC) ad libitum, the Zfp217+/− mice had 

similar body weight and food intake to Zfp217+/+ mice (Figure 2A; Supplemental Figure 
S1A). Moreover, the body composition of the NC-fed Zfp217+/− mice had a similar gross 
appearance and percentage total body fat as Zfp217+/+ mice (Figure 2B; Supplemental Fig-
ure S1B). iWAT, eWAT, and BAT pads were not significant between the Zfp217+/+ mice 
and Zfp217+/− mice (Supplemental Figure S1C,D). Histological observations also con-
firmed no obvious differences in sections of various adipose tissues (Supplemental Figure 
S1E–G) of the Zfp217+/+ mice and Zfp217+/− mice, regardless of the average area of adipo-
cytes or the distribution of adipocyte diameters. 

Furthermore, glucose homeostasis in the mice was assessed by glucose and insulin 
tolerance tests. The GTTs and ITTs revealed no differences between the Zfp217+/+ mice and 
Zfp217+/− mice (Supplemental Figure S2A–D). In addition, we also measured the oxygen 
consumption (VO2) and CO2 production (VCO2) rates of both genotypes by indirect cal-
orimetry to determine energy expenditure. The physical activity and respiratory exchange 
ratio were comparable between genotypes (Supplemental Figure S3A,B). Consistent with 
the physical activity, Zfp217+/− mice showed similar VO2 and VCO2 as well as energy ex-
penditure in light phases when compared with Zfp217+/+ mice (Supplemental Figure 
S3C,D), but Zfp217+/− mice showed increased VO2 as well as increased energy expenditure 
in dark phases when compared with Zfp217+/+ mice (Supplemental Figure S3C–E). Collec-
tively, these data provide evidence that Zfp217+/− mice had no defective adipocyte differ-
entiation ability and normal adipose tissues under NC. Possibly because we used a con-
stitutive whole-body heterozygous knockout mice model, the possibility that compensa-
tory responses mask the requirement for Zfp217 in metabolic homeostasis in the basal 
state cannot be excluded. Future studies employing conditional KO of Zfp217 in adult 
mice will help address this issue. 

  

Figure 1. Generation of whole-body Zfp217 knockout mice. (A) Schematic of a gene-targeting
strategy to create Zfp217 KO mice. (B) PCR-based genotyping of Zfp217 KO and WT alleles.
(C) Quantitative real-time PCR analysis of Zfp217 mRNA expression in inguinal white adipose
tissue (iWAT), epididymal white adipose tissue (eWAT), brown adipose tissue (BAT), and liver of
Zfp217+/+ and Zfp217+/− mice (n = 8 per group). For all statistical plots, data are presented as the
mean ± SEM. ** p < 0.01.

2.2. Zfp217+/− Mice Exhibit a Similar Phenotype to Zfp217+/+ Mice under a Normal
Chow Diet (NC)

When maintained under a normal chow diet (NC) ad libitum, the Zfp217+/− mice had
similar body weight and food intake to Zfp217+/+ mice (Figure 2A; Supplemental Figure
S1A). Moreover, the body composition of the NC-fed Zfp217+/− mice had a similar gross
appearance and percentage total body fat as Zfp217+/+ mice (Figure 2B; Supplemental
Figure S1B). iWAT, eWAT, and BAT pads were not significant between the Zfp217+/+

mice and Zfp217+/− mice (Supplemental Figure S1C,D). Histological observations also
confirmed no obvious differences in sections of various adipose tissues (Supplemental
Figure S1E–G) of the Zfp217+/+ mice and Zfp217+/− mice, regardless of the average area
of adipocytes or the distribution of adipocyte diameters.

