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A B S T R A C T   

The assessment of energy performance in smart buildings has emerged as a prominent area of 
research driven by the increasing energy consumption trends worldwide. Analyzing the attributes 
of buildings using optimized machine learning models has been a highly effective approach for 
estimating the cooling load (CL) and heating load (HL) of the buildings. In this study, an artificial 
neural network (ANN) is used as the basic predictor that undergoes optimization using five 
metaheuristic algorithms, namely coati optimization algorithm (COA), gazelle optimization al-
gorithm (GOA), incomprehensible but intelligible-in-time logics (IbIL), osprey optimization al-
gorithm (OOA), and sooty tern optimization algorithm (STOA) to predict the CL and HL of a 
residential building. The models are trained and tested via an Energy Efficiency dataset (down-
loaded from UCI Repository). A score-based ranking system is built upon three accuracy evalu-
ators including mean absolute percentage error (MAPE), root mean square error (RMSE), and 
percentage-Pearson correlation coefficient (PPCC) to compare the prediction accuracy of the 
models. Referring to the results, all models demonstrated high accuracy (e.g., PPCCs >89%) for 
predicting both CL and HL. However, the calculated final scores of the models (43, 20, 39, 38, and 
10 in HL prediction and 36, 20, 42, 42, and 10 in CL prediction for the STOA, OOA, IbIL, GOA, and 
COA, respectively) indicated that the GOA, IbIL, and STOA perform better than COA and OOA. 
Moreover, a comparison with various algorithms used in earlier literature showed that the GOA, 
IbIL, and STOA provide a more accurate solution. Therefore, the use of ANN optimized by these 
three algorithms is recommended for practical early forecast of energy performance in buildings 
and optimizing the design of energy systems.   

1. Introduction 

1.1. Background 

The world of engineering has observed significant advances that have led to creating new methods/tools for dealing with 
complicated problems with higher efficiency [1–5]. These problems are drawn within various engineering domains such as civil and 
structural engineering [6–8]. Sustainable development and energy management form similar research hotspots in the relevant liter-
ature [9–13]. Focusing on the energy sector, experts have suggested various solutions (e.g., enhancing energy efficiency, integrating 
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renewable energy, developing energy storage technologies, improving energy management policies, etc.) to better deal with the 
challenges associated with production, distribution, and consumption of energy worldwide [14–16]. Despite various measures 
established in many countries, a significant level of energy consumption persists and is anticipated to rise globally. This trend is often 
attributed to increasing living standards. In Europe, for instance, buildings consume approximately 40% of energy, while there are 
specific requirements for energy efficiency in building construction. Similarly, in the United States and China, buildings contribute to 
around 39% of the total primary energy requirement (PER) and above 27% of the total national energy use, respectively [17,18]. 
Leveraging state-of-the-art technologies in modern construction projects, the use of heating, ventilation, and air conditioning (HVAC) 
systems and the internet of things (IoT) have been popular ideas for optimizing building energy consumption [19–23]. However, 
conducting a comprehensive evaluation of energy performance of buildings (EPB) remains critical to enhance sustainable energy 
consumption [24–26]. For this purpose, engineers have recently focused on developing predictive and evaluation tools to better es-
timate building energy consumption [27,28]. 

1.2. Literature review 

Many earlier efforts have been made in this regard that consist of both forward and inverse modeling [29]. Some examples of 
popular forward simulation tools are DOE-2 [30], Energy Plus [31], and DeST [32]. However, several drawbacks that are associated 
with forward techniques (e.g., requiring high time and precision in energy simulation packages) call for tending towards inverse 
approaches including data-driven modeling [33–35]. These approaches have been extensively applied to building-related analysis 
such as big data analytics, anomaly detection in EPB, and power consumption [36–39]. Detection of anomalies in energy consumption 
patterns of buildings is another interesting domain that has been recently more developed using intelligent models [40–43]. Further 
applications in this regard (e.g., building occupancy detection and prediction) can be sufficiently found in earlier literature [44–46]. 

Machine learning techniques are eminent examples of these data-driven models that have garnered significant attention in 
assessing building energy consumption [47–50]. Random forest [51], artificial neural networks (ANN) [52], and support vector 
machine (SVM) [53] are famous examples of the techniques used in this domain. Jihad and Tahiri [54] employed ANN to forecast 
heating and cooling energy requirements in buildings with residential use. The study focused on three specific types of residential 
buildings, namely the “economic villa, middle-class building, and economic building”. The findings demonstrated that ANN exhibited 
strong predictive performance in this context. Moradzadeh, Mansour-Saatloo [55] support vector regression (SVR) and multilayer 
perceptron (MLP) to forecast cooling load (CL) and heating load (HL). The results indicated that the highest R-values achieved by the 
MLP and SVR were 0.9993 and 0.9878 for predicting HL and CL, respectively, suggesting their superior performance. In a research by 
Roy, Samui [56], a deep neural network (DNN) was applied to forecast the buildings’ heating and cooling requirements. The com-
petency of the DNN was compared to other models including gaussian process regression (GPR), gradient boosted machine, and 
minimax probability models, machine regression. The findings revealed that the DNN and GPR stood out, due to the best achieved 
variance accounted for (VAFs) in estimating the CL and HL. Further comparative efforts can be pursued in the previous literature 
[57–61]. 

