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Abstract

Molecular classification of hepatocellular carcinomas (HCC) could guide patient stratification for personalized
therapies targeting subclass-specific cancer ‘driver pathways’. Currently, there are several transcriptome-based
molecular classifications of HCC with different subclass numbers, ranging from two to six. They were estab-
lished using resected tumours that introduce a selection bias towards patients without liver cirrhosis and with
early stage HCCs. We generated and analyzed gene expression data from paired HCC and non-cancerous liver
tissue biopsies from 60 patients as well as five normal liver samples. Unbiased consensus clustering of HCC
biopsy profiles identified 3 robust classes. Class membership correlated with survival, tumour size and with
Edmondson and Barcelona Clinical Liver Cancer (BCLC) stage. When focusing only on the gene expression of
the HCC biopsies, we could validate previously reported classifications of HCC based on expression patterns of
signature genes. However, the subclass-specific gene expression patterns were no longer preserved when the
fold-change relative to the normal tissue was used. The majority of genes believed to be subclass-specific
turned out to be cancer-related genes differentially regulated in all HCC patients, with quantitative rather
than qualitative differences between the molecular subclasses. With the exception of a subset of samples with
a definitive b-catenin gene signature, biological pathway analysis could not identify class-specific pathways
reflecting the activation of distinct oncogenic programs. In conclusion, we have found that gene expression
profiling of HCC biopsies has limited potential to direct therapies that target specific driver pathways, but can
identify subgroups of patients with different prognosis.
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Introduction

Hepatocellular carcinoma (HCC) is one of the most
frequent and deadliest cancers worldwide, with very

limited therapeutic options [1]. The prognosis of
HCC patients is dismal, with less than 30% qualify-
ing for curative treatments such as tumour resection

or liver transplantation [2]. Median survival time of
patients who cannot be treated surgically is below 1

year. The only approved systemic treatment is sorafe-
nib, a multikinase inhibitor that prolongs median

patient survival by about 3 months [3]. There is a

pressing need for new therapies to treat advanced
HCC.

It is believed that the heterogeneity of human HCC

can be described through a system of discrete sub-
classes that could guide patient stratification for per-

sonalized therapies targeting subclass-specific cancer

Original Article

VC 2016 John Wiley and Sons Ltd and The Pathological Society of Great Britain and Ireland J Path: Clin Res April 2016; 2: 80–92
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and
distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are
made.

The Journal of Pathology: Clinical Research

J Path: Clin Res April 2016; 2: 80–92

Published online 6 January 2016 in Wiley Online Library

(wileyonlinelibrary.com). DOI: 10.1002/cjp2.37

http://creativecommons.org/licenses/by-nc-nd/4.0/


‘driver genes’. Currently, there are four
transcriptome-based molecular classifications of HCC
with different subclass numbers, ranging from two to
six [4–7]. Despite considerable research efforts, none
of them has found application in clinical practice.

The four published molecular classifications have
been developed using surgically obtained tumour
specimens and, therefore, rely on the subset of
patients selected for surgical treatment. For patients
with liver cirrhosis and HCC, surgery (tumour
resection or liver transplantation) is generally recom-
mended only for early stage tumours in Barcelona-
Clinic Liver Cancer (BCLC) classes 0 and A [2].
Unfortunately, less than 30% of patients in Europe
and the United States are diagnosed with early stage
tumours. In this study, we set out to develop a
molecular classification system not biased by the
stage of the HCC and to evaluate the existing molec-
ular classifications of HCC in an unselected patient
population using tumour biopsies instead of resection
specimens.

Unexpectedly, we found that the inclusion of a
control group of five normal liver samples into the
analysis changed the interpretation of the existing
and newly defined HCC subclasses. Our results chal-
lenge the general assumption that the diversity in
gene expression profiles of human HCC is best
described through a system of discrete class labels.

Patients and methods

HCC patients and normal controls

From August 2002 to March 2012, patients under-
going a liver biopsy for suspected hepatocellular car-
cinoma at the University Hospital Basel were asked
for written informed consent to donate additional
biopsies for research purposes. Tumour and paired
non-tumour liver biopsies were performed under
ultrasound guidance using a coaxial needle technique
allowing repetitive sampling from the same part of a
focal lesion with a full-core biopsy instrument (Bio-
Pince

VR

, Angitech, Stenlose, Denmark). One biopsy
cylinder was used for routine diagnostic histopathol-
ogy, Edmondson grading, immunostaining and to
quantify the relative contribution of cancer cells,
necrotic areas and non-cancerous vital tissue in the
samples. Two additional biopsy cylinders were
shock-frozen in liquid nitrogen and stored at 2708C.
For the current studies, only samples composed of at
least 50% vital malignant cells in the tumour biopsy
and tumour-free in the parenchyma biopsy were
used. The patients were managed according to best

clinical practice. Treatment modalities as well as
overall survival times were recorded. Deaths due to
non-liver-related causes (n 5 3) were included in the
analysis as censored events. At the time of the final
analysis, 18% of the patients were alive and 12%
were lost to follow-up, with mean follow-up time of
130 weeks for the censored events. The normal con-
trol biopsy samples were obtained using the same
technique. The clinical information concerning the
control samples is summarized in Table 2. The study
was approved by the Ethics Committee of Basel.

