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ABSTRACT

Despite the extensive efforts of scientists, the genetic background of diabetic nephropathy (DN) has not yet been clarified. To
elucidate the genetic variants that predispose to the development of DN, we conducted a systematic review and meta-
analysis of all available genetic association studies (GAS) of DN. We searched in the Human Genome Epidemiology
Navigator (HuGE Navigator) and PubMed for available GAS of DN. The threshold for meta-analysis was three studies per
genetic variant. The association between genotype distribution and DN was examined using the generalized linear odds
ratio (ORG). For variants with available allele frequencies, the examined model was the allele contrast. The pooled OR was
estimated using the DerSimonian and Laird random effects model. The publication bias was assessed with Egger’s test. We
performed pathway analysis of significant genes with DAVID 6.7. Genetic data of 606 variants located in 228 genes were
retrieved from 360 GASs and were synthesized with meta-analytic methods. ACACB, angiotensin I-converting enzyme (ACE),
ADIPOQ, AGT, AGTR1, AKR1B1, APOC1, APOE, ATP1B2, ATP2A3, CARS, CCR5, CGNL1, Carnosine dipeptidase 1 (CNDP1), CYGB-
PRCD, EDN1, Engulfment and cell motility 1 (ELMO1), ENPP1, EPO, FLT4, FTO, GLO1, HMGA2, IGF2/INS/TH cluster, interleukin 1B
(IL1B), IL8, IL10, KCNQ1, KNG, LOC101927627, Methylenetetrahydrofolate reductase, nitric oxide synthase 3 (NOS3), SET domain
containing seven, histone lysine methyltransferase (SETD7), Sirtuin 1 (SIRT1), SLC2A1, SLC2A2, SLC12A3, SLC19A3, TCF7L2, TGFB1,
TIMP1, TTC39C, UNC13B, VEGFA, WTAPP1, WWC1 as well as XYLT1 and three intergenic polymorphisms showed significant
association with DN. Pathway analysis revealed the overrepresentation of six signalling pathways.The significant findings
provide further evidence for genetic factors implication in DN offering new perspectives in discovery of new therapies.
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INTRODUCTION

Diabetic nephropathy (DN) has complex aetiology due to syner-
gistic interplay between many factors, modifiable or not.

Among them, prominent contribution is attributed to glycaemic
and haemodynamic factors, as well as the genetic background
[1, 2]. Despite the extensive research, the genetic architecture is
poorly understood [3, 4]. Although many genetic variants have
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been implicated in DN susceptibility, the results are not replica-
ble and create inconsistency [4].

Family-based studies through linkage analysis suggest fa-
milial clustering in many populations, but this type of method
has the potential to detect rare variants with large effects [5–9].
Unlike non-DN and apolipoprotein L1 (APOL1) confirmed sus-
ceptibility, in the case of DN such established genetic contribu-
tion has not been achieved [10].

Population-based studies, the well-known genetic associa-
tion studies (GAS), tried to shed light on genetic background on
many common diseases [11]. In particular, when the first wave
of genome-wide association studies (GWAS) appeared, the
researchers were extremely optimistic for the potential of these
[12], but even GWAS results have failed to be replicated. In DN,
many GWAS have been conducted with promising results, but
the burden of DN still reaches alarming proportions [13–24].

In an effort to increase power and enlighten the genetic ar-
chitecture of DN, meta-analysis of genetic studies promises
more convincing evidence. Meta-analysis of genome-wide link-
age studies of DN [25] or renal function traits [26] has been per-
formed, indicating suggestive evidence for many cytogenetic
locations. We conducted a field synopsis including all the case–
control GAS that examine the association between genetic var-
iants and DN.

MATERIALS AND METHODS
Identification and eligibility of relevant studies

To elucidate the contribution of genetic background in develop-
ment of DN, we conducted a systematic review and meta-
analysis of GASs in DN. In the meta-analysis, studies in English
recorded in the Human Genome Epidemiology (HuGE)
Phenopedia (last update on 3 July 2019) regarding the disease
term ‘diabetic nephropathies’ were included. We also retrieved
articles from GWAS in HuGE Publit and the National Human
Genome Research Institute (NHGRI) Catalog of Published GWAS
(http://www.genome.gov/gwastudies/). We cross-checked man-
ually these findings against those indexed in PubMed using the
search terms [(‘diabetic nephropathy’ OR ‘diabetic kidney dis-
ease’ OR ‘diabetic end stage renal disease’) AND ( ‘genetic asso-
ciation’ OR ‘gene’ OR ‘variant’ OR ‘polymorphism’)] (accessed on
7 July 2019). Finally, any meta-analyses and the references of
the eligible articles were also screened. We did not request
unpublished data from any author.

The included studies should meet the following criteria: (i)
they involved cases with persistent micro/macroalbuminuria
with or without diabetic retinopathy; (ii) they involved diseased
controls with diabetes and normoalbuminuria or normal renal
function and/or healthy controls; (iii) they provided full geno-
typic data, either genotype counts or allele frequencies, exclud-
ing the articles with results after having merged genotypes; and
(iv) they included human subjects. The diabetes could be either
Type I diabetes mellitus (T1DM) or Type II diabetes mellitus
(T2DM). No study involving exclusive cases with not persistent
microalbuminuria was included.

Studies examining disease progression, phenotype modifi-
cation, response to treatment or survival were excluded. Case
reports, editorials, reviews, non-English articles, unpublished
studies as well as studies with other study designs, such as
family-based studies, were also excluded. The eligibility of the
articles was assessed independently by two investigators (M.T.
and E.Z.), the results were compared and any disagreements
were resolved by reaching consensus.

Data extraction

From each article, the following information was extracted: first
author, year of publication, ethnicity, PubMed ID (PMID) , type of
diabetes and the phenotype. For cases and controls, we
recorded their number and the selection criteria. With regard to
the genotypic data, we extracted, if available, the full genotype
counts or allele frequencies.