More recently, metaheuristic algorithms (MAs) have been hired in the domain of machine learning, which exhibit the ability to 
optimize intricate problems [62,63]. By incorporating these algorithms into generic machine learning models, challenges like local 
minima can be effectively addressed, leading to the development of optimal networks with optimal components. Lin and Lin [64] 
introduced a novel technique for analyzing the EPB of residential buildings using a water cycle algorithm (WCA) combined with a 
double-target MLP). The model simultaneously predicts two energy performance metrics, enhancing the overall accuracy and effec-
tiveness of the analysis. Alkhazaleh, Nahi [65] optimized an adaptive neuro-fuzzy-inference system (ANFIS) using four MAs, namely 
equilibrium optimization (EO), Harris hawks optimization (HHO), slap swarm algorithm (SSA), and grey wolf optimizer (GWO). 
ANFIS-EO with a root mean square error (RMSE) of 6.43 kWh.m− 2.year− 1 versus ANFIS-HHO, ANFIS-GWO, and ANFIS-SSA with 
respective RMSEs equal to 6.90, 9.01, and 11.80 kWh.m− 2.year− 1. Jahanafroozi, Shokrpour [66] used an electrostatic discharge al-
gorithm (ESDA) to optimize an MLP for estimating the CL of residential buildings. The suggested ESDA was compared to five similar 
MAs, namely chimp optimization algorithm (ChOA), satin bowerbird optimization (SBO), future search algorithm (FSA), symbiotic 
organism search (SOS), and seeker optimization algorithm (SOA). They applied these models to a dataset developed by Tsanas and 
Xifara [67] and concluded that while all used models have the competency to predict the CL with high accuracy, the MLP-ESDA 
presents the highest accuracy with mean absolute percentage error (MAPE) around 7%. Nejati, Zoy [68] presented an ANN based 
on the symbiotic organism search (SOS) algorithm for estimating buildings’ thermal load. The proposed approach achieved a high 
prediction accuracy, with an average MAPE of around 8.2%. Gong, Zoltán [69] optimized an ANN using the multi-tracker optimization 
algorithm (MTOA) for estimating the EPB of residential buildings. The proposed approach achieved high accuracy, with a coefficient of 
determination (R2) value of 0.92, indicating a strong correlation between predicted and actual energy performance. Peng and Chen 
[70] tested transient search algorithm (TSO), forensic-based investigation (FBI), Beluga whale optimization (BWO), snake optimizer 
(SO), and Archimedes optimization algorithm (AOA) in combination with an ANN for estimating the required annual thermal energy in 
a residential building. According to their analysis, while the FBI presented the best training and the AOA provided the best prediction, 
the BWO - with Pearson correlation coefficient (PCC) of 0.996 and an MAPE of 1.99%- was introduced as the most accurate optimizer 
considering both phases. 

1.3. Motivation and contribution 

The previous section addresses promising usages of MAs in the literature of EPB analysis [71]. However, there are still some 
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limitations to be addressed. While many new MAs are developed regularly, most studies that are contained in this literature are bound 
to old well-tried algorithms (including particle swarm optimization (PSO) [34], genetic algorithm (GA) [72], GWO [73], etc.). On the 
other hand, the existing literature lacks comparative studies to compare the efficiency of new MAs which is helpful for practical 
applications and proper method selection. Moreover, each new MA requires evaluating key parameters (e.g., population size) to 
perform the optimization at its best. Considering these points, this research focuses on introducing various novel MAs for EPB analysis. 
More clearly.  

• five MAs, namely coati optimization algorithm (COA) [74], gazelle optimization algorithm (GOA) [75], incomprehensible but 
intelligible-in-time logics (IbIL) [76], osprey optimization algorithm (OOA) [77], and sooty tern optimization algorithm (STOA) 
[78] are applied to optimize an ANN model for predicting the HL and CL in a residential building.  