RNA extraction, quantitative real-time polymerase
chain reaction (qPCR) and microarray
hybridization

Total RNA was extracted using Qiazol reagent and
RNAeasy Mini Kit (Qiagen, Hombrechtikon, Switzer-
land) according to the manufacturer’s instructions.
Total RNA, 250 ng, was reverse transcribed and bio-
tinylated with the whole-transcript Expression Kit
(Ambion, Zug, Switzerland) and whole-transcript
Terminal Labeling Kit (Affymetrix, Santa Clara, CA)
according to the manufacturer’s instructions. The
Hybridization and Wash Kit (Affymetrix) was used
to hybridize all samples to Human Gene ST 1.0

Table 1. Patient characteristics of HCC and paired parenchyma
samples

Number of patients 60

Mean age 6 SD 64 6 12

Female sex 12%

Cirrhosis 90%

Serum AFP> 100 ng/ml 33%

Largest tumour diameter, mean 6 SD, cm 5.7 6 3.6

Aetiology

HBV infection 15%

HCV infection 15%

alcohol abuse 72%

Edmondson grade

I 2%

II 70%

III 25%

IV 3%

Barcelona Clinic Liver Cancer stage

0 4%

A 28%

B 40%

C 21%

D 7%

Treatment modalities

Local treatment (EtOH/RFTA/TACE/SIRT) 33%

Local treatment 1 sorafenib 8.3%

Systemic treatment (sorafenib/sunitinib) 5%

Tumour resection 15%

Liver transplantation 8.3%

Supportive care 22%

Other/no data 8.3%
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arrays (Affymetrix). The data are available in the
GEO database under accession number GSE64041.
The same RNA samples were used for qPCR classifi-
cation of the tumours based on expression levels of
16 genes as described previously [5].

Immunohistochemistry

Immunohistochemical analysis was performed on
liver biopsy sections using an avidin-biotin complex
method (ABC detection kit, Vector Laboratories,
Petersborough, UK). Following pressure cooker-
mediated antigen retrieval in 0.001 M ethylenediami-
netetraacetic acid, pH 8, the sections were incubated
with 10% goat serum (Dako Cytomation, Baar, Swit-
zerland) for 20min. Endogenous peroxidase activity
was blocked using 0.5% H2O2. Slides were then
incubated with an antibody against b-catenin (BD
Biosciences, Allschwil, Switzerland) at a dilution
1:200. The labeling index was calculated in ‘hot-
spot’ areas as the proportion of positive nuclei as a
percentage of the total number of nuclei.

Statistical analysis

Preprocessing

The data were preprocessed using the robust multiar-
ray normalization procedure as implemented in the
oligo package of the Bioconductor/R statistical soft-
ware. We excluded measurements without a gene
annotation and those with signal intensity below 80
in the highest expressing sample. If multiple meas-
urements mapped to the same gene ID, we kept the
one with the highest standard deviation.

Sample clustering

We applied consensus clustering on a set of 7404
probe sets and 60 tumour samples using the Consen-
susClusterPlus package (Bioconductor/R) [8]. Probe
sets were included in the clustering if they fulfilled

the minimum variability criterion: fold change greater

than 2 between the 10th and the 90th percentile. The

consensus result was calculated based on 1000

resamplings with 80% of the samples and clustering

with Ward’s linkage method, using 1-Pearson corre-

lation as a distance measure. We analyzed consensus

matrices for number of clusters k from 2 to 10 and

found the most robust result with a 3-cluster solution.

Differential expression

The differential gene expression analysis of HCC

samples in clusters 1–3 compared to the five normal

samples was carried out using the moderated t statis-

tics implemented in the limma package (Bioconduc-

tor/R).

Subclass prediction

The preprocessed data were classified with the Near-

est Template Prediction algorithm implementation in

the Gene Pattern software (Broad Institute, Boston,

MA) using published gene signatures obtained from

Molecular Signatures Database [9].

Pathway analysis

For pathway enrichment analysis, we applied the

GSEAPreranked algorithm from the javaGSEA soft-

ware version 2.0.13 (Broad Institute)[10]. We used
the gene set collection C2-Canonical Pathway and a

selection of 683 gene sets from the C2-Chemical and

Genetic Perturbations collection (both version 3.1).