Furthermore, glucose homeostasis in the mice was assessed by glucose and insulin
tolerance tests. The GTTs and ITTs revealed no differences between the Zfp217+/+ mice
and Zfp217+/− mice (Supplemental Figure S2A–D). In addition, we also measured the
oxygen consumption (VO2) and CO2 production (VCO2) rates of both genotypes by indi-
rect calorimetry to determine energy expenditure. The physical activity and respiratory
exchange ratio were comparable between genotypes (Supplemental Figure S3A,B). Con-
sistent with the physical activity, Zfp217+/− mice showed similar VO2 and VCO2 as
well as energy expenditure in light phases when compared with Zfp217+/+ mice (Supple-
mental Figure S3C,D), but Zfp217+/− mice showed increased VO2 as well as increased
energy expenditure in dark phases when compared with Zfp217+/+ mice (Supplemental
Figure S3C–E). Collectively, these data provide evidence that Zfp217+/− mice had no
defective adipocyte differentiation ability and normal adipose tissues under NC. Possi-
bly because we used a constitutive whole-body heterozygous knockout mice model, the
possibility that compensatory responses mask the requirement for Zfp217 in metabolic
homeostasis in the basal state cannot be excluded. Future studies employing conditional
KO of Zfp217 in adult mice will help address this issue.
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Figure 2. Zfp217+/− mice are resistant to high-fat diet-induced obesity. (A) Body weight of Zfp217+/+ 
and Zfp217+/− mice fed a normal chow diet (NC) for 10 weeks and then switched to a high-fat diet 
(HFD) for 16 weeks (n = 8 per group). (B) External appearance of representative Zfp217+/+ and 
Zfp217+/− mice shown in A at 26 weeks. (C) Body fat weight or percentage of Zfp217+/+ and 
Zfp217+/− mice (n = 8 per group). (D) Gross appearance of adipose tissues from representative 
Zfp217+/+ and Zfp217+/− mice shown in A at 26 weeks. (E) iWAT, eWAT, BAT weight or percentage 
of Zfp217+/+ and Zfp217+/− mice (n = 8 per group). (F) H&E staining of adipose tissue from 
Zfp217+/+ and Zfp217+/− mice (Scale bar: 100 μm) (n = 6 per group). (G,H) Average cell area (left) 
and adipocyte size distribution (right) in iWAT (G) and eWAT (H) of Zfp217+/+ and Zfp217+/− mice 
(n = 6 per group). For all statistical plots, data are presented as the mean ± SEM. * p < 0.05; ** p < 
0.01; ns indicates no significance between the two indicated groups. 

A high-fat diet causes disturbances in glucose metabolism in mice [30]. The GTT and 
ITT reflect the body’s ability to regulate glucose and the peripheral tissue’s sensitivities 
response to insulin, respectively [31,32]. The GTT results showed that the Zfp217+/− mice 
exhibited improved glucose clearance compared with Zfp217+/+ mice (Figure 3A,B). Cor-
respondingly, Zfp217+/− mice were also more sensitive to insulin than Zfp217+/+ mice, as 

Figure 2. Zfp217+/− mice are resistant to high-fat diet-induced obesity. (A) Body weight of Zfp217+/+ and Zfp217+/−

mice fed a normal chow diet (NC) for 10 weeks and then switched to a high-fat diet (HFD) for 16 weeks (n = 8 per group).
(B) External appearance of representative Zfp217+/+ and Zfp217+/− mice shown in A at 26 weeks. (C) Body fat weight or
percentage of Zfp217+/+ and Zfp217+/− mice (n = 8 per group). (D) Gross appearance of adipose tissues from representative
Zfp217+/+ and Zfp217+/− mice shown in A at 26 weeks. (E) iWAT, eWAT, BAT weight or percentage of Zfp217+/+ and
Zfp217+/− mice (n = 8 per group). (F) H&E staining of adipose tissue from Zfp217+/+ and Zfp217+/− mice (Scale bar:
100 µm) (n = 6 per group). (G,H) Average cell area (left) and adipocyte size distribution (right) in iWAT (G) and eWAT
(H) of Zfp217+/+ and Zfp217+/− mice (n = 6 per group). For all statistical plots, data are presented as the mean ± SEM.
* p < 0.05; ** p < 0.01; ns indicates no significance between the two indicated groups.
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2.3. Zfp217 Knockout Mice Are Resistant to Diet-Induced Obesity

To investigate the effects of high-fat diet (HFD) treatment, a cohort of 10-week-old
Zfp217+/+ and Zfp217+/− male mice were fed ad libitum a diet containing 60% fat for
16 weeks. Interestingly, the Zfp217+/− mice displayed prevented HFD-induced obesity,
and their body-weight gain was significantly slower than that of the Zfp217+/+ mice after
16 weeks of HFD feeding (Figure 2A). However, there was no difference in food intake
between Zfp217+/+ mice and Zfp217+/− mice (Supplemental Figure S1A). We found that
Zfp217+/− mice had a smaller gross appearance than that of Zfp217+/+ mice (Figure 2B).
We found that HFD-fed Zfp217+/− mice had an extremely significantly lower fat weight
and percentage total body fat than those of Zfp217+/+ mice (Figure 2C). Further analysis
revealed that iWAT and BAT pads were smaller in Zfp217+/− mice than in Zfp217+/+

