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Abstract: As an essential application of quantum mechanics in classical cryptography, quantum
secret sharing has become an indispensable component of quantum internet. Recently, a differential
phase shift quantum secret sharing protocol using a twin field has been proposed to break the linear
rate-distance boundary. However, this original protocol has a poor performance over channels
with asymmetric transmittances. To make it more practical, we present a differential phase shift
quantum secret sharing protocol with asymmetric source intensities and give the security proof of our
protocol against individual attacks. Taking finite-key effects into account, our asymmetric protocol
can theoretically obtain the key rate two orders of magnitude higher than that of the original protocol
when the difference in length between Alice’s channel and Bob’s is fixed at 14 km. Moreover, our
protocol can provide a high key rate even when the difference is quite large and has great robustness
against finite-key effects. Therefore, our work is meaningful for the real-life applications of quantum
secret sharing.

Keywords: quantum cryptography; quantum secret sharing; differential phase shift

1. Introduction

Secret sharing is a cryptographic protocol in which a dealer splits a secret into several
parts and distributes them among various players. The secret can be recovered only when a
sufficient number of players (authorized subsets) cooperate to share their parts of the secret.
The classical secret sharing scheme was first introduced independently by Shamir [1] and
Blakley [2] in 1979, followed by plenty of variations [3]. However, all existing classical
secret sharing schemes are not perfectly secure from eavesdropping attacks [4].

As the combination of classical secret sharing and quantum mechanics, quantum
secret sharing (QSS) is more secure due to the excellent properties of quantum theory and
has become one of the most attractive research topics in the quantum cryptography. In
1999, Hillery et al. [5] firstly proposed a protocol of QSS using a three-photon Greenberger–
Horne–Zeilinger (GHZ) state. Afterwards, this protocol was generalized into an arbitrary
number of parties based on multi-particle entanglement states [6], and later to multi-
particle d-dimensional entanglement states [7]. From then on, much theoretical [8–15] and
experimental [16–19] attention has focused on QSS using multi-particle entangled states.
However, it is a tremendous challenge to prepare a multiparty entanglement state with
high fidelity and efficiency, which makes particle entanglement-based QSS unscalable. To
circumvent the problems, differential phase shift QSS scheme using coherent light [20],
similar to those used in quantum key distribution (QKD) [21–26], has been proposed
and implemented.

Nevertheless, the linear rate-distance limitation constricts the key rate and transmis-
sion distance of QSS [27,28]. Recently, to exceed the linear bound and further enhance the
practical performance of QSS, a differential phase shift quantum secret sharing (DPSQSS)
protocol [29] using a twin field (TF) [30] has been proposed. Unfortunately, this protocol
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suffers from low key rate and short transmission distance over channels with different
transmittances, which constrains its application in a practical network setting.

Here, we propose an asymmetric differential phase shift quantum secret sharing
protocol using twin field [30–44] ideas and give the security proof of this protocol against
individual attacks. The key point of our method is that Alice and Bob can adjust their
source intensities independently to effectively compensate for channel asymmetry. The
numerical results show that our protocol is robust against finite-key effects [45–48] and can
theoretically provide a two orders of magnitude higher key rate than the original protocol
with the length difference between Alice’s channel and Bob’s fixed at 14 km. Furthermore,
our protocol still obtains a high key rate when the difference in length is fixed at 50,100 km,
whereas no keys are obtained with the same difference in the original protocol. Therefore,
our work represents a further step along the progress of practical QSS.

2. TF-DPSQSS Protocol with Asymmetric Source Intensities

The schematic diagram of our asymmetric protocol is shown in Figure 1, where Alice
and Bob have partial keys for deciphering, and Charlie has a full key for ciphering. The
two senders, Alice and Bob, independently prepare two trains of weak coherent pulses
whose intensities are different and phases are randomly modulated to be 0 or π. The
coherent pulses are sent through the quantum channels and received by the trusted third
party, Charlie, who measures them using an unbalanced interferometer. The details of the
protocol are shown as follows.