The input for GSEAPreranked was a list of all genes

on the preprocessed array and the log2 fold change

values between the signal intensity in each tumour

sample and the mean signal intensity in the 5 normal

samples. The output files from the GSEA were then

read into R software for filtering of the gene sets

with highly significant scores in at least 10% of

patients.

Table 2. Patient characteristics of control biopsy samples

Age Sex Reason for liver biopsy Evidence for absence of liver pathology

55 M Isolated slight gamma-glutamyl transpeptidase elevation Normal histology, liver ultrasound and transient elastography

22 M Slight elevation of transaminases Normal liver values at time of the biopsy, normal histology,

normal liver ultrasound and normal transient elastography

47 F Slight alanine transaminase and gamma-glutamyl

transpeptidase elevation

Normal liver values at the time of biopsy, normal histology,

normal liver ultrasound and normal transient elastography

78 F Biopsy of normal liver in a patient undergoing an ultrasound

guided biopsy of a focal lesion (metastasis of neuroendo-

crine tumour)

Normal histology of liver parenchyma, normal liver values

63 F Biopsy of normal liver in a patient undergoing an ultrasound

guided biopsy of a focal lesion (focal nodular hyperplasia)

Normal histology of liver parenchyma, normal liver values
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Identification of gene clusters

In order to identify clusters of genes that are likely to
be co-regulated and specifically upregulated or down-
regulated in a subset of patients, we applied
the following procedure: (i) we considered only the
genes that are not differentially expressed in the major-
ity of patients (less than twofold change compared to
the mean of normal samples), but altered in the same
direction in a subgroup of at least six HCC samples
(10% of the study population), (ii) we applied mixed
Gaussian model density estimation (package mclust
Bioconductor/R) to assess if the gene expression was
more likely to originate from a bimodal or unimodal
distribution, and kept the genes identified as bimodally
distributed with at least 10% of samples assigned to
each mode, (iii) we calculated all pairwise correlations
between the genes selected in step (i) and kept only
those that passed step (ii) and had at least six highly
correlated partners (>0.75 Pearson coefficient). For
each of the 265 genes that fulfilled these criteria, we
retrieved all their high-correlation partners from step
(iii) and iteratively merged the lists that shared >50%
of genes (looking at the shorter list) until no more
merging occurred, resulting in nine clusters.

Results

Patients’ characteristics

The study included paired liver needle biopsy sam-
ples from 60 HCC patients and five normal liver tis-
sue samples (Tables 1 and 2). The HCC patients
were predominantly male and 90% had liver cirrhosis
(Table 1). The underlying liver disease was related to
alcohol abuse (72%), hepatitis C virus (HCV) infec-
tion (15%) or hepatitis B virus (HBV) infection
(15%). 32% of the patients were in BCLC stages 0
or A (early HCC), 40% in stage B (intermediate),
21% in stage C (advanced) and 7% in stage D (ter-
minal). 72% of the biopsies were classified as
Edmondson grade I or II, 28% were grade III or IV.

With one exception, the biopsies were obtained from
treatment-na€ıve HCCs. The patients then underwent
treatment modalities suitable for their disease stage. A
total of 23% patients were treated surgically by resec-
tion or liver transplantation, 33% received local treat-
ments such as transarterial chemoembolization
(TACE), radiofrequency thermoablation (RFTA), selec-
tive internal radiation therapy (SIRT) or percutaneous
ethanol injection, 13% were treated with sorafenib or
sunitinib (alone or in combination with local treatment)
and 22% received best supportive care (Table 1).

Consensus clustering of HCC biopsy gene
expression profiles reveals three robust subclasses

We applied unsupervised consensus clustering
approach in order to generate a molecular classifica-
tion of human HCCs using diagnostic biopsy speci-
mens from an unselected patient population. In this
method, the final clustering result is based on multi-
ple rounds of resampling using subsets of samples.
This approach makes it possible to discover which
number of clusters results in the most stable subclass
structure. In our dataset, the most robust solution was
achieved with a three-cluster partitioning (Figure 1A,
Supplementary Table 1). The resulting sample group-
ing correlated with clinically relevant variables such
as Edmondson grade, tumour size and survival.
Tumours with Edmondson grades 3 and 4 (poor dif-
ferentiation phenotype) were found predominantly in
cluster 3 (p< 0.0001, Fisher test) (Figure 1A).
Tumours in cluster 2 were significantly larger than
the rest (p 5 0.015, Student’s t-test; Figure 1B). We
also found a statistically significant association of
cluster membership with the BCLC stage: patients
with early stage tumours (0/A) were overrepresented
in cluster 1, intermediate-stage (B) HCCs grouped
mostly in cluster 2 and the late stage tumours (C/D)
in cluster 3 (Figure 1C). There was a non-significant
trend towards improved survival of patients in cluster
1 (p 5 0.2, log-rank test)(data not shown). The differ-
ence became significant (p 5 0.017, log-rank test)
after exclusion of surgically treated patients (N 5 14)
who as a group had markedly longer survival com-
pared to all other patients regardless of the cluster
membership (Figure 1D).