mice, but eWAT pads showed no difference between Zfp217+/+ mice and Zfp217+/− mice
(Figure 2E). Subsequently, sections of iWAT and BAT of Zfp217+/+ mice and Zfp217+/−

mice showed obvious differences by histological observation, but not eWAT (Figure 2F).
To determine whether the reduction in the size of the fat pad was because of fewer cell
numbers or smaller adipocytes, we examined the inguinal fat tissue sections and found
that the average area and the size distribution of adipocyte were smaller in the Zfp217+/−

mice adipose tissues than those of the Zfp217+/+ mice (Figure 2G). However, we found
that the average area of adipocytes and the distribution of adipocyte diameters did not
differ in the eWAT of Zfp217+/+ mice and Zfp217+/− mice (Figure 2H). A comparison
between the average area of inguinal adipocytes (Figure 2H) and the average inguinal fat
pad weight (Figure 2E) suggested that the reduced total fat accumulation in Zfp217+/−

mice was primarily because of the reduced size of the inguinal adipocytes.
A high-fat diet causes disturbances in glucose metabolism in mice [30]. The GTT and

ITT reflect the body’s ability to regulate glucose and the peripheral tissue’s sensitivities
response to insulin, respectively [31,32]. The GTT results showed that the Zfp217+/−

mice exhibited improved glucose clearance compared with Zfp217+/+ mice (Figure 3A,B).
Correspondingly, Zfp217+/− mice were also more sensitive to insulin than Zfp217+/+

mice, as determined by ITT (Figure 3C,D). Together, these data suggest that loss of Zfp217
expression ameliorates HFD-induced obesity-related metabolic syndrome including insulin
resistance and glucose intolerance.

2.4. Zfp217 Knockout Mice Demonstrate Increased Energy Expenditure

To investigate whether Zfp217 deficiency might cause alterations in energy metabolism,
we next measured the mice for several metabolic parameters. Surprisingly, indirect
calorimetry analysis revealed that the total volume of carbon dioxide production (VCO2)
and oxygen consumption (VO2) were significantly higher in HFD-fed Zfp217+/− mice
than in Zfp217+/+ mice during both light and dark phases (Figure 4C,D). Correspondingly,
energy expenditure rate (EE) was significantly increased in Zfp217+/− mice during both
light and dark compared to Zfp217+/+ mice (Figure 4E). Since no differences were observed
in physical activity or the respiratory exchange ratio (Figure 4A,B), we therefore concluded
that higher energy expenditure in HFD-fed Zfp217+/− mice is the primary mechanism
facilitating their resistance to adiposity and body-weight gain.
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Figure 3. Zfp217 deficiency improves glucose tolerance and insulin sensitivity under HFD. (A,B) IP
glucose tolerance tests (GTTs) were performed on Zfp217+/+ and Zfp217+/− mice at 14 weeks, and
the corresponding areas under the curves were calculated (n = 8 per group). Comparison at each
time point was made against Zfp217+/+ control mice by two-way ANOVA. (C,D) IP insulin tolerance
test (ITT) was performed on Zfp217+/+ and Zfp217+/− mice at 15 weeks, and the corresponding
areas under the curves were calculated (n = 8 per group). Comparison at each time point was made
against Zfp217+/+ control mice by two-way ANOVA. For all statistical plots, data are presented as
the mean ± SEM. * p < 0.05.