Data synthesis and analysis

The association between genotypes and DN was examined us-
ing the generalized linear odds ratio (ORG) [27, 28]. For the var-
iants with available allele frequencies, the examined model was
the allele-contrast. The threshold for meta-analysis was the
presence of three studies. The pooled OR was estimated using
DerSimonian and Laird random-effects model [29]. The associa-
tions are presented with ORs with corresponding 95% confi-
dence intervals (CIs). We tested for between-study
heterogeneity with Cochran’s Q statistic (considered statisti-
cally significant at P< 0.10) and assessed its extent with the I2

statistic [30, 31]. ORG was calculated using generalized odds ra-
tio methodology for the analysis and meta-analysis of GAS
(ORGGASMA) (http://biomath.med.uth.gr) [27, 28]. Furthermore,
we conducted a subgroup analysis regarding the DM type and
ethnicity in case of existence of >10 studies per genetic
polymorphism.

For each study, we examined if controls confronted with
Hardy–Weinberg equilibrium (HWE) predicted genotypes using
Fisher’s exact test. For studies providing only allele counts, we
relied on the authors’ assessment of deviations from HWE. We
also tested for ‘small-study effect’ with the Egger test [32].

Pathway analysis

We performed pathway analysis of statistically significant
genes with DAVID version 6.7 to identify in the signalling path-
ways that are overrepresented by the significant genes [33, 34].

RESULTS
Study characteristics

The literature search retrieved 3697 records after removing of
duplicates. When an article provided data for different popula-
tions, then each population was considered as a different study.
Different ethnic descents were categorized as Caucasians,
Asians, Africans and mixed. Figure 1 presents a flowchart of re-
trieved articles and excluded articles with specification of rea-
sons for exclusion. The threshold for a variant in order to be
meta-analysed was three studies per variant. Overall, 227 candi-
date genes and 606 polymorphisms were investigated in 356
articles. The characteristics of each study and their references
are shown in Supplementary data, Table S1. The studies were
published between 1994 and 2019.

Main meta-analysis results

Tables 1–3 show the statistically significant results of meta-
analyses exploring the presence of association between the rel-
evant genetic variants and DN based on genotype counts. An
overview of pooled ORG of the statistically significant variants is
shown in Figures 2–5. The statistically significant results of
meta-analyses exploring the presence of association between
the genetic variants and DN based on allele counts are pre-
sented in Table 4. An overview of the meta-analysis results
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based on allele counts is shown in Figure 5. The meaning of the
acronyms of statistically significant genes is shown in
Supplementary data, Table S2. The non-significant results from
meta-analysis are presented in Supplementary data, Tables S3–
S7. Supplementary data, Table S8 summarizes information on
the functional implications of the genetic variants associated
with DN, indicating whether the gene variants are associated
with increased or decreased expression of the gene or increased
or decreased activity or levels of the gene product, if this is
known.

The pathway analysis was performed for the genes with sig-
nificant association with DN and revealed the overrepresenta-
tion of six signalling pathways: the cytokine–cytokine receptor
interaction, the pyruvate metabolism, T2DM, the adipocytokine
signalling pathway, the renal cell carcinoma and the renin–an-
giotensin system pathway. The results of the statistically

significant genes are presented based on the relevant signalling
pathway (Table 5). Supplementary data, Table S9 illustrates
where in the pathway the genes sit.

Genetic variants related to cytokine–cytokine receptor
interaction. The polymorphism –59029A/G in CCR5 showed sig-
nificant association with DN in comparison between diabetics
with normoalbuminuria and cases with DN, with a pooled ORG

of 0.69 (95% CI 0.53–0.91) . This association was also significant
in analysis of only studies with controls in HWE.

EPO rs1617640 polymorphism showed significant association
with DN in comparison between diabetics without nephropathy
and cases with DN with a pooled ORG of 1.64 (95% CI 1.43–1.89).

Fms related receptor tyrosine kinase 4 (FLT4) rs2242221 poly-
morphism was also associated with DN in analysis based on al-
lele counts, with a pooled ORG of 1.14 (95% CI 1.01–1.29).
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FIGURE 1: Flowchart of retrieved articles with specifications of reasons for exclusion. RCT: randomized controlled trial; TDT: transmission disequilibrium test.
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The polymorphism –511C/T in interleukin 1B (IL1B) showed
significant association with DN with an ORG of 1.66 (95% CI 1.38–
2.01).

The polymorphism –251T/A in IL10 in analysis between dia-
betics with normoalbuminuria and cases with DN was also as-
sociated with DN, with a pooled ORG of 1.40 (95% CI 1.07–1.73).

The polymorphism T869C in TGFB1 also showed significant
association with DN in both analysis between three groups and
in analysis between healthy controls and cases with DN, with a
pooled ORG of 1.36 (95% CI 1.08–1.70) and ORG of 1.73 (95% CI
1.46–2.04), respectively.

Rs2146323 polymorphism in vascular endothelial growth factor
A (VEGFA) was significantly associated with DN, with a pooled
OR of 0.85 (95% CI 0.76–0.95) when diseased controls were com-
pared with cases with DN with the allele contrast model.

Genetic variants related with pyruvate metabolism. Two
polymorphisms in the acetyl-CoA carboxylase beta (ACACB)
gene, rs2268388 and rs5186, showed significant associa-
tion with DN when diabetics without DN were com-
pared with cases with DN, with a pooled ORG of 1.41
(95% CI 1.09–1.80) and 1.59 (95% CI 1.28–1.98),
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FIGURE 2: Forest plot of diseased controls (diabetics with normoalbuminuria) and cases (diabetics with diabetic nephropathy) displaying only significant results based

on genotype counts.
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respectively. The aforementioned associations were also
significant in meta-analysis with studies in HWE.