Paired study design does not reduce variability
between the HCC gene expression profiles

The vast majority of HCCs arise in the context of
chronic liver disease, and disease-specific differences
in gene expression profiles could potentially affect
gene expression profiles of HCCs. Furthermore,
human genetic diversity and host factors such as sex,
age, race and comorbidities could also introduce vari-
ation of gene expression in HCCs. In an attempt to
control for these inter-individual differences in
hepatic gene expression profiles, we performed
microarray analysis of paired non-cancerous paren-
chyma biopsies collected at the time of the tumour
biopsy from all patients included in the study. We
speculated that the inclusion of the non-tumour sam-
ples in the analysis could filter out patient-specific
patterns from HCC expression profiles and thereby
improve the discriminative power of the analysis.
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Contrary to our expectations, we observed that fold
changes of gene expression generated by comparison
of the paired parenchyma and HCC biopsies showed
less cross-correlation between the 60 patients than
the tumour expression profiles normalized to the
mean of normal controls (Figure 2). This means that
the paired parenchyma samples added variability
unrelated to HCC into the analysis. This was most
likely caused by a significant diversity in gene
expression profiles of non-cancerous samples due to
different grades of liver fibrosis and underlying aeti-
ology (alcohol abuse, hepatitis B or C). In contrast,
compared to non-cancerous parenchyma, gene
expression profiles of the five normal control samples
showed very little variability despite differences in
sex and age (Supplementary Figure 1).

Consistent with these findings, we could not find a
stable cluster structure that showed significant corre-
lation with clinical variables or activation of specific
oncogenic driver pathways in tumour expression pro-
files after normalization using paired parenchyma
samples (data not shown). Therefore, we decided not
to use the paired parenchyma samples in our subse-
quent analysis.

Including normal control samples changes the
interpretation of gene expression-based
subclasses

The goal of targeted therapy is to correct abnormal
and pathological activation status of cellular signaling
pathways. Personalized medicine aims to identify
specific patients who could benefit from these

Figure 1. Consensus clustering of HCC biopsy gene expression
profiles reveals three robust subclasses. (A) Heatmap represen-
tation of gene expression across the 60 tumour samples
grouped into the three subclasses. Gene signatures, indicated by
curly brackets to the left of the heatmap, consist of all genes
that were twofold upregulated with a p-value below 0.001 in
one subclass of HCCs compared to the rest of the tumours
(gene list provided in Supplementary Table 1). The heatmap col-
ours represent scaled and centred expression values (shades of
red indicate the genes with increased expression compared to
the mean of the HCC samples for that gene, while blue indi-
cates decreased expression). The bar above the heatmap identi-
fies samples with Edmondson grade III or IV (black). The
dendrogram is derived from hierarchical clustering of a consen-
sus matrix resulting from 1000 rounds of clustering using a
resampled dataset. (B) Boxplot showing the differences in the
size of the largest tumour focus between the three HCC sub-
classes. (C) Distribution of BCLC stages between the three HCC
subclasses. The numbers of patients in each stage are indicated
in the bar plot. (D) Kaplan–Meier survival curves of non-surgical
patients in the three HCC clusters.
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approaches. The challenge of molecular tumour clas-
sification is to identify both patient groups and their
relevant therapeutic targets based on gene expression
data.

Our clustering approach, similar to all previously
published molecular classifications of human HCC,
defines patient subclasses based on differences in
gene expression among the tumour samples. In this
context, upregulation means that expression of a set
of genes is elevated in one tumour subclass compared
to the rest of HCCs in the dataset (Figure 1A). This
does not necessarily mean that this gene set is also
upregulated with respect to the undiseased, baseline
state of the cell. In order to interpret differential gene
expression in HCC molecular subclasses against the
appropriate biological baseline, we integrated a con-
trol set of five normal liver samples into our analysis
(Figure 3A).

Intriguingly, we observed that the expression of
subclass signature genes was generally altered in the
same direction in the entire set of 60 tumour sam-
ples, and not only within specific clusters. For exam-
ple, we realized that the gene signature ‘upregulated
in cluster 1’ was in fact downregulated in all HCCs,
with less-pronounced regulation in cluster 1 tumours.
Vice versa, genes downregulated in clusters 1 and 2
compared to 3 were in fact upregulated in all three
clusters. Cluster 2 was an exception, since it was
defined by a small set of genes that remained exclu-
sively upregulated in cluster 2 samples and were
unchanged in other samples after normalization of
gene expression values to normal control liver
samples.