• The hybrid models are optimized with regard to population size through an extensive trial-and-error effort.  
• The pivotal role of these five MAs in solving the problem at hand can be expressed as weight and bias adjustment in the ANN for 

establishing the non-linear relationship between the thermal loads (i.e., HL and CL) and buildings’ characteristics.  
• This research applies these algorithms to EPB analysis for the first time and presents a comprehensive comparison to identify the 

most potential ones.  
• The findings of the present research can contribute to both (i) the body of knowledge by enriching the relevant literature and (ii) 

real-world EPB analysis by providing optimal hybrid models. 

2. Materials and methods 

2.1. Dataset 

A well-known dataset is considered for enabling the intelligent models offered in this study. It is known as the energy efficiency 
dataset that is downloaded from the UCI Repository [79]. This data was created in a study by Tsanas and Xifara [67] and provides 768 
records of HL and CL as interrelated functions of eight building characteristics. Therefore, it has eight inputs and two targets and is 
tabulated in a 768 × 10 Excel file. 

In the machine learning general context, the model tries to understand and predict the behavior of the target(s) by analyzing the 
variation in the inputs. Hence, the inputs are considered influential parameters of the thermal energy targets in this study. 

The dataset parameters are introduced in Table 1 along with their acronyms and value ranges. In order to evaluate the performance 
of the models in the purest form, the original dataset is used (without normalization). It is worth noting that there were not any nulls, 
missing values, and invalid/outliers records in the dataset. Fig. 1 (a)-(j) show the boxplot of the mentioned parameters. 

As a prerequisite for machine learning implementation, the dataset needs to be split into two separate subsets. One subset with most 
of the records is consumed by the models in the early stage (called the training phase) for discovering the interrelated relationship 
between the inputs and target(s). This subset is called train data. Once training data is separated, the remaining records are set aside to 
be used in the post-training stage (called the testing phase). This subset is called test data. 

The most common ratio for doing this split is 80:20 indicating that 80% of records construct the training subset and the remaining 
20% construct the testing subset. It is important for both subsets to have samples from all over the original dataset. Hence, it is 
subjected to a random permutation before splitting. Hereby, the selection of train and test data is random. Table 2 denotes the splitting 
parameters and results. 

2.2. MA description 

The coati optimization algorithm (COA) [74] is a nature-based optimizer based on the coatis’ behavior, which are small mammals 
known for their cooperative foraging and social behavior. COA aims to solve optimization problems by mimicking the coati’s search 
strategy, which involves exploration, exploitation, and communication among individuals. It is a metaheuristic algorithm that has 
been promisingly used for various optimization problems and has high potential regarding the quality of solution and convergence. 

The gazelle optimization algorithm (GOA) [75] is a nature-inspired optimization algorithm that is based on the social behavior and 

Table 1 
Dataset parameters, abbreviations, and statistical analysis results.  

Type Full name Acronym Range Mean Standard Error Sample Variance 

Input Relative compactness CR [0.6, 0.9] 0.76 0.00 0.01 
Surface area SA [514.5, 808.5] 671.71 3.18 7759.16 
Wall area SW [245.0, 416.5] 318.50 1.57 1903.27 
Roof area SR [110.2, 220.5] 176.60 1.63 2039.96 
Overall height HT [3.5, 7.0] 5.25 0.06 3.07 
Orientation O [2.0, 5.0] 3.50 0.04 1.25 
Glazing area SG [0.0, 0.4] 0.23 0.00 0.02 
Glazing area distribution DSG [0.0, 5.0] 2.81 0.06 2.41 

Target Heating load HL [6.0, 43.1] 22.31 0.36 101.81 
Cooling load CL [10.9, 48.0] 24.59 0.34 90.50  
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movement patterns of gazelles, which are agile and fast-running animals. GOA mimics the gazelle’s characteristics, such as their ability 
to detect predators, avoid obstacles, and coordinate their movements within a group. The algorithm utilizes a population of candidate 
solutions that iteratively search for the optimal solution by imitating the gazelle’s foraging and evasion strategies. 

The concept underlying the Incomprehensible but Intelligible-in-time logics (IbIL) [76] algorithm is derived from the theory of IbI 
logic, aiming to identify a highly competent IbI logic that represents the logic at a specific future time. The IbIL algorithm consists of a 
preparatory phase followed by three distinct phases: (i) exploration, (ii) integration, and (iii) exploitation. Each phase serves a unique 
purpose and operates independently from one another, ensuring that once a phase is accomplished, the solutions progress to the 
subsequent phase without revisiting the previous phase during subsequent iterations. This design sets IbIL apart from other algorithms 

Fig. 1. Boxplots of the dataset parameters - 8 inputs (a)–(h) + 2 outputs (i) and (j).  

Table 2 
Data split policy for constructing training and testing subsets.  