In a comparison of diseased controls versus cases, the
AKR1B1 rs759853 variant was significantly associated with DN,
with a pooled ORG of 1.53 (95% CI 1.15–2.02). The association
was also significant in meta-analysis of studies in HWE (1.51,
95% CI 1.08–2.10).

Rs7769206 in GLO1 showed a significant association with DN
in comparison between diabetics with normoalbuminuria and
cases with DN, with a pooled ORG of 1.22 (95% CI 1.02–1.47).

Genetic variants related with T2DM. The polymorphism –
11391G/A in ADIPOQ showed a significant association with
DN in comparison between diabetics with normoalbuminuria
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FIGURE 3: Forest plot of healthy controls versus diseased controls (diabetics with normoalbuminuria) versus cases (diabetics with diabetic nephropathy) displaying

only significant results based on genotype counts.
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FIGURE 4: Forest plot of healthy controls and cases (diabetics with diabetic nephropathy) displaying only significant results based on genotype counts.

772 | M. Tziastoudi et al.



and cases with DN, with a pooled ORG of 1.18 (95% CI 1.04–
1.35).

The polymorphisms rs10004446 and rs4320932 in the IGF2/
INS/TH cluster showed a significant association with DN in com-
parison between diabetics with normoalbuminuria and cases

with DN, with a pooled ORG of 1.16 (95% CI 1.03–1.31) and ORG of
0.84 (95% CI 0.73–0.96), respectively.

The polymorphism rs5400 in SLC2A2 was also significant
when diabetics with normoalbuminuria and cases with DN
were compared, with a pooled ORG of 0.82 (95% CI 0.69–0.98).

FIGURE 5: Forest plot of diseased controls (diabetics with normoalbuminuria) and cases (diabetics with diabetic nephropathy) displaying only significant results based

on allele counts.
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Genetic variants related with adipocytokine signalling pathway.
Except ACACB and adiponectin (ADIPOQ) variants significant as-
sociation, SLC2A1 rs841853 variant was also significantly associ-
ated with DN, with a pooled ORG of 1.44 (95% CI 1.06–1.96). This
association remained significant in meta-analysis with the
seven studies in HWE (1.71, 95% CI 1.19–2.45). Rs841853 was also
significantly associated with DN in meta-analysis with three
groups and between healthy controls and cases with DN, with a
pooled ORG of 1.50 (95% CI 1.05–2.15) and 1.87 (95% CI 1.11–3.15).

Genetic variants related with renal cell carcinoma. In this path-
way, SLC2A1, TGFB1 and VEGFA are involved, which were men-
tioned above.

Genetic variants related with renin–angiotensin system. In dis-
eased controls versus cases, the deletion of the polymorphism

rs179975 in angiotensin I-converting enzyme (ACE) was associated
with DN, with a pooled ORG of 1.21 (95% CI 1.09–1.34) after
meta-analysis conducted in 65 studies. The association was
also significant in sensitivity analysis of 55 studies in HWE
with an ORG of 1.26 (95% CI 1.14–1.39). The polymorphism
rs179975 was also associated with DN, with an ORG of 1.24
(95% CI 1.02–1.52) when healthy controls were compared with
cases with DN.

Another gene implicated in the renin–angiotensin–aldoste-
rone system with significant results in a meta-analysis of 26
studies is AGT, with an ORG of 1.21 (95% CI 1.01–1.45). The vari-
ant M235T (rs699) was also associated with DN in comparison
between healthy controls versus diabetics without nephropathy
versus cases with DN, with a pooled ORG of 1.21 (95% CI 1.02–
1.45).

Table 1. Statistically significant results from meta-analysis between diseased controls (diabetics with normoalbuminuria) versus cases
(diabetics with diabetic nephropathy) based on genotype counts

Gene Variant RS Studies (n) Cases/controls (n) RE ORG (95% CI) I2 (%) PQ PE

ACACB (C>T) rs2268388 10 3222/2881 1.41 (1.09–1.80) 81.65 0 0.3
All in HWE 7 2424/2190 1.30 (1.02–1.65) 72.54 0 0.48

ACE I>D 65 10787/10404 1.21 (1.09–1.34) 74.61 0 0.70
All in HWE I>D 55 8733/8267 1.26 (1.14–1.39) 63.85 0 0.54

AGT M235T rs699 26 5015/5253 1.21 (1.01–1.45) 82,45 0,00 0.84
All in HWE 19 3181/3655 1.09 (0.92–1.31) 72.76 0.00 0.95

AKR1B1 C-106T rs759853 7 1149/1068 1.53 (1.15–2.02) 65.11 0.01 0.3
All in HWE 6 1064/922 1.51 (1.08–2.10) 70.38 0 0.33

APOC1 C>T rs4420638 3 1526/1620 1.47 (1.27–1.70) 0 0.61 0.21
CARS (G>A) rs451041 5 3061/3170 1.22 (1.07–1.38) 47.41 0.11 0.06

All in HWE 4 2571/2230 1.25 (1.07–1.45) 50.50 0.11 0.06
CCR5 �59029 A>G rs1799987 8 2125/2127 0.69 (0.53–0.91) 83.21 0.00 0.04

All in HWE 6 1789/1780 0.79 (0.60–1.03) 80.27 0.00 0.07
CNDP1 [CTG]5> [CTG]6/7 D18S880 11 4064/7318 1.38 (1.17–1.64) 64.78 0.002 0.01

All in HWE 10 3184/3316 1.47 (1.19–1.82) 66.46 0.001 0.002
ELMO1 rs741301 5 1072/984 1.27 (1.04–1.56) 32.92 0.20 0.83

All in HWE 4 1.23 (0.91–1.66) 44.24 0.15 0.40
ENPP1 K173Q (A>C) rs1044498 4 744/982 1.40 (1.03–1.91) 62.33 0.05 0.21