In agreement with this result, we found that, apart
from a single exception, all genes significantly differ-
entially regulated relative to the normal tissue refer-
ence set (>2 fold, FDR< 0.01) in the samples of
cluster 1 were also differentially regulated in the
same direction in cluster 3. Cluster 2, on the other
hand, was characterized by a small subset of differ-
entially regulated genes that were not shared with
clusters 1 or 3 (Figure 3B).

In conclusion, we observed that a large majority of
genes whose expression was variable in HCC were
cancer-specific genes regulated to some extent across
all tumour samples, and that the magnitude of this
regulation influenced the outcome of unbiased sam-
ple clustering. This finding challenges the current
paradigm of subclass-specific differential gene
expression and pathway activation as a general fea-
ture of human HCC.

HCC clusters are characterized by different extent
of transcriptional regulation

We further observed that the molecular subclasses of
HCC were characterized by the extent of transcrip-
tional regulation, that is, the total number of differen-
tially regulated genes, rather than just the identity of
specific signature genes. The median number of
genes upregulated or downregulated >2 fold in an
HCC sample relative to the normal tissue increased
from 582 and 397, respectively, in cluster 1 to 961
and 906 in cluster 2 and to 1528 and 1233 in cluster
3 (Figure 4A). Additionally, we found that the num-
ber of upregulated genes alone was a significant

Figure 2. Paired study design does not reduce variability between the HCC gene expression profiles. Genome-wide fold changes
between 60 tumour samples and their corresponding paired controls (top panel), or between 60 tumour samples and the mean gene
expression of the five normal samples (bottom panel) were correlated. Each box represents the 59 Pearson correlation coefficient val-
ues for one tumour sample calculated over all other samples in the dataset.
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predictor of overall patient survival. In particular,
patients with more than 1500 genes upregulated more
than twofold compared to the mean of normal con-

trols showed a substantial decrease in overall survival
(p-value 0.000004, log-rank test, Figure 4B). These
findings further imply that unbiased clustering of
HCC expression profiles groups the samples accord-
ing to the extent of differential expression of genes
representing a universal ‘liver cancer phenotype’
rather than, as previously postulated, according to
subclass-specific upregulation or downregulation of a
defined set of genes representing an abnormally acti-
vated signaling pathway.

Integration of normal control samples changes
the interpretation of the existing HCC
classification systems

We next investigated whether the available classifica-
tion systems that relied on resected HCC specimens
were suitable to classify our biopsy samples that were
derived from patients with all tumour stages. In order
to do that, we used the available lists of subclass sig-
nature genes (Lee et al [4], Chiang et al [6], Hoshida
et al [7]) or qPCR classifier genes (Boyault et al [5])
to predict membership of our biopsy samples in the
subclasses of the existing classification systems.

All examined systems performed well in generat-
ing high confidence class membership predictions for
our dataset, with 77 to 95% of samples assigned to
molecular classes at the FDR< 0.05 (Table 3, Figure
4, Supplementary Figure 2). We could also validate
several reported associations of cluster membership
with clinical variables, including tumour size, differ-
entiation grade and overall survival (Supplementary
Figure 3). This finding demonstrates that gene
expression patterns described in surgically obtained
specimens are directly comparable with those derived
from diagnostic tumour biopsies. Indeed, the majority
of the published subclass signature genes showed the
expected class-specific expression pattern also in our
dataset (Table 3). In agreement with previous studies
[6], we observed considerable overlap between sub-
classes of the different classification systems in our
dataset (Supplementary Figure 4 and 2).

When the data were normalized to the normal liver
reference set, it turned out that the “upregulated in
good prognosis” gene signature of Lee et al [4]
actually corresponds to genes with general downregu-
lation in HCC, which are especially strongly sup-
pressed in the set of ‘poor prognosis’ samples
(Figure 5A). Also, compared to normal liver samples,
the signatures reported in literature as ‘upregulated in
unannotated’ (Chiang et al [6]) and ‘upregulated in
S3’ (Hoshida et al [7]) were actually downregulated
in all subclasses, but to a lower degree in the ‘unan-
notated’ and S3 groups. Importantly, regardless of

Figure 3. Including normal control samples changes the interpre-
tation of gene expression-based subclasses. (A) Heatmap represen-
tation of changes in gene expression as in Figure 1A, but using
the expression data scaled with respect to the mean of normal
liver tissue samples. The heatmap colours represent log2 fold
change values in the tumour compared to the mean of 5 normal
liver samples (shades of red indicate the genes upregulated with
respect to the normal liver, while blue indicates downregulation).
(B) Venn diagrams showing the overlap in the sets of genes sig-
nificantly dysregulated in each HCC cluster compared to the refer-
ence set of normal liver tissue samples (>2-fold, FDR< 0.01).
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the classification system, we found that the majority
of subclass signature genes showed expression
changes in the same direction in all tumours, with
more pronounced upregulation or downregulation in
a subset of samples (Figure 5).