Dataset Number of records Subset Ratio Number of records 

UCI energy efficiency dataset 768 Train 80% 0.8 × 768 = 614 
Test 20% 0.2 × 768 = 154  
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and contributes to its effectiveness in problem-solving tasks. 
The osprey optimization algorithm (OOA) [77] is a metaheuristic optimization algorithm inspired by osprey bird’s hunting 

behavior. It employs exploration and exploitation techniques to seek optimal (or near-optimal) solutions to optimization problems. 
The algorithm utilizes mechanisms (e.g., crossover and mutation) to enhance the search process and maintain a diverse population of 
candidate solutions. Through fitness evaluation, selection, reproduction, and replacement, the OOA evolves the population towards 
improved solutions over iterations. 

The sooty tern optimization algorithm (STOA) [78] is a nature-inspired metaheuristic algorithm inspired by the foraging behavior 
of sooty tern birds. It mimics the movement and search patterns of the birds to efficiently explore solution spaces and find optimal (or 
near-optimal) solutions. The algorithm utilizes techniques such as randomization, local search, and global search to balance exploi-
tation and exploration during the optimization process. By iteratively updating the population based on fitness evaluation, selection, 
and reproduction, the STOA improves the quality of solutions over time. 

These techniques have shown promise in tackling optimization problems in engineering, operations research, and other domains 
[80–83]. Further explanations and mathematical details of these algorithms can be found in their relevant literature ([84,85] for the 
COA [86,87], for the GOA [76,88], for the IbIL [89,90], for the OOA, and [91,92] for the STOA). 

2.3. Algorithms combination 

This study uses hybrid methodologies for the EPB prediction task. These types of hybrids are known as neural-metaheuristic models 
which represent an ANN model driven by an MA. The pivotal role of the MA is to determine optimum values for the ANN internal 
parameters (i.e., weights and biases) that constitute the model rules [93]. This optimum solution is sought by the search agents (i.e., 
the population) of the involved MA within the search space. In the algorithms which are designed based in foraging behaviors, the 
solution may be represented by a food source sought by the animals. As long as the iterations continue, the best solution is kept until a 
better one is discovered. 

The combination process consists of several steps as described below and in the flowchart of Fig. 2.  

1 Data: exposing the training data to the primary ANN,  
2 ANN adjustment: finding the optimum ANN skeleton and translating the model into mathematical form wherein the weights and 

biases are variables,  
3 Optimization: yielding the ANN equations to the intended MA as its problem function, followed by specifying the MA’s parameter 

(e.g., population size), and running the model,  
4 Cost function calculation: calculating a cost function (RMSE here) in each iteration,  
5 Condition check: checking if the maximum number of iterations has reached: 

No: running the next iteration (repeat Step 3). 
Yes: Saving the solution, 
Note that, this study conducted a sensitivity analysis for finding the most proper MA’s population size. 
Fig. 3 shows the chosen ANN topology, which is a three-layered MLP for this study. This configuration is composed of two parts: (a) 

the compulsory size of the input and output layers, owing to the fixed number of engaged parameters, and (b) the arbitrary size of the 
hidden layer. The network receives 8 inputs, and after calculations, it releases two outputs, therefore, 8 input neurons and two output 
neurons are assigned. In the middle layer, the number of neurons can vary until a desirable prediction is achieved. In this work, 10 
hidden neurons are opted after observing the accuracy variation by changing this number (trial-and-error). The ANN is introduced 
hereafter with the name ANN(8, 10, 2). As per Fig. 3, this network consists of 8 × 10 = 80 wt between the input and hidden layers, 10 
biases belonging to the hidden layer, 10 × 2 = 20 wt between the hidden and output layers, and 2 biases belonging to the output layer. 
It is worth noting that, with the same trial-and-error effort, the activation functions for the output and hidden layers of this ANN are 
chosen to be Purelin and Tansig, respectively [94]. 

Fig. 2. Flowchart of optimizing ANN using MAs.  
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2.4. Accuracy assessment criteria 

The accuracy assessment method of this study is composed of three statistical indicators as follows:  

(a) Absolute indicator: two well-known error indicators called RMSE and mean absolute error (MAE) calculate the error as is 
expressed in Equations (1) and (2), respectively. 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
K
∑K

i=1

[(
Liexp − Lisim

)]2

√
√
√
√ , (1)  

MAE=
1
K

∑K

i=1

⃒
⃒Liexp − Lisim

⃒
⃒ (2)  

where Liexp and Lisim represent the expected and simulated thermal loads (CL and HL) and the number of evaluated couples is signified by 
K. 