2.5. Impact of Zfp217 Deletion on Gene Expression in Inguinal Adipose Tissue

Our previous study showed that Zfp217 is positively correlated with triglyceride
accumulation and can promote fat accumulation through post-transcriptional modification
of m6A [25,27]. Similarly, we found that Zfp217 deletion causes resistance to HFD-induced
obesity in in vivo experiments, possibly due to reduced adipogenesis or increased metabolic
thermogenesis. To test the possibility, we selected the most important genes related to
adipogenesis and lipid metabolism. Subsequently, we examined their expression in the
inguinal fat tissue of Zfp217+/+ and Zfp217+/− mice fed an HFD for 16 weeks. We found
that the mRNA expression levels of adipogenesis-related genes (PPARγ, CEBPα, AP2,
adiponectin, and FAS) in the inguinal adipose tissue of high-fat-fed Zfp217+/− mice were
significantly lower than those of Zfp217+/+ mice, whereas the mRNA expression levels of
lipid metabolism-related genes (PGC-1α) were extremely significantly higher than those of
Zfp217+/+ mice (Figure 5A). At the same time, we also found that the protein expression of
adipogenesis-related genes (PPARγ, AP2, and FAS) and lipid metabolism-related genes
(PGC-1α) showed the same trend (Figure 5B). The data suggest that the reduction of Zfp217
activity can alter the expression of genes and inhibit impairment of adipose tissue lipid
storage. The differential expression of genes may be the molecular cause of resistance to
high-fat diet-induced obesity.
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Figure 4. Zfp217 deficiency increases energy expenditure under HFD. (A) Physical activity,
(B) Respiratory exchange ratio (C) Oxygen consumption (VO2), (D) Carbon dioxide generation
(VCO2), and (E) Energy consumption analyzed by indirect calorimetry in Zfp217+/+ and Zfp217+/−

mice after HFD feeding at 25 weeks (n = 6 per group). For all statistical plots, data are pre-
sented as the mean ± SEM. * p < 0.05; ** p < 0.01; ns indicates no significance between the
two indicated groups.
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(A) Quantitative real-time PCR analysis of genes involved in adipogenesis and lipid metabolism
in iWAT of Zfp217+/+ and Zfp217+/− mice fed an HFD. Expression data were normalized to β-
actin and the 18 S geometric mean in each sample (n = 6 per group). (B) Western blotting analysis
of genes involved in adipogenesis and lipid metabolism in iWAT of Zfp217+/+ and Zfp217+/−

mice fed an HFD. Expression data were normalized to the β-actin geometric mean in each sample
(n = 6 per group). For all statistical plots, data are presented as the mean ± SEM. * p < 0.05; ** p < 0.01.

2.6. Zfp217 Knockout Mice Exhibit Reduced Adipogenesis

To determine the role of Zfp217 in adipogenesis in Zfp217 knockout mice, we exam-
ined adipogenic differentiation potential in vitro. MEF cells were isolated from
an E14.5 d embryo and induced in an adipogenic culture medium as described in Materials
and Methods. The differentiation was assessed by examining lipid accumulation and deter-
mining gene expression. Compared to Zfp217+/+ cells, Oil Red O staining demonstrated
that Zfp217+/− MEF had fewer lipid droplets (Figure 6A). This result was similar to that of
the triglyceride content measurement. The triglyceride content in differentiated adipocytes
from Zfp217+/− MEF was significantly lower than that in Zfp217+/+ cells (Figure 6B). These
results suggest a decreased adipogenic potential in Zfp217-deficient cells. We examined the
expression of transcription factors (PPARγ and C/EBPα) that are required for adipocyte
differentiation. After differentiation, Zfp217+/− cells had an extremely significant reduc-
tion in mRNA and protein for PPARγ and AP2 (Figure 6C,D). There were also extremely
significant changes in mRNA for C/EBPα and adiponectin (Figure 6C). The results imply
that Zfp217 deletion inhibits adipogenesis of MEFs cells, which is consistent with the
in vivo level data.
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analysis (n = 3 per group). (D) Protein expression of Zfp217, PPARγ, and AP2 in differentiated cells
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3. Discussion

A series of factors have been reported to be involved in the process of adipocyte
differentiation, and the molecular regulatory mechanisms of adipogenesis have been sys-
tematically summarized [14,33]. PPARγ and C/EBPα have emerged as master regulators of
adipogenesis, which oversee the entire terminal differentiation process [34,35]. Understand-
ing the transcriptional cascade regulatory network of these factors and the mechanisms
regulating adipogenesis is of great significance for the treatment of obesity.