All in HWE 3 1.27 (0.90–1.81) 59.93 0.08 0.25
EPO G>T rs1617640 3 1618/954 1.64 (1.43–1.89) 0.00 0.78 0.03
HMGA2 (G/C) rs1531343 3 1233/2125 1.49 (1.23–1.81) 0 0.41 0.45
IL1B �511C/T rs16944 3 774/665 1.66 (1.38–2.01) 0 0.86
IL8 �251 T>A rs4073 5 661/703 1.40 (1.07–1.73) 36.43 0.18 0.49

All in HWE 4 611/565 1.28 (0.98–1.67) 38.13 0.18 0.26
IL10 �1082 A>G rs1800896 4 677/761 1.23 (1.01–1.49) 0 0.56 0.63

All in HWE 2 610/690 1.25 (1.02–1.53) 0 0.62 NA
KCNQ1 rs2237897 4 1539/2208 1.30 (1.11–1.53) 30.60 0.23 0.12
LOC101927627 G>A rs1411766 6 3780/3561 1.30 (1.19–1.42) 0 0.64 0.77

All in HWE 5 1.31 (1.19–1.45) 0 0.53 0.82
MTHFR C677T 26 4246/4380 1.43 (1.16–1.77) 83.91 0 0.49

All in HWE 21 3163/3085 1.28 (1.03–1.59) 78.12 0 0.51
NOS3 T-786C rs2070744 7 1934/1710 1.21 (1.07–1.36) 0.56 0.42 0.49

All in HWE 5 1672/1418 1.22 (1.04–1.44) 33.45 0.20 0.17
rs1866813 5 1798/1831 1.40 (1.18–1.67) 26.09 0.25 0.02
SDC2 BamHI T>G 3 485/231 0.70 (0.52–0.93) 0 0.45 0.14
SETD7 rs2592970 3 1939/2222 0.90 (0.81–0.997) 0 0.44 0.3
SIRT1 rs4746720 6 2785/2484 0.88 (0.80–0.97) 0 0.55 0.08

All in HWE 6
SLC12A3 þ1870 G/A 3 1070/650 0.39 (0.28–0.53) 0 0.73 0.01

All in HWE 2 558/334 0.36 (0.23–0.57) 0 0.52 NA
SLC2A1 XbaI(þ)>XbaI(�) rs841853 10 1438/1331 1.44 (1.06–1.96) 78.03 <0.001 0.13

All in HWE 7 938/840 1.71 (1.19–2.45) 75.80 <0.001 0.30
UNC13B rs13293564 4 1573/1910 1.27 (1.13–1.42) 0 0.54 0.08

RS: SNP identifier, RE ORG: random effects odds ratio generalized, I2: I2 statistic, NA: non applicable, PQ: P-value from heterogeneity testing, PE: P-value from Egger’s test.
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Some genes were not classified in signalling pathways and
thus, these genes are discussed based on their biologic role and
function.

Genetic variants involved in lipid metabolism. The polymor-
phism rs4420638 of the APOC1 gene was significantly associated
with DN, with a pooled ORG of 1.47 (95% CI 1.27–1.70) in a com-
parison of diabetics without nephropathy and cases with DN. In
a comparison of healthy controls versus diseased controls ver-
sus cases, and comparison of healthy controls versus cases
with DN, variant E2 and E4 was significantly associated with
DN, with a pooled ORG of 1.57 (95% CI 1.03–2.40) and 1.68 (95% CI
1.11–2.52), respectively.

Genetic variants involved in endothelial function. The
polymorphism –786T/C in nitric oxide synthase 3 (NOS3) gene was
significantly associated with DN with a pooled ORG of 1.21 (95%
CI 1.07–1.36), and this association was also significant in meta-
analysis of only studies in HWE. The polymorphism –786T/C in
the NOS3 gene also showed a significant association with DN in
a comparison of healthy controls versus diabetics without DN
versus cases with DN, with an ORG of 1.23 (95% CI 1.09–1.38),

which was also significant in meta-analysis with only studies in
HWE.

Another polymorphism in NOS3 gene, G894T, was signifi-
cantly associated with DN both in comparison with three
groups and between healthy controls versus cases, with DN
with a pooled ORG of 1.40 (95% CI 1.11–1.77) and 1.69 (95%
CI1.15–2.48), respectively.

Genetic variants involved in epigenetic procedures. SET domain
containing seven, histone lysine methyltransferase (SETD7) rs2592970
polymorphism showed a significant protective association with
DN with a pooled ORG of 0.90 (95% CI 0.81–0.997).

Methylenetetrahydrofolate reductase (MTHFR) is critical for pro-
duction of S-adenosyl-l-methionine, the principal methyl do-
nor. The C677T polymorphism in MTHFR gene showed a
significant association with DN, with a pooled ORG of 1.45 (95%
CI 1.16–1.82). This significance was also significant in meta-
analysis of only studies in HWE. C677T was also significantly as-
sociated with DN in comparisons of three groups and be-
tween comparison of healthy controls versus cases with DN,
with a pooled ORG of 1.44 (95% CI 1.13–1.83) and 1.68 (1.15–
2.47), respectively.