(b) Relative indicators: The MAPE gives the relative error in percentage, and percentage-PCC (PPCC) gives the correlation quan-
tifying the agreement between the prediction and expectation. Equations (3) and (4) formulate the MAPE and PPCC criteria. 
Moreover, Nash–Sutcliffe efficiency (NSE) coefficient is expressed by Equation (5). 

MAPE=
1
K

∑K

i=1

⃒
⃒
⃒
⃒
Liexp − Lisim

Liexp

⃒
⃒
⃒
⃒× 100, (3)  
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(
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)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
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i=1
(Lisim − Lsim)

2
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∑K
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(
Liexp − Lexp
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Fig. 3. Schematic view of the ANN(8, 10, 2) and involved parameters.  
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NSE= 1 −

∑K

i=1

(
Liexp − Lisim

)2

∑K

i=1

(
Liexp − Lexp

)2
(5)  

3. Results and discussion 

3.1. Optimization results and training 

Following the explanations in Section 2.3, the optimization results are illustrated in this part. This task is carried out by creating 
optimization diagrams of all models for a number of viable population sizes (from 100 to 500 with 100 intervals). Each algorithm is run 
for 1000 iterations and the cost function of training is saved as the iterations proceed. Since the network has two outputs, the cost 
function is the RMSE averaged for the CL and HL as per Equation (6). Note that, the RMSE represents an error; hence, the lower it comes, 
the better [65,68]. 

Fig. 4. Cost function (i.e., objective function) reduction procedure by coupled ANN-metaheuristic algorithms.  
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Cost function=
RMSECL + RMSEHL

2
, (6) 

Fig. 4 (a)-(e) show the optimization direction of each algorithm. As is shown, the strategy of each algorithm is different for cost 
function reduction. The COA and OOA show a higher sensitivity to the population size. As explained above, the values of 500, 100, 100, 
500, and 400 are selected as the best population size of COA, GOA, IbIL, OOA, and STOA algorithms, respectively. 

3.2. Thermal loads modeling 

Each network that was optimized in the previous section produces two values of CL and HL for a given building condition. 
Accordingly, 614 × 2 = 1228 and 154 × 2 = 308 predictions are carried out for the train and test datasets, respectively. Famously, 
evaluating the accuracy of the first dataset reveals the goodness of learning by the models and the accuracy of the later dataset reveals 
their generalizability. The training and testing results are statistically evaluated in this section. 

3.2.1. Error indicators 
For learning the HL pattern, the COA, GOA, IbIL, OOA, and STOA algorithms reached the RMSEs of 3.6669, 2.7252, 2.6997, 3.2894, 

and 2.7005, respectively. These values are associated with the MAEs of 2.7732, 1.8953, 1.8836, 2.4383, and 1.8616, MAPEs of 
13.3051%, 8.7549%, 8.6040%, 11.7620%, and 8.6305%, and NSEs of 0.8692, 0.9278, 0.9291, 0.8948, and 0.9291. This thermal load 
was predicted for unseen building circumstances with the RMSEs of 3.6801, 2.4417, 2.5588, 3.0210, and 2.4445, along with the MAEs 
of 2.6817, 1.6329, 1.7198, 2.1598, and 1.5989, MAPEs of 12.9445%, 7.4850%, 7.8458%, 10.4248%, and 7.2942%, and NSEs of 
0.0.8606, 0.9386, 0.9326, 0.9061, and 0.9385. 

As far as the CL is concerned, the error of the learning process was demonstrated with the RMSEs of 4.2327, 3.1149, 3.0491, 3.7238, 
and 3.0913 associated with the MAEs of 3.3783, 2.1836, 2.1200, 2.7723, and 2.1996, MAPEs of 15.6894%, 8.7006%, 8.4540%, 
11.3833%, and 8.7642%, and NSEs of 0.8032, 0.8934, 0.8979, 0.8477, and 0.8950. Then, the models could predict it with RMSEs of 
4.50, 2.80, 2.83, 3.70, and 2.82, MAEs of 3.5627, 1.8480, 1.8629, 2.6309, and 1.8955, MAPEs of 16.5058%, 6.9772%, 7.0489%, 
10.4430%, and 7.2409%, and NSEs of 0.7690, 0.9105, 0.9084, 0.8433, and 0.9091. 

From the above assessment, train results demonstrate that the behavior of both CL and HL has been clearly analyzed and understood 

Fig. 5. Train and test correlation results of the HL and CL.  
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by all models. Likewise, test results indicate that all models have enough reliability for extrapolating these patterns. However, the 
variations in the obtained values suggest some distinctions in their performance. Hence, a comparative ranking is performed in the 
following sections. 