It is well known that ZFP217, which a member of the histone complex repressors, is
involved in many biological processes, including tumorigenesis and embryonic develop-
ment [28,36,37]. Recently, it has been reported that Zfp217 levels are positively associated
with triglycerides, and knockdown of Zfp217 hinders adipogenic differentiation by re-
ducing the expression of key lipogenic genes PPARγ, C/EBPα, Ap2, and adiponectin
in 3T3-L1 cells, which means Zfp217 has a potential effect on obesity [25,26]. Based on
these results, to better understand the impact of Zfp217 loss on obesity, we sought to
address the effect of Zfp217 deficiency on metabolic homeostasis by establishing a novel
mouse model heterozygous for the Zfp217 gene using the CRISPR/Cas9 system. In our
study, we found that the detection of adipogenesis-related genes PPARγ, C/EBPα, Ap2,
and adiponectin in iWAT and MEFs showed a significant decrease after Zfp217 deletion
(Figures 5A and 6C,D). This is consistent with previous research. These data imply that the
expression of Zfp217 is significantly positively correlated with the expression of adipogenic
genes such as PPARγ, C/EBPα, and Ap2. In vitro studies and mice models with high fat
diets showed that Zfp217 plays a key role in adipogenesis.
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Consistent excessive caloric intake usually leads to increased fat deposition, mainly in
the subcutaneous fat cells [38]. In addition, there are also reports in the literature that white
adipose tissue can be divided into subcutaneous adipose depots (e.g., inguinal adipose
tissue) and visceral adipose tissue (e.g., epididymal adipose tissue) according to anatomical
location [39]. In obesity, visceral fat can expand by increasing the size of adipocytes, while
subcutaneous fat enlarges mainly by increasing the size or number of adipocytes to adapt
and expand to excess energy [40,41]. Simultaneously, our study further confirms that
Zfp217+/− mice can resist obesity because they have smaller and fewer adipocytes in
inguinal adipose tissue in vivo (Figure 2A,D–G). Our results are in agreement with those
reported earlier. Once adiposity accumulates, adipose tissue dysfunction leads to the
production of a series of metabolic syndromes, including insulin resistance as the dominant
feature [42,43]. In this study, we found that obese Zfp217+/+ mice had significantly poorer
glucose tolerance and insulin sensitivity than Zfp217+/− mice (Figure 3). Our data further
indicate that Zfp217 knockout mice had reduced body fat, which protected against high-fat
diet-induced insulin resistance.

In general, changes in body weight are closely related to physical activity and energy-
producing metabolism besides the body’s feeding activity and material metabolism [30].
In the present study, we found that obesity in Zfp217+/+ mice was not because of their exces-
sive energy intake or less physical activity than that of Zfp217+/− mice
(Figure 4A and Figure S1A). It has been reported that total oxygen consumption is re-
duced and mitochondrial activity is decreased under obese condition [44]. As observed in
this experiment, Zfp217+/+ mice fed high-fat diets showed a significant decrease in oxygen
consumption, but Zfp217+/− mice could recover this phenotype (Figure 4C). Surprisingly,
we newly found that Zfp217 can affect the expression of PGC-1α, which resists obesity by
increasing the thermogenic capacity of the body. (Figure 5A,B), in addition to participating
in the adipogenic process. It is now well established that PGC-1α acts as a transcriptional
cofactor involved in a variety of biological processes including adaptive thermogenesis,
mitochondrial formation, glucose and fatty acid metabolism and is closely associated with
diseases such as obesity and type 2 diabetes [45–47]. Previously reported functions of
Zfp217 were mainly related to lipogenic differentiation, and this provides new ideas and
insights into our understanding of Zfp217 regulation of obesity.

4. Conclusions

In conclusion, we describe the effects of Zfp217 deficiency on whole-body glucose
and insulin levels and thermogenesis in a basal state and in diet-induced obesity. We
found that Zfp217+/− mice were comparable to Zfp217+/+ mice on a normal chow diet, but
Zfp217+/− mice were resistant to high-fat diet-induced obesity and were insulin resistant
with improved glucose hemostasis. The present study showed that Zfp217 could function
by regulating related genes acting on both adipogenesis and lipid metabolism pathways,
but the specific molecular mechanisms still need to be investigated in depth. Therefore,
our results highlight that Zfp217 may be a novel target to reduce obesity and its related
complications in patients.

5. Materials and Methods
5.1. Generation of Genetically Modified Mice

Whole-body Zfp217-knockout C57BL/6J mice were constructed via CRISPR/Cas9
technology. sgRNAs targeting the mouse Zfp217 were designed using the CRISPR on-
line design tool (http://crispr.mit.edu/, accessed on 22 April 2021). sgRNAs sequences
were as follows: sgRNA1: TGCTGTGCCCATAAAAGGGC, sgRNA2: CATAAGGACTC-
CTTCACGTA. Off-target analysis for sgRNA2 and amplifications for each primer pair
(Table S2) were carried out separately. The PCR products were incubated at 37 ◦C for
15 min with T7E1 enzyme and were examined by 1.5% agarose gel. The sgRNAs and Cas9
nuclease were injected into fertilized oocytes. In this study, we generated 12 heterozygous
knockout mice by CRISPR/Cas9 technology. Six of these mice (#1, #4, #6, #7, #12, and #14)