Figure 1. Configuration of our quantum secret sharing protocol.Weak coherent pulse sources (Laser);
phase modulator (PM); signal attenuator (Att); transmittance of channels between Alice (Bob) and
Charlie (ηa, ηb); polarization control (PC); beam splitter (BS); single photon detector (D1, D2). In
Charlie’s measurement area, two pulse trains are first polarization-modulated by polarization controls
to correct their polarization for interference. Then, Charlie divides each incoming pulse into two
paths and recombines them by a 50:50 beam splitter, where the path-length difference is set equal
to the time T. Detectors are placed at the two outputs of the recombining beam splitter. At the
detectors, the partial wave functions of two senders’ pulses that are in the same time slots interfere
with each other.

Preparation: Alice (Bob) prepares a weak coherent pulse train and phase-modulates

each pulse randomly by 0 or π. The coherent states can be denoted as |ψa〉 =
N
⊗

n=1

∣∣∣√µaeiφa
n

〉
(|ψb〉 =

N
⊗

n=1

∣∣∣√µbeiφb
n

〉
). Then, she (he) sends out the coherent state pulse whose period is

2T to Charlie with an average photon number less than one per pulse. Alice (Bob) records
her (his) logic bits of each time slot as “0” (“1”) when her (his) modulated phase is 0 (π).
We denote the sequence of detection events time slots as n ∈ {1, 2, 3, . . . , 2N}, where N
is the total number of pulses sent by Alice (Bob). The phase shift φa

n

(
φb

n

)
∈ {0, π} is the
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phase induced by the phase modulator on pulse n ignoring the global phase, and intensities
µa, µb are corresponding to Alice and Bob, respectively.

Measurement: As illustrated in Figure 1, while measuring the signal, Charlie records
the photon detection time and which detector clicks. When the detection event time slots
are corresponding to the time 2kT, detector 1 will click for 0 phase difference between the
two senders’ pulses and detector 2 will click for π phase difference. When the detection
event time slots are corresponding to the time (2k + 1)T, detector 1 will click for π phase
difference and detector 2 will click for 0 phase difference. Note that if both detectors
click, Charlie randomly chooses one detector click to record. Here, a photon is detected
occasionally and randomly because the received signal power is smaller than one photon
per pulse.

Using the above setup, Charlie creates their key shown in Table 1. “0” means that the
modulated phases in one time slot imposed by Alice and Bob are {0, 0} or {π, π}, and “1”
means that the modulated phases in one time slot imposed by Alice and Bob are {0, π} or
{π, 0}. Thus, Charlie’s bits are exclusive OR of Alice’s and Bob’s bits. That is, Alice and Bob
know Charlie’s key bits only when they cooperate, and the QSS operation is accomplished.

Table 1. Logic bits held by Charlie corresponding to different detection event time slots when detector
1 or detector 2 clicks.

Detector 1 Detector 2

2kT “0” “1”
(2k + 1)T “1” “0”

Parameter estimation: Charlie randomly chooses recorded detection times and Alice
and Bob alternatively disclose her or their test bit first in the chosen time slots through
a public channel. Then, Charlie will get the quantum bit error rate (QBER) and make a
decision whether they discard all their bits and restart the whole QSS at Step 1 (preparation).

Postprocessing: After calculating the QBER, Alice, Bob, and Charlie will conduct clas-
sical error correction and privacy amplification to distill the final full key and partial keys.

3. Proof of Security

In this section, we will discuss the security of our protocol against eavesdropping.
Because of the equivalence [29] between our asymmetric protocol and differential phase
shift QSS, we can apply the conclusion in differential phase shift quantum key distribu-
tion [25] to the analysis of both an external eavesdropper and an internal eavesdropper in
our protocol.

3.1. External Eavesdropping

Firstly, Eve cannot obtain full key information by beam-splitting attacks and intercept-
resend attacks, which will result in bit errors in the secret key [22]. As for a general
individual attack, based on the assumption that Eve will conduct the same attack in
differential phase shift QSS [20], we can derive that information leakage to Eve is given by
a fraction µa(1− ηa) + µb(1− ηb) of the sifted key [25].