3.2.2. Correlation indicator 
After error evaluations, the correlation reveals the agreement level between the reality and models’ products. The results of this 

section are also graphically shown in Fig. 5 (a)–(j). Each sub-figure contains both train and test results of either CL or HL. 
A general view of the above charts demonstrates a great agreement between the expected thermal loads and the models’ pre-

dictions. However, this agreement is more obvious for the results. 
For learning the HL pattern, the COA, GOA, IbIL, OOA, and STOA algorithms reached the PPCCs of 93.4461%, 96.3219%, 

96.3913%, 94.6978%, and 96.3881%, respectively. This thermal load was predicted for unseen building circumstances with the PPCCs 

Fig. 5. (continued). 
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of 93.0737%, 96.8989%, 96.5803%, 95.2631%, and 96.8852%. 
As far as the CL is concerned, the fitness of the learning process was demonstrated with the PPCCs of 91.2397%, 94.5306%, 

94.7564%, 92.4229%, and 94.6059%. Then, the models could predict it with the PPCCs of 89.6830%, 95.4594%, 95.3530%, 
92.3493%, and 95.3698%. 

3.3. Ranking and discussion 

From the previous section, it was inferred that all presented models are potentially able to learn and predict the thermal load 
patterns of a residential building under various assumptions. However, the used accuracy criteria reflected different levels of accuracy 
for each model and each predicted parameter. In this part, a detailed ranking is performed among the models to show which ones are 
more suitable for each task. Table 3 collects all calculated accuracy criteria. 

Moreover, Fig. 6 (a)-(j) illustrate the obtained accuracy indicators (RMSE, MAE, MAPE, PPCC, and NSE) in the form of bar charts 
along with the relevant values. A ranking system is also developed to quantitatively compare the used models. In this regard, for each 
accuracy criterion, each model receives a score from 1 to 5. The higher the accuracy, the higher the assigned score. For instance, in 
Fig. 6 (b) – testing phase – the GOA receives 5, while COA receives 1. In the end, the sum of these scores gives the total score (TS) as 
illustrated in Fig. 6 (k) and (l). 

For learning the HL pattern, the IbIL algorithm attained the lowest RMSE and MAPE, and the largest PPCC and NSE, followed by the 
STOA and GOA. In the test phase, however, the STOA and GOA surpassed IbIL. Overall, based on the slight differences in the train and 
test accuracies, the STOA emerges as the most accurate model, followed by the IbIL and GOA. The same ranking is obtained for learning 
the CL pattern, i.e., the IbIL algorithm attained the highest correlation and smallest errors, followed by the STOA and GOA. In the test 
phase, however, the GOA and STOA surpassed IbIL. Overall, based on the slight differences in the train and test accuracies, the IbIL and 
GOA gained the first rank jointly, and the STOA emerged as the second accurate model. To sum up, based on Fig. 6 (k) and (l), the final 
TSs (training TS + testing TS) are as follows:  

• for the STOA: 21 + 22 = 43 in HL prediction and 18 + 18 = 36 in CL prediction,  
• for the OOA: 10 + 10 = 20 in HL prediction and 10 + 10 = 20 in CL prediction,  
• for the IbIL: 24 + 15 = 39 in HL prediction and 25 + 17 = 42 in CL prediction,  
• for the GOA: 15 + 23 = 38 in HL prediction and 17 + 25 = 42 in CL prediction,  
• for the COA: 5 + 5 = 10 in HL prediction and 5 + 5 = 10 in CL prediction, 

Hence, the GOA, STOA, and IbIL are considered the outstanding models of this study. They are accordingly recommended for 
practical analysis of residential buildings in terms of the required thermal loads. 

This study provided capable predictive frameworks by establishing an optimal relationship between the building conditions (i.e., 
eight conditioning parameters of CR, SA, SW, SR, HT, O, SG, and DSG) and HL-CL simultaneously. Referring to Fig. 3, the used network 
consists of 112 wt and biases which were optimized by the MAs in each iteration. Hence, this work proved that MA-enabled meth-
odologies can handle heavy calculations. The main contribution of the used MAs lies in optimizing the weights and biases that are 
responsible for establishing a non-linear model for predicting the HL-CL based on the building conditions. Considering 5 used MAs, 
each ran with 5 population sizes by 1000 iterations, the solutions provided in this research are deemed optimized after these extensive 
trial-and-error efforts. Hereupon, this work can shed light in the way of proper selection of MAs, as well as, being a nice benchmark for 
future research in the field of EPB analysis. Concerning real-world applications, the proposed models can be applied to:  

• Optimizing the design of energy-efficient buildings and occupant comfort,  
• Optimizing the design of energy systems such as HVAC,  
• Forecasting thermal energy consumption,  
• Improving the automation of smart buildings and maintenance planning,  
• Long-Term urban planning and policy making. 