http://crispr.mit.edu/
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had deletions of >300 bp fragment, while the remaining six mice (#2, #8, #9, #10, #11, and
#13) only had <50 bp fragment deletions. For easy genotype identification and maximum
speed of breeding, we selected male mice with >300 bp deletion (#12) as the F0 generation
germline mice. The heterozygous KO (Zfp217+/−) and wild-type (Zfp217+/+) littermates
were used in the study. These mice were maintained at 23 ± 1 ◦C with a 12 h light/dark
cycle and were housed in plastic boxes with free access to water and diet. All procedures
were performed in accordance with the institutional animal care and use committees at
Huazhong Agricultural University.

5.2. Diets

An obesity murine model was established by feeding a normal chow diet (NC; 10%
fat, 70% carbohydrates, and 20% protein; D12450B) for 10 weeks and then switched to
a high-fat diet (HFD; 20% protein, 60% fat, and 20% carbohydrates; D12492) for 16 weeks.
Mice that were fed an NC post weaning until 26 weeks of age served as controls. The feed
intake and body weight were recorded weekly.

5.3. Genotype Identification

Mice were weaned at three weeks of age. DNA was prepared from tail samples using
the Mini BEST Universal Genomic DNA Extraction Kit Ver 5.0 according to the manufac-
turer’s instructions (Japan, TAKARA, #9765). PCR analysis was used for genotyping and
was performed with a Bio-Rad machine. Zfp217-KO and wild-type alleles were detected
by PCR assays in which primer F1 (5′-TCGTGCTGACGCACATCTGACTC-3′) and primer
R1 (5′-GGGTTCCTCTCGGTGGTCATCAG-3′) amplified a 1008-bp fragment (WT) and
a 650-bp fragment (Zfp217-KO).

5.4. Tissue Isolation

At 26 weeks of age, the mice were fasted for 12 h and sacrificed under anesthesia.
Samples included inguinal fat, epididymal fat, brown fat, and liver. Samples were fixed
in 4% paraformaldehyde at room temperature and processed for histology. The frozen
samples for protein and mRNA analysis were kept at −80 ◦C.

5.5. Glucose and Insulin Tolerance Test

Intraperitoneal glucose tolerance test (IP-GTT) and intraperitoneal insulin tolerance
test (IP-ITT) were performed as previously described [48]. The process as follows: IP-GTT
and IP-ITT were performed after 14 and 15 weeks of NCD or HFD feeding, respectively. The
fasting blood glucose levels (t = 0) were measured using a glucometer (Roche, ACCU-Chek
active) after either 16 h for IP-GTT or 6 h for IP-ITT. Then, glucose (2 g/kg) was injected to
the mice intraperitoneally, and blood was collected from tail veins to measure glucose level
at 15, 30, 60, 90, and 120 min. For IP-ITT, mice were administered intraperitoneal injections
at a dosage of 1 U/kg. All other procedures were identical to those presented above. The
trapezoidal method was used to calculate the area under the curve (AUC).

5.6. Indirect Calorimetry

Indirect calorimetry was performed using the Panlab Oxylet Pro System (Spain, Panlab
LE 405). Animals were individually placed in metabolic cages, and respiratory measure-
ments were recorded for three consecutive days at 20-min intervals following an adaptation
period of 9 h. Then, the oxygen consumption rate (VO2; mL/kg/h), carbon dioxide produc-
tion rate (VCO2; mL/kg/h), energy expenditure rate (EE; kcal/kg/h), respiratory exchange
ratio (RER; VCO2/VO2), and activity were measured for 3 d. The energy expenditure rate
was calculated using the following equation: Energy expenditure rate = 3.815 × VO2 +
1.232 × VCO2. The metabolic data were normalized regarding body weight.
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5.7. Hematoxylin and Eosin (H&E) Staining

Freshly harvested adipose tissues were fixed in 4% paraformaldehyde, and an 8 µm
cross-section of adipose tissue was processed with a standard procedure.

5.8. Quantitative Image Analysis

Representative images were acquired using a light microscope (Japan, Tokyo, Olym-
pus, Olympus BX53). The average cell area and size of adipocytes were analyzed by Image
J pro plus. Five fields were randomly selected in each sample, and the area and diameter of
adipocytes were measured at 200×magnification. Average diameter was calculated from
the number of measured adipocytes.