Unbiased pathway analysis of HCC transcriptomes
identifies oncogenic driver pathways only in a set
of samples with b-catenin pathway activation

We next wanted to gain further insight into the biolog-
ical processes and pathways involved in HCC, and
possibly uncover a novel subclass structure related to
activation of particular oncogenic signaling pathways
in our dataset. To this end, we applied the Gene Set
Enrichment Analysis (GSEA) method to each HCC
sample. For every tumour sample, we generated a
ranked gene list based on the fold-change of expres-
sion compared to the mean of the reference set of nor-
mal samples. Subsequently, the gene set collections
from the Molecular Signatures Database (MSigDB)
were tested for enrichment in the ranked lists. The
MSigDB collects lists of genes from several curated
databases (KEGG, Reactome, Biocarta), as well as
from high throughput measurements of gene expres-
sion after chemical or genetic perturbations.

Out of 1677 gene sets included in the analysis, we
identified 163 with highly significant enrichment
(FDR< 0.0001) in at least 10% of the patients. Consen-
sus clustering of these gene sets based on their enrich-
ment scores detected 4 clusters. Cluster A consisted of
58 gene sets related to cell proliferation, including path-
ways reported to play a role in HCC such as EGFR,
MYC, MYB, WTAP, FOXP3, EZH2, E2F or RB1
[11–16]. Cluster B was composed of 38 gene sets

related to liver metabolism. These gene sets were
almost universally downregulated relative to the normal
controls, demonstrating that the loss of hepatocyte phe-
notype is a general feature of HCC and not limited to a
subset of samples. The largest cluster (cluster C) con-
sisted of 61 upregulated gene sets related to inflamma-
tion, cell adhesion and epithelial-to-mesenchymal
transition, including pathways previously implicated in
human HCC such as Notch, EGF and MYB [17]. A
small cluster (cluster D) grouped seven gene sets that
all represented activation of interferon system.

This approach identified processes and pathways
dysregulated in the majority of HCCs but, with the
exception of a small interferon cluster, we did not
find gene sets specifically altered in subgroups of
patients, such as the genes specific for cluster 2
patients. In order to identify such gene sets we
applied a filtering scheme using genes differentially
expressed in 6–30 patients compared to normal liver
samples (10–50% of the study population). The genes
were further selected based on the distribution of
expression values and the number of highly correlat-
ing genes, and subsequently grouped, generating nine
gene sets of sizes ranging between 10 and 449 genes

Table 3. Performance of resection-derived molecular classifica-
tions in the biopsy dataset

Molecular

classification

% of biopsy samples

classified with high

confidence (FDR< 0.05)

% of signature genes

showing differential

expression (p< 0.05)

Lee et al 77% 81%

Boyault et al NA (qPCR

classifier used)

56%

Chiang et al 95% 77%

Hoshida et al 91% 75%

Figure 4. HCC clusters are characterized by different extent of transcriptional regulation. (A) Boxplot showing the number of genes
up- and downregulated at least twofold in HCC subclasses compared to the mean of normal liver tissue. (B) Kaplan–Meier survival
curves of non-surgical HCC patients grouped based on the extent of gene upregulation (>2-fold) compared to normal samples.
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Figure 5. Integration of normal control samples changes the interpretation of existing HCC classification systems. Transcriptional pro-
files of HCC biopsies were classified into clusters described in the studies of Lee et al [4] (A), Chiang et al [6] (B) and Hoshida et al
[7] (C) using the nearest template prediction (NTP) algorithm and the published gene signatures. For classification according to
Boyault et al [5] study (D), a qPCR-based algorithm was applied, as described previously. Heatmaps show log2 fold changes of gene
expression for the published signature genes in HCC biopsies compared to the mean of five normal liver samples (shades of red indi-
cate genes upregulated with respect to the normal liver while blue indicates downregulation). Bars above the heatmaps indicate class
membership according to NTP/qPCR, with low-confidence predictions (FDR> 0.05) represented by empty boxes, on the right side of
the high confidence predictions for the given class. Bars to the left of the heatmaps indicate the published gene signatures. Genes
described to be part of a signature, but without significant differential expression (p-value> 0.05) in our dataset are shown as empty
boxes below the significant genes. Bars below the heatmaps indicate the Edmondson grade, as explained in the colour key.
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(see Statistical Analysis section). Of these nine gene
sets, three were related to previously identified path-

ways and processes: cell proliferation, inflammation

and interferon signaling, and five gene sets could not
be assigned a meaningful biological interpretation.