Table 2. Statistically significant results from meta-analysis between healthy controls versus diseased controls (diabetics with normoalbuminu-
ria) versus cases (diabetics with diabetic nephropathy) based on genotype counts

Gene Variant RS Studies (n) Cases/diseased controls/healthy (n) RE ORG (95% CI) I2 (%) PQ PE

AGT M235T rs699 9 1156/1350/1243 1.21 (1.02–1.45) 65.91 0 0.11
APOE E3> e2/e4 6 743/571/1171 1.57 (1.03–2.40) 86.26 0 0.4
MTHFR C677T 10 1345/1306/1903 1.44 (1.13–1.83) 84.45 0 0.3

All in HWE 6 1.14 (0.98–1.32) 26.51 0.24 0.49
NOS3 G894T rs1799983 6 1152/811/117 1.26 (0.94–1.70) 77.82 <0.001 0.95

G894T rs1799983 5 1085/775/1027 1.40 (1.11–1.77) 58.93 0.05 0.16
T-786C rs2070744 3 1.23 (1.09–1.38) 0 0.76 0.83

All in HWE 2 1.22 (1.08–1.38) 0 0.59 –
SLC2A1 XbaI(þ)>XbaI(�) rs841853 7 1.50 (1.05–2.15) 89.18 0 0.49
TGFB1 T869C rs1800470 5 770/787/1332 1.36 (1.08–1.70) 73.19 0 0.24

All in HWE 4 706/727/1103 1.47 (1.24–1.75) 45.66 0.14 0.15

RS: SNP identifier, RE ORG: random effects odds ratio generalized, I2: I2 statistic, NA:nonapplicable,PQ: P-value from heterogeneity testing, PE: P-value from Egger’s test.

Table 3. Statistically significant results from meta-analysis between healthy controls versus cases (diabetics with diabetic nephropathy) based
on genotype counts

Gene Variant RS Studies (n) Cases/controls (n) RE ORG (95% CI) I2 (%) PQ PE

ACE I>D 30 3690/4927 1.24 (1.02–1.52) 83.20 0.00 0.03
All in HWE I>D 29 3283/4695 1.26 (1.02–1.55) 82.87 0.00 0.01

APOE E3> e2/e4 7 1109/1371 1.68 (1.11–2.52) 73.91 0 0.14
ELMO1 rs1345365 3 1204/1241 0.79 (0.69–0.91) 0 0.92 0.55

All in HWE 3
MTHFR C677T 14 1652/2603 1.79 (1.23–2.60) 88.10 0 0.91

All in HWE 8 847/1295 1.41 (0.94–2.12) 80.38 0 0.36
NOS3 G894T rs1799983 9 1941/2222 1.69 (1.15–2.48) 85.21 0 0.18

All in HWE 7 1826/1852 1.84 (1.26–2.7) 83.62 0 0.04
SLC2A1 XbaI(þ)>XbaI(�) rs841853 7 1.87 (1.11–3.15) 89.74 0 0.89

All in HWE 7
TCF7L2 C>T rs7903146 4 1262/2526 2.19 (1.69–2.83) 70.75 0.02 0.44

All in HWE 3 685/1930 2.46 (2.00–3.01) 27.03 0.25 0.43
TGFB1 T869C rs1800470 6 814/1450 1.30 (0.86–1.96) 83.64 0 0.18

All in HWE 4 706/1103 1.73 (1.46–2.04) 0 0.41 0.21

RS: SNP identifier, RE ORG: random effects odds ratio generalized, I2: I2 statistic, NA:nonapplicable,PQ: P-value from heterogeneity testing, PE: P-value from Egger’s test.

The genetic map of diabetic nephropathy | 775



Sirtuin 1 (SIRT1), a NADþ-dependent deacetylase, and more
specifically its variant, rs4746720, showed significant associa-
tion with DN, with a pooled ORG of 0.89 (95% CI 0.81–0.99).

Genetic variants identified by GWAS. Rs451041 in the CARS gene
was significantly associated with DN with a pooled ORG of 1.22
(95% CI 1.07–1.38). This association was also significant in meta-
analysis of only studies in HWE.

Carnosine dipeptidase 1 (CNDP1) D18S880 variant was also as-
sociated with DN with a pooled ORG of 1.38 (95% CI 1.17–1.64),
and this association was also significant in meta-analysis with
studies in HWE. The Engulfment and cell motility 1 (ELMO1)
rs741301 polymorphism was significantly associated with DN
with a pooled ORG of 1.27 (95% CI 1.04–1.56). Solute carrier family
12 member 3 (SLC12A3) 1870G/A showed a significant protective
effect against DN, with a pooled ORG of 0.39 (95% CI 0.28–0.53).

Table 4. Statistically significant results from meta-analysis between diseased controls (diabetics with normoalbuminuria) versus cases (dia-
betics with diabetic nephropathy) based on allele counts

Gene Variant RS Studies (n) Cases/controls (n) RE OR (95% CI) I2 (%) P PE

rs4972593 4 1582/3499 1.23 (1.06–1.43) 27.22 0.25 0.07
ACE T8968C rs4311 3 1042/1123 0.86 (0.76–0.98) 14.88 0.31 0.27
ADIPOQ �11391G>A rs17300539 6 2629/3039 1.18 (1.04–1.35) 0 0.46 0.38
ATP1B2 rs1642763 3 1176/1323 1.17 (1.03–1.34) 0 0.45 0.14

rs1642764 3 1176/1323 1.15 (1.02–1.28) 0 0.81 0.07
ATP2A3 rs1062683 3 1176/1323 1.18 (1.02–1.37) 0 0.54 0.3

rs8068346 3 1176/1323 1.17 (1.00–1.38) 0 0.39 0.3
CGNL1 rs16977473 3 1176/1323 1.299 (1.161–1455) 0 0.399 0.51
CYGB. PRCD rs895157 3 1176/1323 1.214 (1.114–1.323) 0 0.726 0.68
EDN1 rs1794849 3 1176/1323 1.16 (1.02–1.31) 0 0.62 0.08
ELMO1 A>G rs741301 3 1526/1563 0.793 (0.661–0.951) 56.19 0.102 0.09
FLT4 rs2242221 3 1176/1323 1.14 (1.01–1.29) 0 0.38 0.43
FTO rs56094641 3 1176/1323 1.187 (1.110–1.269) 0 0.783 0.51
GLO1 rs7769206 3 1176/1323 1.22 (1.02–1.47) 0 0.73 0.07
IGF2/INS/TH cluster rs1004446 3 1176/1323 1.16 (1.03–1.31) 0 0.49 0.22