Table 3 
Collected accuracy indices for the performed predictions.  

Phase  Train Test 

Model  COA GOA IbIL OOA STOA COA GOA IbIL OOA STOA 
HL RMSE 3.6669 2.7252 2.6997 3.2894 2.7005 3.6801 2.4417 2.5588 3.0210 2.4445 

MAE 2.7732 1.8953 1.8836 2.4383 1.8616 2.6817 1.6329 1.7198 2.1598 1.5989 
MAPE 13.3051 8.7549 8.6040 11.7620 8.6305 12.9445 7.4850 7.8458 10.4248 7.2942 
PPCC 93.4463 96.3219 96.3913 94.6978 96.3881 93.0737 96.8989 96.5803 95.2631 96.8852 
NSE 0.8692 0.9278 0.9291 0.8948 0.9291 0.8606 0.9386 0.9326 0.9061 0.9385 

CL RMSE 4.2327 3.1149 3.0491 3.7238 3.0913 4.5029 2.8031 2.8357 3.7088 2.8245 
MAE 3.3783 2.1836 2.1200 2.7723 2.1996 3.5627 1.8480 1.8629 2.6309 1.8955 
MAPE 15.6894 8.7006 8.4540 11.3833 8.7642 16.5058 6.9772 7.0489 10.4430 7.2409 
PPCC 91.2397 94.5306 94.7564 92.4229 94.6059 89.6830 95.4594 95.3530 92.3493 95.3698 
NSE 0.8032 0.8934 0.8979 0.8477 0.8950 0.7690 0.9105 0.9084 0.8433 0.9091  
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As an example of optimal building design, Fig. 7 (a) and (b) show sensitivity of the HL and CL to the increment of CR (varying from 
0.62 to 0.98). Having the prediction results in these charts, it can be seen that all models have captured a strong understanding from 
these behaviors, and they can predict it with high accuracy. 

The solutions discovered in this study by three outstanding algorithms (i.e., GOA, STOA, and IbIL) is more accurate than many 
previous solutions in earlier studies. Table 4 presents some examples of the previously used algorithms. In this table, the testing RMSE 
and MAE of the GOA, STOA, and IbIL are compared to various metaheuristic algorithms, namely genetic algorithm (GA) [95], 
imperialist competitive algorithm (ICA) [96], wind-driven optimization (WDO) [97], whale optimization algorithm (WOA) [98], 
spotted hyena optimization (SHO) [99], salp swarm algorithm (SSA) [100], grasshopper optimization algorithm (GOA2) [101], 
artificial bee colony (ABC) [102], particle swarm optimization (PSO) [103], firefly algorithm (FA) [104], optics-inspired optimization 
(OIO) [105], shuffled complex evolution (SCE) [106], teaching–learning-based optimization (TLBO) [107], political optimizer (PO) 
[108], heap-based optimizer (HBO) [109], Henry gas solubility optimization (HGSO) [110], cuttle-fish optimization algorithm (CFOA) 
[111], backtracking search optimization algorithm (BSA) [112], chimp optimization algorithm (ChOA) [113], satin bowerbird 
optimization (SBO) [114], future search algorithm (FSA) [115], symbiotic organism search (SOS) [116], ant colony optimization 
(ACO) [117], Harris hawks optimization (HHO) [118], and elephant herding optimization (EHO) [119]. As per Tables 4 and it can be 
seen that both testing RMSE and testing MAE of the elite models in this study are (in most cases considerably) lower than the 
mentioned algorithms. Hence, it can be deduced that the suggested models can enhance the EPB analysis. 

Fig. 6. Obtained accuracy criteria and their comparison in the prediction of HL and CL.  
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Regarding the limitations of this study, the used dataset and applied methodology can be argued. First, the MAs used in this study 
were applied to ANN solely, while several other machine learning models e.g., the ANFIS, SVM, and long short-term memory (LSTM) 
networks can be regarded as well. Moreover, updating the used MAs with the most recent algorithms is of great interest for conducting 

Fig. 6. (continued). 

Fig. 7. The behavior of actual and predicted HL and CL vs. the increment of CR.  
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comparative studies. In the meanwhile, the models are recommended to be tested with external datasets (along with the used UCI 
Repository dataset [79]) in order to improve their generalizability. For this purpose, the dataset provided by Chegari, Tabaa [126] can 
be regarded in future applications. This dataset takes the annual thermal energy demand as the output, being a function of HL, CL, and 
building’s area. 