The remaining set was composed of 42 genes, the
majority of which were known b-catenin pathway tar-

gets or genes directly involved in b-catenin signaling

in the liver such as AXIN2, GLUL and LGR5 (Figure
6A). This b-catenin pathway signature showed true

class-specific expression in that it was specifically
upregulated in a subgroup of tumours, with expression

levels equivalent to the normal liver in the remaining
HCC specimens. Samples with high expression of

genes belonging to this set constituted approximately

one-third of the HCC cases in our dataset. Activation
of the b-catenin pathway in these samples was con-
firmed by increased levels of nuclear b-catenin
observed by immunohistochemical staining (Figure
6B,C). We also noted that expression of the b-catenin
pathway signature was mostly upregulated in samples
belonging to cluster 2 (16 out of the 23 samples clas-
sified in cluster 2 also showed high expression of b-
catenin signature genes).

Discussion

Despite considerable efforts to increase therapeutic
options for advanced hepatocellular carcinoma,

Figure 6. Unbiased pathway analysis of HCC transcriptomes identifies oncogenic driver pathways only in a set of samples with
b-catenin pathway activation. (A) Heatmap showing fold change of gene expression in HCC samples relative to the mean of the normal
control samples. (B) HCC samples with increased nuclear b-catenin staining show an increase in mean fold change of expression of
b-catenin related genes. (C) Representative images showing b-catenin staining in HCC biopsies with 15, 30 and 70% of positive nuclei.
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sorafenib remains the only systemic treatment option.
Several additional targeted therapeutics have been
tested in large phase III trials, such as sunitinib [18],
brivanib [19], linifanib [20], but none of them was
found to be superior compared to sorafenib. HCC is
a very heterogeneous cancer, and the failure of these
trials has been attributed at least in part to the unse-
lected inclusion of HCC patients with the entire spec-
trum of molecular subtypes of tumours. There is
growing consensus in the field that progress in sys-
temic therapies for HCC will depend on adequate
selection of patients based on molecular classification
of HCCs. The highly publicized phase-II trial with
tivantinib showed in a retrospective analysis signifi-
cant survival efficacy in the subgroup of patients
with c-met overexpression, but no effect on median
survival in patients with low expression of c-met
[21].

It is believed that the heterogeneity of human HCC
can be described through a system of discrete sub-
classes that could guide patient stratification for
personalized therapies targeting subclass-specific
cancer ‘driver genes’. Currently, there are four
transcriptome-based molecular classifications of HCC
with different subclass numbers, ranging from two to
six [4–7]. Despite considerable research efforts, none
of them has found application in clinical practice. All
of the published classification systems rely on surgi-
cally resected HCCs, and this bias towards early
stage tumours or HCC arising in non-cirrhotic livers
might have been a reason for their limited usefulness
for patients with advanced HCCs.

In the present work, we set out to establish a
molecular classification of human HCC based on
gene expression profiles from diagnostic biopsy
specimens. We observed a robust 3-subclass struc-
ture, which correlated with clinical variables and
overall survival (Figure 1). We introduced two sets
of control samples into our analysis in order to
ensure correct biological interpretation of gene
expression changes in HCC. Initially, a set of 60
paired non-tumour liver tissue samples was included
in an attempt to control for the inter-individual dif-
ferences in gene expression between the tumour sam-
ples. However, we found that this approach
introduced additional variability into the dataset
instead of removing irrelevant patient-specific effects
and exposing true differences between the tumour
subclasses (Figure 2). Subsequently, we have resorted
to using five normal liver biopsy gene expression
profiles as the baseline for comparison of the tumour
samples. Using this control set, we observed that the
subclass-defining ‘signature’ genes were mostly dif-
ferentially regulated in the same direction across all

tumours, regardless of their subclass membership
(Figure 3). The same was true for the subclasses of
previously published molecular classification systems
(Figure 5).

We conclude that molecular classification systems
of HCCs that are based on transcriptome analysis
result largely from quantitative differences of expres-
sion levels of a set of tumour-specific genes, instead
of the upregulation or downregulation of class-
specific genes. A notable exception was a set of
b-catenin target genes (Figure 6) that defined cluster
2 in the current study as well as the ‘b-catenin’ sub-
class of Chiang et al [6] and G5/G6 subclasses of
Boyault et al [5] The b-catenin pathway is central to
liver development and often deregulated in liver can-
cer. Differential expression of genes relevant to this
pathway is related to mutations in CTNNB1, which
occur in about a third of HCC cases [22]. Recent
work points to the anti-proliferative potential of
b-catenin pathway inhibitors in in vitro models of
HCC, holding promise for future targeted therapies in
this group of patients [23].