rs4320932 3 1176/1323 0.84 (0.73–0.96) 0 0.43 0.06
KNG rs1656922 3 1057/1127 1.13 (1.003–1.27) 0 0.90 0.36
LOC107986400 3 1.570 (1.277–1.929) 0 0.614 0.42
– – rs11225445 3 1640/1770 1.26 (1.14–1.39) 0.27 0.27
– rs610950 3 1640/1770 0.55 (0.44–0.68) 0.36 0.36
– rs613804 3 1640/1770 0.58 (0.46–0.72) 0.37 0.37
SLC2A2 rs5400 3 1057/1127 0.82 (0.69–0.98) 0 0.54 0
SLC19A3 rs12694743 5 2086/603 0.750 (0.564–0.997) 37.91 0.169 0.21

rs6713116 5 2086/602 0.759 (0.631–0.914) 0 0.498 0.23
TIMP1 ss95210393 3 1176/1323 0.88 (0.78–0.99) 0 0.73 0.46

rs6520277 3 1176/1323 1.18 (1.05–1.33) 10.75 0.33 0.3
TTC39C rs16940484 3 1176/1323 1.132 (1.066–1.202) 0 0.988 0.25
UNC13B rs13285401 3 1176/1323 0.88 (0.79–0.99) 0 0.49 0.1

rs10972365 3 1176/1323 0.82 (0.72–0.93) 0 0.46 0.41
rs17360668 3 1176/1323 0.80 (0.68–0.93) 24.65 0.27 0.45

VEGFA C>A rs2146323 3 1176/1323 0.85 (0.76–0.95) 0.2 0.2
WTAPP1 rs756544 3 1640/1770 0.82 (0.75–0.90) 0.46 0.46

rs11225434 3 1640/1770 0.83 (0.75–0.91) 0.46 0.46
rs1034375 3 3280/3540 0.76 (0.64–0.91) 0.38 0.38
rs7926920 3 820/885 0.82 (0.75–0.90) 0.46 0.46

WWC1 rs78954674 3 1176/1323 1.188 (1.100–1.284) 0 0.597 0.25
XYLT1 c.343G>T 3 501/485 1.77 (1.08–2.91) 0 0.682 0.49

RS: SNP identifier, RE ORG: random effects odds ratio generalized, I2: I2 statistic, NA:nonapplicable,PQ: P-value from heterogeneity testing, PE: P-value from Egger’s test.

Table 5. Results from pathway analysis of statistically significant genes

Category Term Genes Count % P-value Benjamini

KEGG_PATHWAY Cytokine–cytokine receptor interaction CCR5, EPO, FLT4, IL1B, IL10, TGFB1, VEGFA 7 1.2 4.4E-3 3.0E-1
KEGG_PATHWAY Pyruvate metabolism ACACB, AKR1B1, GLO1 3 0.5 2.4E-2 6.3E-1
KEGG_PATHWAY T2DM ADIPOQ, IFG2, INS, SLC2A2 3 0.5 3.3E-2 5.9E-1
KEGG_PATHWAY Adipocytokine signalling pathway ACACB, ADIPOQ, SLC2A1 3 0.5 6.2E-2 7.3E-1
KEGG_PATHWAY Renal cell carcinoma SLC2A1, TGFB1, VEGFA 3 0.5 6.7E-2 6.8E-1
KEGG_PATHWAY Renin–angiotensin system ACE, AGT 2 0.4 9.9E-2 7.5E-1
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Other genes. K173Q in ENPP1, rs13293564 in UNC13B, rs1531343 in
HMGA2, SDC2 BamHI T/G polymorphism, rs7903146 in TCF7L2,
T869C in TGFB1, rs2237897 in KCNQ, rs1866813 and two loci,
LOC101927627 and LOC105370358, showed significant associa-
tion with DN. Regarding the allele contrast model, significant
associations were observed for ACE, ADIPOQ, ATP1B2, ATP2A3,
CGNL1, CYGB, PRCD, EDN1, ELMO1, FTO, KNG, LOC107986400,
WTAPP1, SLC19A3, TIMP1, TTC39C, UNC13B, WWC1 and XYLT1.
Genes ACE, ELMO1 and UNC13B were reproducibly associated in
meta-analysis based on genotype counts.

Subgroup analysis

When there were >10 studies per variant, a subgroup analysis
was conducted regarding the type of diabetes and the ethnicity
of the participants. More specifically, subgroup analyses were
conducted for variants in seven genes including ACE, AGT,
AGTR1, APOE, MTHFR, NOS3 and TGFB1 (Table 6). The majority of
the variants were reproducibly associated with DN in more than
one subgroup analysis.

The A1166C polymorphism of the AGTR1 gene, while not sta-
tistically significant in the main analysis, was revealed as sig-
nificant in the subgroup analysis of the Asians and in the
subgroup analysis of T2DM, as well as polymorphism T869C of
the TGFB1 gene in the case of genotypic analysis in diabetics
versus cases with DN where in the main analysis there was no
significance, in the subgroup analyses of Asians and T2DM was
statistically significant.