Based on the importance assessment carried out via the random forest model in the previous studies, a dimensionality reduction can 
be considered for this dataset. Zheng, Lyu [127] used the same dataset and investigated the importance of the inputs in CL prediction. 
According to the results (Fig. 4 of the cited paper), the SG emerged as the most important input followed by CR, while SW, HT, and O 
were the least important inputs. As for the HL prediction, Wu, Foong [125] did the same analysis (Fig. 2 of the cited paper) and 
observed similar results. The SG emerged as the most important input followed by CR, while SW, HT, and O were the least important 
inputs. These results can reflect a potential idea for future utilization of this dataset to see whether the accuracy of prediction changes 
by removing the less important inputs. 

4. Conclusions 

Several metaheuristic-based solutions were suggested and tested for solving the problem of thermal load estimation in buildings. 
Five ANN(8, 10, 2) models were created and optimized in incorporation with these metaheuristic algorithms: coati optimization al-
gorithm (COA), gazelle optimization algorithm (GOA), incomprehensible but intelligible-in-time logics (IbIL), osprey optimization 
algorithm (OOA), and sooty tern optimization algorithm (STOA). Each ensemble model aimed at predicting the heating and cooling 
loads of a residential building. These algorithms are all novel optimizers that have not been previously regarded for this purpose. 
Hence, a score-based statistical comparison was performed to determine the outstanding ones. It was observed that.  

• Trial-and-error efforts determined the best population size of 500, 100, 100, 500, and 400 for the COA, GOA, IbIL, OOA, and STOA 
algorithms, respectively.  

• Referring to the obtained PPCCs >89%, all five techniques are capable of a fine prediction of thermal loads.  
• Based on the final TSs of 43, 20, 39, 38, and 10 in HL prediction and 36, 20, 42, 42, and 10 in CL prediction for the STOA, OOA, IbIL, 

GOA, and COA, respectively, the GOA, IbIL, and STOA were found to be more promising than the COA and OOA. Therefore, the 
suitability of these algorithms was the pivotal finding of this research. Moreover, these three algorithms were more accurate than a 
loarge number of metaheuristic algorithms used in earlier studies.  

• The hybrids of ANN with GOA, IbIL, and STOA algorithms are recommended for practical usage by energy and building engineers 
to optimize the necessary thermal loads with reference to the buildings’ characteristics. A viable application in this sense can be 
optimizing the performance of the HVAC systems.  

• Notwithstanding these findings, there were a few limitations which can be potential ideas for future studies. For instance, regarding 
data, this study used only one dataset and applying an external dataset would add to the generalizability of the models. Moreover, 
investigating the effect of feature selection (dimension reduction) can be another research line. About methodology, future studies 

Table 4 
Comparison of the testing RMSE and MAE calculated in this study with previous literature.  

HL CL 

Study Model Error criterion Study Model Error criterion 

RMSE MAE RMSE MAE 

[120] FA 2.5456 1.7979 [120] FA 2.5456 1.7979 
OIO 2.7099 1.9278 OIO 2.7099 1.9278 

[121] ABC 2.6159 1.9111 [121] ABC 3.1728 2.1760 
PSO 2.5693 1.863 PSO 3.1222 2.1360 

[34] GA 2.8878 2.0622 [34] GA 2.8598 2.0982 
ICA 2.7819 2.0089 ICA 2.7995 2.1054 

[33] WDO 2.8312 1.9863 [33] WDO 3.1945 2.2424 
WOA 2.9213 2.1921 WOA 3.3581 2.5390 
SHO 4.1501 3.1092 SHO 6.0445 4.5930 
SSA 2.7527 1.9178 SSA 3.1471 2.1830 

[122] GOA2 2.4459 1.7373 [123] ACO 3.3561 2.6011 
[68] PO 2.463 1.775 HHO 3.1925 2.3265 

HBO 3.119 2.395 EHO 3.0464 2.1284 
HGSO 3.054 2.234 [124] GOA2 2.7628 1.8951 
CFOA 3.358 2.559 FA 2.9411 2.0265 

[125] BSA 2.6447 1.9083 [66] FSA 3.4552 2.5221 
SOS 2.5983 1.8204 
ChOA 3.2729 2.3262 
SBO 3.0312 2.0761 

This study GOA 2.4417 1.6329 This study GOA 2.4417 1.6329 
IbIL 2.5588 1.7198 IbIL 2.5588 1.7198 
STOA 2.4445 1.5989 STOA 2.4445 1.5989  
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are recommended to compare the used algorithms with newer generations of metaheuristic algorithms to update the solution and 
detect the most accurate model. 

Data availability 

All data analyzed during this study was (can be) freely downloaded from UCI Repository [79] based on a study by Tsanas and Xifara 
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