3.2. Internal Eavesdropping

QSS protocols have to prohibit Alice or Bob from knowing Charlie’s key by herself or
himself. Firstly, we assume that Bob is the malicious one. In this case, we have equivalence
configuration [29] shown in Figure 2a. Bob wants to know Charlie’s key by himself, and
also needs to know Alice’s modulation phase to pass the test-bit checking among Alice,
Bob, and Charlie after the creation of the raw key. A configuration for Bob to do so is shown
in Figure 2b. He conducts general individual attacks as carried out by Eve in differential
phase shift quantum key distribution [25], where the fraction Bob obtains about Charlie’s
bits is 2µa. Similarly, when Alice is the malicious one, the probability that Alice knows
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Bob’s differential phase corresponding to Charlie’s bit is 2µb. From the above discussion,
we denote µmax = max{µa, µb} as the maximum intensity, then 2µmax is the maximum
ratio of information that a malicious one can obtain from the internal eavesdropping.

Figure 2. Internal eavesdropping of malicious Bob. (a) With some special rules discussed in [29],
we present the configuration of equivalence between differential phase shift QSS and our protocol.
(b) We present the configuration of a general individual attack by malicious Bob.

In conclusion, we find that the probability information leakage to Eve and malicious
Bob (Alice) is µa(1− ηa) + µb(1− ηb) and 2µa(2µb). We discover that information leakage
to external Eve is slightly lower than that to malicious Bob (Alice). For simplicity, we can
just consider information leakage in our protocol to be 2µmax.

4. Numerical Simulation
4.1. Mathematical Calculation with Asymmetric Channels

Based on the asymmetric protocol description, Charlie generates their classical bits
according to the phase differences between Alice and Bob in the same time slot. To obtain
the secure key rate, we apply the same denotations in previous sections that Alice and
Bob send pulses with intensities µa, µb, and the distance between Alice (Bob) and Charlie
is la(lb). In our scheme, the channel transmittance between Alice (Bob) and Charlie is
ηa = ηd × 10−αla/10(ηb = ηd × 10−αlb/10), where ηd is the detection efficiency of Charlie’s
detectors and α is the attenuation coefficient of the ultra-low fiber. In addition, let us
suppose that pd is the dark count rate of one detector. For two detectors used by Charlie,
we derive the total dark count rate as 2pd and the error rate of background e0 = 1

2 .
In Charlie’s laboratory, after the BS (see Figure 1), the optical intensities received by

detector 1 and detector 2 are given by D1 = (
√

µaηa
2 +

√
µbηb
2 cos θ)2 and D2 = (

√
µaηa
2 −√

µbηb
2 cos θ)2, where θ denotes the relative phase between Alice’s and Bob’s weak coherent

states. In our asymmetric protocol, we have θ ∈ {0, π}. Thus, the detection probability of
each detector is: Q1 = 1− (1− pd)e−D1 , Q2 = 1− (1− pd)e−D2 .

The gain of the whole system for Charlie’s detections can be calculated by
Qµ = Q1(1−Q2) + Q2(1−Q1) + Q1Q2 and the error rate of the total gain can be derived
by EµQµ = edQ1(1− Q2) + (1− ed)Q2(1− Q1) +

1
2 Q1Q2, where ed is the misalignment

error rate of detectors.

4.2. Finite-Key Analysis Method for Our Protocol

Considering the finite-key effects, let nµ = NQµ be the observed number of bits,
where N is the number of optical pulses sent by Alice and Bob. By using the random
sampling without replacement [47], one can calculate the upper bound of hypothetically
observed error rate associated with Eµ with a failure probability εRS:

Eµ = Eµ + γ(nµ − k, k, Eµ, εRS), (1)
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where k is the number of bits in the chosen time slots at Step 3 (parameter estimation).
In the following, we assume the protocol is ε-secure [49] where the maximum failure

probability of practical protocol is ε. According to universally composable security [50],

ε = εRS + ε + εEC + εPA, (2)

where ε represents the accuracy of estimating the smooth min-entropy. In addition, εEC
corresponds to the probability that error correction fails and εPA is the probability that
privacy amplification fails.