DISCUSSION

To the best of our knowledge, the present systematic review
and meta-analysis are the most comprehensive in the field of
DN as it examines for the first time such a large number of
genes and genetic polymorphisms, and in particular synthe-
sizes data of 228 genes (606 polymorphisms). Sixty-six genetic
polymorphisms have been shown to be associated with DN. The
aforementioned polymorphisms are harboured in 51 genes,
while one is not close to any known gene, however this does
not mean that it is of secondary importance. The specific poly-
morphisms belong to the following 51 genetic loci: ACACB, ACE,
ADIPOQ, AGT, AGTR1, AKR1B1, APOC1, APOE, ATP1B2, ATP2A3,
CARS, CCR5, CGNL1, CNDP1, CYGB-PRCD, EDN1, ELMO1, ENPP1,
EPO, FLT4, FTO, GLO1, HMGA2, IGF2/INS/TH cluster, IL1B, IL8, IL10,
KCNQ1, KNG, LOC101927627, MTHFR, NOS3, SDC2, SETD7, SIRT1,
SLC2A1, SLC2A2, SLC12A3, SLC19A3, TCF7L2, TGFB1, TIMP1,
TTC39C, UNC13B, VEGFA, WTAPP1, WWC1 as well as XYLT1 and
three intergenic polymorphisms. Of the above genes, KNG and
SETD7 genes proved marginally statistically significant.

The present systematic review and meta-analysis confirmed
the statistical significance of ACE, AKR1B1, APOC1, APOE, CARS,
CCR5, CNDP1, ELMO1, EPO, NOS3, UNC13B and VEGFA, which
showed significance in meta-analyses [35, 36]. However, the
present meta-analysis provides novel statistical significance in
or near ADRB3, ATP1B2, ATP2A3, CGNL1, CYGB-PRCD, FLT4,
LOC101927627, TIMP1, TTC39C, WTAPP1 and WWC1 genetic loci.
Some of the novel findings are harboured in cytogenetic loca-
tions, which were revealed significant in a meta-analysis of
genome-wide linkage studies, such as locations on chromo-
some 5 [25].

The pathway analysis of significant genes revealed overrep-
resentation of six signalling pathways: cytokine–cytokine recep-
tor interaction, pyruvate metabolism, T2DM, adipocytokine

signalling pathway, renal cell carcinoma and the renin–angio-
tensin system.

Taking into consideration the aforementioned pathways
and the classification of genes based on biological role indicated
the important role played by the renin–angiotensin system [37],
angiogenesis and erythropoiesis [38], lipid metabolism [39], pol-
yol pathway [40], inflammatory mechanisms [36, 41], oxidative
stress [42], endothelium function [43] and extracellular matrix
degradation [44], as well as epigenetic mechanisms [45] and glu-
cose transport [46, 47]. Functional studies remain necessary to
confirm the involvement of these mechanisms, in order to clar-
ify the exact role of these polymorphisms and pathways in DN.
From the genetic polymorphisms of the FRMD3, CARS, ELMO1,
CPVL and CHN2 genes, which were first detected in large genetic
correlation studies, only CARS and ELMO1 genes remained sta-
tistically significant after the meta-analysis. The exact role of
these genes requires further elucidation, but certainly many of
the polymorphisms that GWAS have demonstrated will prove
to be not really responsible.

Subgroup analyses were performed purely in order to detect
statistical significance for a particular polymorphism in a par-
ticular environment, either T1DM or T2DM, or Caucasians or
Asians. One finding that is worth mentioning is that genes that
have been statistically significant in subgroup analyses in the
Caucasians have also emerged as significant in subgroup analy-
ses of T1DM (MTHFR and AGT), while significant genes in sub-
analysis of Asians were significant and in subgroup analyses by
T2DM (ACE, AGTR1, MTHFR and TGFB1). This pattern of signifi-
cance between Caucasians and T1DM, as well as between
Asians and T2DM, should be investigated in further studies.

A difference of the present meta-analysis compared with
other meta-analyses is the fact that three types of comparisons
were made: healthy controls versus cases with DN, diabetic con-
trols versus cases with DN, as well as healthy controls versus di-
abetic controls versus cases with DN, in order to separate genes
whose aggravating role is independent of the presence of dia-
betic milieu. This information may highlight unknown aspects
of the pathophysiology of the disease in the hope of leading the
scientific community to discover new therapies that target
pathways common to both T1DM and T2DM nephropathy. The
field synopsis has some limitations, one of which is the publica-
tion bias. In the present field synopsis, we included only English
articles published in scientific journals. In addition, in most
meta-analyses, a small number of studies were included, so the
results should be interpreted with caution. The majority of in-
cluded studies also had insufficient statistical power in order to
identify modest genetic effect which is believed to result from
common variants.

The studies included in the meta-analyses differed with re-
gard to the ethnicity of the individuals, the type of diabetes and
the clinical phenotype regarding the presence or not of persis-
tent albuminuria. Other studies included subjects with persis-
tent proteinuria, and some included cases with persistent
microalbuminuria. However, no study involving exclusively
cases with not persistent microalbuminuria was included, so
that there is no underestimation of the genetic effect since not
persistent albuminuria is a potentially reversible condition. For
this reason, the model of random effects was used in the meta-
analysis in which the variability of the determinant result is
due to both the variability of each study due to the fact that
samples are used rather than source populations and variability
between different studies. In order to take into account hetero-
geneity due to different origins and types of diabetes, the rele-
vant subgroup analyses were performed.
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Table 6. Subgroup analysis results based on type of diabetes and ethnicity

Gene Variant RS Studies (n) Cases/controls (n) RE ORG (95% CI) I2 (%) PQ

Disease controls–cases
ACE All I>D 65 10787/10404 1.21 (1.09–1.34) 74.61 0

All in HWE 55 8733/8267 1.26 (1.14–1.39) 63.85 0
Caucasians 25 4176/4008 1.1 (0.99–1.22) 38.92 0.03

Asians 35 5228/5013 1.24 (1.05–1.45) 78.59 <0.001
T1DM 19 2852/2973 1.1 (0.96–1.25) 43.68 0.02
T2DM 46 7935/7431 1.25 (1.10–1.43) 79.10 <0.001

Three groups
ACE All I>D 21 2973/2622/3668 1.12 (0.94–1.34) 88.33 0

All in HWE 20 2566/2437/3436 1.13 (0.94–1.37) 88.32 0
Caucasians 7 865/691/1075 1.03 (0.82–1.3) 73.52 0