5.9. RNA Extraction, cDNA Synthesis, and Quantitative Real-Time PCR

Total RNA was extracted from frozen adipose tissues or cells using Trizol (Japan,
TAKARA, #9109). cDNA was synthesized by reverse transcription of 1 µg RNA using the
Prime Script First-Strand cDNA Synthesis Kit (Japan, TAKARA, #RR047A) according to
the manufacturer’s instructions. The cDNA was quantified by qRT-PCR using the SYBR
Green PCR Kit (Germany, Qiagen, #208054). The reaction was performed as follows: 95 ◦C
for 5 min and 40 cycles of 95 ◦C for 30 s, 60 ◦C for 30 s, and 72 ◦C for 30 s. The reactions
were conducted using an ABI QuantStudio TM 6 flex (United States, Applied Biosystems).
Primers used in the PCR are listed in Supplementary Materials, Table S1. The comparative
Ct (2−∆∆Ct) method was used. The Ct values were normalized to the β-actin gene or 18 s in
the same sample.

5.10. Western Blotting

Total protein was extracted from adipose tissues and MEFs cells using RIPA lysis
buffer with protease inhibitors. All samples were centrifuged at 12,000 r/min for 10 min
at 4 ◦C, and the supernatants were collected. Protein concentrations were quantified by
the Pierce® BCA Protein Assay Kit (United States, Thermo Fisher, #23225). Proteins were
separated with 10% SDS/PAGE gels and transferred to PVDF membranes. The membranes
were probed with the following antibodies against PPARγ (China, ABclonal, #A0270), aP2
(China, ABclonal, #A0232), FAS (United States, CST, #3180), PGC-1α (China, ABclonal,
#A11971), and β-actin (China, ABclonal, #AC004), then probed with HRP-conjugated
secondary antibodies, and incubated with developing solution (United States, Bio-rad,
#170-5060). β-actin was used as the internal reference.

5.11. Mouse Embryonic Fibroblasts (MEFs) and Adipogenesis

MEFs were isolated from E14.5 d embryos and maintained as previously described [49].
MEFs were treated with differentiation medium (10% fetal bovine serum (FBS) containing
0.5 µM 3-isobutyl-1-methylxanthine, 1 µM dexamethasone, 10 µg/mL of insulin, and
200 µM indomethacin) for 4–6 d (medium was replaced every 2 d), and then cultured in
maintenance medium supplemented with 10% FBS and 10 µg/mL insulin for 2 d, followed
by exchange with regular medium containing 10% FBS and incubated for four days (media
were changed every 1 d). The cells had an adipocyte phenotype, and lipid droplets were
visible; only cells with 90% or higher differentiation after 14 days were used.

5.12. Oil Red O Staining

Oil Red staining was performed according to the protocol [50]. Briefly, the fully differ-
entiated MEF cells were washed twice with PBS and then fixed with 4% paraformaldehyde
for 0.5–1 h. After removal of the paraformaldehyde, the cells were stained with oil red
O dye (0.5 g of oil red O dry powder dissolved in 100 mL isopropanol then diluted with
dd H2O in a 3:2 ratio) at 37 ◦C for 1 h. Followed by removal of the dye, washing was
conducted twice in PBS. Finally, triglyceride accumulation was photographed with a Nikon
microscope (Eclipse TS100; Nikon, Tokyo, Japan).
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5.13. Statistical Analysis

In this study, all data were graphed as the mean ± SEM and were analyzed using
GraphPad prism software. Student’s t test (unpaired 2-tailed) was employed for compari-
son between two groups. Two-way ANOVA was used to examine interactions between
multiple variables. p < 0.05 is statistically significant and is denoted as * p < 0.05 or
** p < 0.01.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22105390/s1. Figure S1. Zfp217+/− mice exhibit no phenotypic alterations compared to
Zfp217+/+ mice fed a normal chow diet (NC); Figure S2. Zfp217+/− mice and Zfp217+/+ mice exhibit
similar glucose tolerance and insulin sensitivity under NC; Figure S3. Zfp217+/− mice exhibit no
difference compared to the Zfp217+/+ mice in energy expenditure under NC; Figure S4. Detection
of the five most likely off-target sites of sgRNA2’ in the genome based on PCR and agarose gel
electrophoresis; Table S1 Quantification real-time PCR primer sequence; Table S2 Primer design for
off-target site.
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