Ideally, a molecular classification of human HCC
would highlight the differential activation of drug-
gable targets, such as kinases or growth factor recep-
tors, allowing identification of patients who could
benefit from targeted therapies. So far, none of the
existing molecular classifications of HCC has shown
clear potential in this direction. The limited potential
of gene expression profiling approaches might be
caused by the convergence of multiple oncogenic
driver pathways on a limited number of transcription
factors that are central for the activation of cancer
gene expression. Because of this convergence, the
analysis of gene expression data sets is not very
informative with regard to the activation of upstream
signaling pathways. In order to classify HCC patients
based on differential pathway activation it might be
more promising to use phosphoproteomic assays,
rather than transcriptome analysis. These approaches
would directly measure the activation of the signaling
molecules and attempt to resolve a set of HCC sam-
ples into clusters based on the similarities and differ-
ences in the identities of the signaling pathways
involved. However, quantitative measurement of a
large number of phosphoproteins in a sufficient num-
ber of tumour samples is currently a highly challeng-
ing task. In the future, progress in molecular
classification of HCCs might result from further tech-
nical improvements in phosphoproteomic assays or
from the integration of histological, immunohisto-
chemical, genomic, transcriptomic and targeted bio-
chemical analysis of oncogenic signaling pathways.
The availability of tumour tissue from a large number
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of patients with all stages of HCC will be a prerequi-
site for the success of such an effort.
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SUPPLEMENTARY MATERIAL ON THE INTERNET
The following supplementary material may be found in the online version of this article:

Supplementary Figure 1. Differential expression in gene expression profiles of paired parenchyma and tumour samples. The boxplot shows

the number of genes up- or downregulated more than 2-fold with respect to the mean of normal liver biopsies in the 5 normal liver samples

(H), 60 non-tumour samples from HCC patients (CT) and 60 HCC samples (TU). Lines connect paired samples from the same patient.

Supplementary Figure 2. Nearest template prediction and qPCR classify HCC biopsies into previously described subclasses. Transcriptional

profiles of HCC biopsies were classified into clusters described in the studies of Lee et al (A), Chiang et al (B) and Hoshida et al (C) using

the nearest template prediction (NTP) algorithm and the published gene signatures. For classification according to the Boyault et al study (D),

qPCR-based algorithm was applied, as described previously. Heatmaps show scaled and centred expression values (shades of red indicate the

genes with increased expression compared to the mean of the HCC samples for that gene, while blue indicates decreased expression). Bars

above the heatmaps indicate class membership according to NTP/qPCR, with low-confidence predictions (FDR> 0.05) indicated by empty

boxes on the right side of the high confidence predictions for the given class. Bars to the left of the heatmaps indicate the published gene sig-

natures. Genes described to be part of a signature, but without significant differential expression (p value> 0.05) in our dataset are shown as

empty boxes below the significant genes. Bars below the heatmaps indicate Edmonson grade, as explained in the colour key.

Supplementary Figure 3. Membership of published subclasses correlates with clinical variables in the biopsy dataset. (A) Membership of Lee

et al classes is associated with overall survival in our set of HCC patients who were not treated surgically. Patients with low-confidence pre-

dictions of class membership were excluded from the analysis. (B) Tumour differentiation grade is associated with overall survival in HCC

patients who were not treated surgically. (C) Boxplot showing the size of the largest tumour focus in our 60 HCC patients classified into

Chiang et al classes. (D) Boxplot showing log10 serum AFP in our 60 HCC patients classified into Chiang et al classes. (E) Boxplot showing

the size of the largest tumour focus in our 60 HCC patients classified into Hoshida et al classes. (F) Boxplot showing log10 serum AFP in our

60 HCC patients classified into Hoshida et al classes.

Supplementary Figure 4. Comparison between the sample class assignments for the previously described molecular classifications. Sample

classes were assigned to the HCC biopsy gene expression profiles using NTP or qPCR. Empty boxes indicate low-confidence predictions. (A)

Lee et al (NTP) and Boyault et al (qPCR) class memberships. (B) Lee et al (NTP) and Chiang et al (NTP) class memberships. (C) Lee et al
(NTP) and Hoshida et al (NTP) class memberships. (D) Boyault et al (qPCR) and Chiang et al (NTP) class memberships. (E) Boyault et al
(qPCR) and Hoshida et al (NTP) class memberships. (F) Chiang et al (NTP) and Hoshida et al (NTP) class memberships.
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