Asians 12 1394/1429/1745 1.06 (0.91–1.23) 68.48 0
T1DM 6 815/575/1024 1.01 (0.78–1.31) 77.09 0
T2DM 15 2158/2047/2644 1.15 (0.92–1.44) 89.81 0

Healthy cases
ACE All I>D 30 3690/4927 1.24 (1.02–1.52) 83.2 0

All in HWE 29 3283/4695 1.26 (1.02–1.55) 82.87 0
Caucasians 10 1051/1565 1.14 (0.92–1.43) 52.63 0.03

Asians 18 1925/2514 1.17 (0.96–1.41) 64.06 0
T1DM 8 908/1314 1.1 (0.84–1.43) 60.08 0.01
T2DM 22 2782/3613 1.29 (1–1.66) 85.58 0

Diseased controls–cases
NOS3 All 4 b>a – 17 3887/3196 1.09 (0.96–1.23) 24.04 0.18

All in HWE 16 3824/3130 1.04 (0.94–1.15) 0 0.73
Caucasians 7 2147/1659 1.19 (0.96–1.46) 50.17 0.06

Asians 8 1035/939 1.04 (0.85–1.28) 0 0.51
T1DM 5 1600/1209 1.24 (0.91–1.68) 65.81 0.02
T2DM 12 2287/1987 1.04 (0.91–1.18) 0 0.62

Diseased controls–cases
NOS3 All G894T rs1799983 19 4184/3330 1.19 (0.96–1.48) 79.95 <0.001

All in HWE 17 3952/3120 1.25 (1.00–1.56) 79.95 <0.001
Caucasians 4 1778/1105 0.93 (0.81–1.06) 0 0.69

Asians 11 1586/1548 1.32 (0.90–1.94) 83.08 0
T1DM 3 1404/870 0.89 (0.76–1.03) 0 1
T2DM 16 2780/2460 1.28 (0.99–1.70) 80.64 0

Diseased controls–cases
MTHFR All C677T 26 4246/4380 1.43 (1.16–1.77) 83.91 0

All in HWE 21 3163/3085 1.28 (1.03–1.59) 78.12 0
Caucasians 9 1198/1202 1.2 (0.91–1.59) 66.8 0

Asians 15 2853/2811 1.31 (1.05–1.64) 77.38 <0.001
T1DM 4 372/667 1.31 (0.88–1.95) 64.75 0.03
T2DM 22 3874/3713 1.45 (1.14–1.84) 85.58 0

Three groups
MTHFR All C677T 10 1345/1306/1903 1.44 (1.13–1.83) 84.45 0

All in HWE 6 1.14 (0.98–1.32) 26.51 0.24
Caucasians 5 518/595/895 1.09 (0.95–1.25) 64.84 0.37

Asians 4 734/444/608 1.76 (1.38–2.25) 55.63 0.08
T1DM 2 153/238/447 1.3 (1.04–1.61) 0 0.7
T2DM 8 1192/1068/1456 1.47 (1.09–1.98) 87.47 0

Healthy controls–cases
MTHFR All C677T 13 1507/2503 1.68 (1.15–2.47) 88.17 0

All in HWE 7 1.21 (0.86–1.7) 69.13 0
Caucasians 6 585/1167 1.31 (1.02–1.69) 45.04 0.11

Asians 6 829/936 1.63 (0.97–2.73) 82.88 0
T1DM 3 174/647 1.71 (1.24–2.37) 83.06 0.34
T2DM 10 1333/1856 1.67 (1.03–2.71) 90.93 0

Diseased controls–cases
AGT All M235T rs699 26 5015/5253 1.21 (1.01–1.45) 82.45 0.00

All in HWE 19 3181/3655 1.09 (0.92–1.31) 72.76 0.00
Caucasians 15 2875/2726 1.04 (0.94–1.16) 14.79 0.29

Asians 1628/2122 1.37 (0.86–2.20) 90.17 <0.001
T1DM 10 1478/1482 1.12 (0.95–1.32) 34.37 0.13
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The identification of the genetic polymorphisms that con-
tribute to the genetic predisposition of the disease will lead to
the discovery of new therapies, but also to more valid and effec-
tive means of prevention and prognosis. These discoveries will
provide new perspectives in the field of personalized medicine
based on the genetic background of each patient and will allow
the provision of both preventative and therapeutic interven-
tions at the individual genome level, increasing both the effi-
cacy and the safety of therapies. It is very logical to investigate
polymorphisms that have been shown to be statistically signifi-
cant in association with DN, but agnostic studies that examine
the genome as a whole are the most promising.

CONCLUSIONS

Sixty-six genetic polymorphisms have been shown to be associ-
ated with DN. These polymorphisms are harboured in 53 gene
loc,i while one is not close to any known gene. These results
should be interpreted with caution because the true susceptibil-
ity loci could be loci that are in linkage disequilibrium with the
significant loci. It would be useful in the future to examine hap-
lotypes, study microarray data and perform functional studies
for clarification of the role of significant genes to produce newer
data, and their combination may lead to the creation of the ge-
netic map of DN.
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Asians 6 458/634 1.38 (0.66–2.9) 86.09 0
T1DM 4 538/695 1.1 (0.78–1.54) 56.02 0.08
T2DM 8 861/1064 1.26 (0.79–2.01) 82.46 0
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Diseased controls–cases
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Caucasians 5 589/481 1.15 (0.79–1.67) 48.44 0.1
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T2DM
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TGFB1 All T869C rs1800470 11 2408/2452 1.16 (0.94–1.44) 75.49 0
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T1DM 4 0.86 (0.74–1) 0 0.43
T2DM 7 1.38 (1.09–1.75) 64.49 0.01

RS: SNP identifier, RE ORG: random effects odds ratio generalized, I2: I2 statistic, PQ: P-value from heterogeneity testing.
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