Then we obtain the key rate formula in finite-sized key region, which reads

RQSS =Qµ[−(1− 2µmax) log2(Pco)− feh(Eµ)]

− 7
N

√
nµ log2

2
ε
− 1

N
log2

2
εEC
− 2

N
log2

1
εPA

.
(3)

Here, fe is the error correction efficiency and h(x) = −x log2(x)− (1− x) log2(1− x)
is Shannon entropy. Pco is the upper bound of collision probability when considering
individual attacks, which can be concluded as Pco = 1− Eµ

2 − (1− 6Eµ)2/2 [51].

4.3. Results of Simulation

We use the genetic algorithm to run the numerical simulations, and the key rate is
optimized over the free parameters. Here, we set εRS = ε = εEC = εPA = 10−10 and
utilize experimental parameters listed in Table 2. Figure 3 shows how the key rate varies
with transmission distance between Alice and Bob when their channels have the same
transmittance, where the total pulses are set as N = 1012, N = 1010, N = 108, respectively.
We can find that our protocol shows great robustness against finite-key effects. In Figure 4,
we plot the results of our asymmetric protocol when the total pulses are set N = 1012,
where the difference in length between Alice’s channel and Bob’s is fixed at 10 km, 50 km,
and 100 km, respectively.
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Figure 3. The performance of our protocol under symmetric channels. Under the experimental
parameters listed in Table 2, we simulate results in the case that la = lb, where N = 1012, N = 1010,
and N = 108.
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Figure 4. The performance of our protocol under asymmetric channels. Under the experimental pa-
rameters listed in Table 2, we simulate results in the case that N = 1012, where lb− la = 10, 50, 100 km.

When the original TF-DPSQSS [29] protocol is applied to the asymmetric channels,
a high system error rate will arise since different channel transmittances will lead to the
poor performance of interference at the beam splitter. Figure 5 presents numerical results
of our asymmetric protocols and the original TF-DPSQSS [29] protocol with the difference
in length between two channels fixed at 10 km and 14 km. We can see clearly from Figure 5
that our asymmetric protocol improves the secret key rate by two orders of magnitude
when lb − la = 14 km. Moreover, no keys are obtained with difference fixed at 50,100 km in
the original protocol, whereas Figure 4 shows that our protocol still provides a high key
rate when the difference is large. It means that in the asymmetric channels, the performance
of the asymmetric protocol is much better than that of the original protocol, especially
when channels are extremely asymmetric.
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Figure 5. Quantum secret sharing key rate vs transmission distance between Alice and Bob. Under
the experimental parameters listed in Table 2, we compare the simulation results of the original
TF-DPSQSS [29] protocol and our asymmetric protocol with N = 1012, where the difference in length
between Alice’s and Bob’s channels is fixed at 10 km, 14 km.



Entropy 2021, 23, 716 7 of 9

Table 2. Simulation parameters. ηd and pd are the detection efficiency and dark count rate. α is the
attenuation coefficient of the ultra-low fiber. fe is the error correction efficiency.

ηd pd α fe

55% 10−8 0.165 1.15

5. Conclusions

In summary, we propose a differential phase shift quantum secret sharing protocol
over asymmetric channels and give the security proof of our protocol against individual
attacks. Moreover, we extend the asymptotic key rate of TF-DPSQSS [29] to finite-key
region. Through implementing free parameter optimization on the numerical simulations,
we demonstrate that our asymmetric protocol can dramatically improve the key generation
rate and the transmission distance compared with the original TF-DPSQSS [29] protocol.
As we have shown before, when the difference in length between Alice’s channel and Bob’s
is fixed at 14 km, the key rate of the asymmetric protocol is two orders of magnitude higher
than the original TF-DPSQSS [29] protocol. Furthermore, our protocol obtains a high key
rate when the difference is large. In addition, it is convenient and efficient to implement by
allowing Alice and Bob to set asymmetric intensities independently, especially in a network
setting. Due to the remarkable performance of our asymmetric protocol, it can be applied
directly to the QSS experiments over asymmetric channels and represents a further step
towards practical application of QSS.
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